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Explaining Credit Default Swap Spreads with

Equity

Volatility and Jump Risks of Individual Firms

Abstract

A structural model with stochastic volatility and jumps implies particular rela-

tionships between observed equity returns and credit spreads. This paper explores

such effects in the credit default swap (CDS) market. We use a novel approach

to identify the realized jumps of individual equity from high frequency data. Our

empirical results suggest that volatility risk alone predicts 50% of CDS spread

variation, while jump risk alone forecasts 19%. After controlling for credit rat-

ings, macroeconomic conditions, and firms’ balance sheet information, we can

explain 77% of the total variation. Moreover, the marginal impacts of volatility

and jump measures increase dramatically from investment grade to high-yield en-

tities. The estimated nonlinear effects of volatility and jumps are in line with the

model-implied relationships between equity returns and credit spreads.
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1 Introduction

The empirical tests for structural models of credit risk have been unsuccessful.

Strict estimation or calibration reveals that the predicted credit spread is far be-

low observed credit spreads (Jones et al., 1984), the structural variables explain

very little of the credit spread variation (Huang and Huang, 2003), and pricing

error is very large for corporate bonds (Eom et al., 2004). More flexible regression

analysis, while it confirms the validity of the cross-sectional or long-run factors

in predicting the bond spread, suggests that the explaining power of default risk

factors for credit spread is still very small (Collin-Dufresne et al., 2001), the tempo-

ral changes of bond spread are not directly related to expected default loss (Elton

et al., 2001), or the forecasting power of long-run volatility cannot be reconciled

with the classical Merton (1974) model (Campbell and Taksler, 2003). These neg-

ative findings are robust to the extensions of stochastic interest rates (Longstaff

and Schwartz, 1995), endogenously determined default boundaries (Leland, 1994;

Leland and Toft, 1996), strategic defaults (Anderson et al., 1996; Mella-Barral

and Perraudin, 1997), and mean-reverting leverage ratios (Collin-Dufresne and

Goldstein, 2001).

We argue that incorporating stochastic volatility and jumps in the asset value

process (Huang, 2005) may enable structural variables to adequately explain credit

spread variations, especially in the time series dimension. The most important

finding in Campbell and Taksler (2003) is that the recent increases in corporate

yields can be explained by the upward trend in idiosyncratic equity volatility,

but the magnitude of volatility coefficient is clearly inconsistent with the struc-

tural model of constant volatility (Merton, 1974). Nevertheless, incorporating

jumps in theory should better explain the level of credit spreads for investment

grade bonds at short maturities (Zhou, 2001), but the empirical evidence is rather

mixed. Collin-Dufresne et al. (2001, 2003) use a market-based jump risk measure

and find that it explains only a very small proportion of credit spread. Cremers

et al. (2004a,b) instead rely on individual option-implied skewness and find some

positive evidence. We demonstrate numerically that adding stochastic volatility

and jumps into the classical Merton (1974) model can dramatically increase the

flexibility of the entire credit curve, with the potential to better match observed

yield spreads and to better forecast temporal variation. In particular, we outline

the testable empirical hypotheses between the observable equity returns and credit

spreads implied by the underlying asset return process. This is important, since
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asset value and volatility are generally not observed and the testing of structural

models has to rely heavily on observed equity return and volatility.

We adopt both historical and realized measures to proxy for the time variation

in equity volatility, and several jump measures to proxy for the various aspects

of the jump risk. Our key innovation is to use the high frequency equity returns

of individual firms to detect the realized jumps on each day. Recent literature

suggests that realized variance measures from high frequency data provide a more

accurate measure of short-term volatility (Andersen et al., 2001; Barndorff-Nielsen

and Shephard, 2002; Meddahi, 2002). Furthermore, the continuous and jump con-

tributions can be separated by comparing the difference between bipower variation

and quadratic variation (Barndorff-Nielsen and Shephard, 2004; Andersen et al.,

2004; Huang and Tauchen, 2005). Considering that jumps on financial markets

are usually rare and of large sizes, we further assume that (1) there is at most

one jump per day, and (2) jump size dominates daily return when it occurs, which

helps us to identify daily realized jumps of equity returns (Tauchen and Zhou,

2005). We can further estimate the jump intensity, jump mean, and jump volatil-

ity from these realized jumps, and directly test the implications between equity

returns and credit spread implied by the structural model mentioned above with

stochastic volatility and jumps in the asset value process.

In this paper we rely on the credit default swap (CDS) premium, the most

popular instrument in the rapidly growing credit derivatives markets, as a direct

measure of credit default spreads. Compared with corporate bond spreads, which

were widely used in previous studies in testing structural models, CDS spreads

have two important advantages. First, CDS spread is a relatively pure pricing of

default risk of the underlying entity. The contract is typically traded on standard-

ized terms. By contrast, bond spreads are more likely to be affected by differences

in contractual arrangements, such as seniority, coupon rates, embedded options,

and guarantees. For example, Longstaff et al. (2005) find that a large proportion

of bond spreads are determined by liquidity factors, which do not necessarily re-

flect the default risk of the underlying asset. Second, Blanco et al. (2005) and Zhu

(2004) show that, while CDS and bond spreads are quite in line with each other

in the long run, in the short run CDS spreads tend to respond more quickly to

changes in credit conditions. This could be partly attributed to the fact that CDSs

are unfunded and do not face short-sale restrictions. The fact that CDSs lead the

bond market in price discovery is instrumental for our improved explanation of

the temporal changes in credit spread by default risk factors.
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In contrast to the common empirical strategy that simultaneously regresses

credit spreads on structural variables constructed from equity data, we only use

the lagged explanatory variables. Under a typical structural framework, only as-

set return and volatility are exogenous processes, while equity return and volatil-

ity as well as credit spread are all endogenously determined. Simultaneous re-

gressions without structural restrictions would artificially inflate the R-squares

and t-statistics. Our empirical findings suggest that long-run historical volatility,

short-run realized volatility, and various jump risk measures all have statistically

significant and economically meaningful impacts on credit spreads. Realized jump

measures explain 19% of total variations in credit spreads, while historical skew-

ness and kurtosis measures for jump risk only explain 3%. It is worth noting that

volatility and jump risks alone can predict 54% of the spread variations. After

controlling for credit ratings, macro-financial variables, and firms’ accounting in-

formation, the signs and significance of jump and volatility impacts remain solid,

and the R-square increases to 77%. These results are robust to whether the fixed

effect or the random effect is taken into account, suggesting that the temporal

variation of default risk factors does explain the CDS spreads. More importantly,

the sensitivity of credit spreads to volatility and jump risk is greatly elevated from

investment grade to high-yield entities, which has implications for managing more

risky credit portfolios. Last but not least, both volatility and jump risk measures

show strong nonlinear effects, which is consistent with the hypotheses implied by

the structural model with stochastic volatility and jumps.

The remainder of the paper is organized as follows. Section 2 introduces the

structural link between equity and credit and discusses the methodology for dis-

entangling volatility and jumps using high frequency data. Section 3 gives a brief

description of the credit default swap data and the structural explanatory vari-

ables. Section 4 presents the main empirical findings regarding jump and volatility

risks in explaining the credit spreads. Section 5 concludes.

2 Structural motivation and econometric tech-

nique

Testing structural models of credit risk is difficult because the underlying asset

value and its volatility processes are not observable; therefore, approximations

from observed equity price and volatility have been a common practice. However,

many listed firms have their equity shares and credit derivatives traded on rel-
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atively liquid markets, therefore researchers are prompted to directly model the

observable equity dynamics to explain and predict the credit spreads (Madan and

Unal, 2000; Das and Sundaram, 2004; Carr and Wu, 2005). Nevertheless, struc-

tural models can still provide important economic intuitions on how to interpret

the empirical linkage between equity and credit. Here we motivate our empirical

exercise by examining the model-implied equity-credit relationship from an affine

structural model.

2.1 A stylized model with stochastic volatility and jumps

Assuming the same market environment as in Merton (1974), one can introduce

stochastic volatility (Heston, 1993) and jumps (Zhou, 2001) in the underlying firm

value process,

dAt

At

= (µ − δ − λµJ)dt +
√

VtdW1t + Jtdqt (1)

dVt = κ(θ − Vt)dt + σ
√

VtdW2t (2)

where At is the firm value, µ is the instantaneous asset return, and δ is the

dividend payout ratio. Asset jump has a Poisson mixing Gaussian distribution

with dqt ∼ Poisson (λdt) and log(1 + Jt) ∼ Normal (log(1 + µJ) − 1
2
σ2

J , σ2
J).

The asset return volatility Vt follows a square root process with long-run mean

θ, mean reversion κ, and variance parameter σ. Finally, the correlation between

asset return and return volatility is corr (dW1t, dW2t) = ρ.

Such a specification has been extensively studied in the option pricing literature

(see Bates, 1996; Bakshi et al., 1997, for example), and is suitable for pricing

corporate debt (Huang, 2005).1 Assuming no-arbitrage, the risk-neutral dynamics

is

dAt

At

= (r − δ − λ∗µ∗

J)dt +
√

VtdW ∗

1t + J∗

t dq∗t (3)

dVt = κ∗(θ∗ − Vt)dt + σ
√

VtdW ∗

2t (4)

where r is the risk-free rate, log(1 + J∗

t ) ∼ Normal (log(1 + µ∗

J) − 1
2
σ2

J , σ2
J),

dq∗t ∼ Poisson (λ∗dt), and corr (dW ∗

1t, dW ∗

2t) = ρ. The volatility risk premium is ξv

such that κ∗ = κ+ ξv and θ∗ = θξv/κ
∗, the jump intensity risk premium is ξλ such

that λ∗ = λ + ξλ, and the jump size risk premium is ξJ such that µ∗

J = µJ + ξJ .

1The required assumptions are that default occurs only at maturity with fixed default bound-
ary and that when default occurs there is no bankruptcy cost and the absolute priority rule is
adopted (Huang, 2005).
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Equity price St can be solved as a European call option on debt Dt with face

value B and maturity time T , using the solution method of Duffie et al. (2000)

St = AtF
∗

1 − Be−r(T−t)F ∗

2 (5)

where F ∗

1 and F ∗

2 are risk-neutral probabilities. Therefore the debt value can be

expressed as Dt = At − St, and its price is Pt = Dt/B. The credit default spread

is then given by

Rt − r = − 1

T − t
log(Pt) − r (6)

2.2 The sensitivity of credit spread to asset volatility and

jumps

Figure 1 plots the credit yield curves from both the Merton (1974) model and

the jump diffusion stochastic volatility (JDSV) model, with the same asset return

volatilities that match the high-yield entities (Longstaff and Schwartz, 1995).2 The

5-year credit spread of the JDSV model is 479 basis points, matching the high-yield

credit spread observed in our sample, while the 5-year credit spread of Merton’s

model is 144 basis points, close to investment grade. This difference highlights the

finding that Merton’s model typically underfits the observed bond spread (Jones

et al., 1984), while introducing time-varying volatility here clearly produces higher

credit spread. Incorporating jumps allows the short end (1 month) of the yield

curve to be significantly higher than zero (13 basis points).

The sensitivities of credit curves with respect to volatility and jump parameters

have an intuitive pattern. As shown in Figure 2, the high volatility state V
1/2
t

increases credit spread very dramatically at shorter maturities less than one year,

and the credit curve becomes inverted when the volatility level is high (50%). High

mean reversion of volatility κ reduces spread (less persistent), while high long-run

mean of volatility θ increases spread (more risky). However, the volatility-of-

volatility σ and volatility-asset correlation ρ have rather muted effects on spread,

and the impact signs are not uniform across all maturities. Finally, the jump

mean µJ seems to have non-monotonic and asymmetric effects on credit spread,

i.e., both positive and negative jump means will elevate the credit spread, but

2The parameter values are chosen as r = 0.05, T − t = 5, K/A = 0.6, µ = 0, δ = 0; Vt = 0.09,
κ = 2, θ = 0.09, σ = 0.4, ρ = −0.6; λ = 0.05, µJ = 0, σJ = 0.4; ξv = −1.2, ξλ = 0, ξJ = 0. Such
a setting is similar to several scenarios examined in Longstaff and Schwartz (1995) and Zhou
(2001), therefore we only report the comparative statics that are different from the previous
studies. The unconditional asset volatility

√

θ + λσ2

J
= 0.313 is the same across both JDSV and

Merton (1974) models. The values of κ, σ, and ρ are adapted from Bakshi et al. (1997).
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negative jump means seem to raise spread higher.3

2.3 Testable hypotheses between equity and credit

The stochastic volatility jump diffusion model (1-6) of asset value and volatility

processes implies the following specification of equity price, by applying the Itô

Lemma,

dSt

St

=
1

St

µt(·)dt +
At

St

∂St

∂At

√

VtdW1t +
1

St

∂St

∂Vt

σ
√

VtdW2t

+
1

St

[St(At(1 + Jt), Vt; Ω) − St(At, Vt; Ω)]dqt (7)

where µt(·) is the instantaneous equity return, Ω is the parameter vector, At and

Vt are the latent asset and volatility processes, and St ≡ St(At, Vt; Ω). There-

fore the instantaneous volatility Σs
t and jump size Js

t of the log equity price are,

respectively,

Σs
t =

√

(

At

St

)2 (

∂St

∂At

)2

Vt +

(

σ

St

)2 (

∂St

∂Vt

)2

Vt +
At

S2
t

∂St

∂At

∂St

∂Vt

ρσVt (8)

Js
t = log[St(At(1 + Jt), Vt; Ω)] − log[St(At, Vt; Ω)] (9)

where Js
t has unconditional mean µs

J and standard deviation σs
J , which are not

known in closed form, due to the nonlinear functional form of St(At, Vt; Ω). Ob-

viously the equity volatility is driven by the two time-varying factors At and Vt,

while the asset volatility is simply driven by Vt. However, if asset volatility is

constant (V ), then equation (8) reduces to the standard Merton (1974) formula,

Σs
t =

√
V ∂St

∂At

At

St

. The Poisson driving process of equity jump is the same as asset

jump, hence the same intensity function λs = λ.

The most important empirical implication is how credit spread responds to

changes in equity jump and volatility parameters, implied by the underlying changes

in asset jump and volatility parameters, as illustrated numerically in Figure 3. The

left column suggests that 5-year credit spread would increase linearly with the lev-

els of asset volatility (V
1/2
t ) and jump intensity (λ). Asset jump volatility (σJ)

would also raise credit spread, but in a nonlinear convex fashion. Interestingly,

the asset jump mean (µJ) increases credit spread when moving away from zero.

3Since the risk premium parameters ξv, ξλ, and ξJ enter the pricing equation additively with
κ, λ, and µJ , their impacts on credit spreads are also the same as those parameters and hence
omitted. In addition, the positive impacts of jump intensity λ and jump volatility on σJ on
credit spread are similar to Zhou (2001) and are hence omitted.
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More interestingly, the impact is nonlinear and asymmetric—the negative jump

mean increases spread much more than the positive jump mean. This is because

the first order effect of jump mean changes may be offset by the drift compensator,

and the second order effect is equivalent to jump volatility increases, due to the

log-normal jump distribution.

Given the same changes in structural asset volatility and jump parameters,

the right column plots credit spread changes as related to the equity jump and

volatility parameters. Clearly, equity volatility (Σs
t) still increases credit spread,

but in a nonlinear convex pattern. Note that equity volatility is about three times

as large as asset volatility, mostly due to the leverage effect. Equity jump intensity

(λs) is the same as asset jump intensity, so the linear effect on credit spread is also

the same. Equity jump volatility (σs
J) has a similar positive nonlinear impact on

credit spread, but the range of equity jump volatility is nearly twice as large as

the asset jump volatility. Equity jump mean (µs
J) also has a nonlinear asymmetric

impact on credit spread, with the equity jump mean being more negative than

the asset jump mean.4 Of course, in a linear regression setting, one would only

find the approximate negative relationship between equity jump mean and credit

spread. These relationships, illustrated in Figure 3, are qualitatively robust to

various values of the structural parameters.

To summarize, the following empirical hypotheses may be tested between eq-

uity price and credit spread:
H1: Equity volatility increases credit spread nonlinearly through two factors;

H2: Equity jump intensity increases credit spread linearly;

H3: Equity jump mean affects credit spread in a nonlinear asymmetric way;

negative jumps tend to have large impacts;

H4: Equity jump volatility nonlinearly increases credit spread.

2.4 Disentangling jump and volatility risks of equities

In this paper, we rely on the economic intuition that jumps on financial markets

are rare and of large size, to explicitly estimate the jump intensity, jump variance,

and jump mean, and to directly assess the empirical impacts of volatility and jump

risks on credit spreads.

Let st ≡ log St denote the time t logarithmic price of the stock, which evolves

4Equity jump mean µs

J
and standard deviation σs

J
do not admit closed form solutions. So at

each grid of structural parameter values of µJ and σJ , we simulate asset jump 2000 times and
numerically evaluate µs

J
and σs

J
.
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in continuous time as a jump diffusion process:

dst = µs
tdt + σs

t dWt + Js
t dqt (10)

where µs
t , σs

t , and Js
t are, respectively, the drift, diffusion, and jump functions that

may be more general than the model-implied equity process (7). Wt is a standard

Brownian motion (or a vector of Brownian motions), dqt is a Poisson driving

process with intensity λs = λ, and Js
t refers to the size of the corresponding log

equity jump, which is assumed to have mean µs
J and standard deviation σs

J . Time

is measured in daily units, and the daily return rt is defined as rs
t ≡ st − st−1.

Historical volatility, defined as the standard deviation of daily returns, has been

considered as a proxy for the volatility risk of the underlying asset value process

(see, e.g., Campbell and Taksler, 2003). The intra-day returns are defined as

follows:

rs
t,i ≡ st,i·∆ − st,(i−1)·∆ (11)

where rt,i refers to the ith within-day return on day t, and ∆ is the sampling

frequency.5

Barndorff-Nielsen and Shephard (2003a,b, 2004) propose two general measures

of the quadratic variation process, realized variance and realized bipower variation,

which converge uniformly (as ∆ → 0) to different quantities of the jump diffusion

process,

RVt ≡
1/∆
∑

i=1

(rs
t,i)

2 →
∫ t

t−1

σ2
sds +

1/∆
∑

i=1

(Js
t,i)

2 (12)

BVt ≡ π

2

1/∆
∑

i=2

|rs
t,i| · |rs

t,i−1| →
∫ t

t−1

σ2
sds (13)

Therefore the asymptotic difference between realized variance and bipower varia-

tion is zero when there is no jump and strictly positive when there is a jump. A

variety of jump detection techniques have been proposed and studied by Barndorff-

Nielsen and Shephard (2004), Andersen et al. (2004), and Huang and Tauchen

5That is, there are 1/∆ observations on every trading day. Typically the 5-minute fre-
quency is used because more frequent observations might be subject to distortion from market
microstructure noise (Aı̈t-Sahalia et al., 2005; Bandi and Russell, 2005).
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(2005). Here we adopt the ratio test statistics,

RJt ≡
RVt − BVt

RVt

(14)

When appropriately scaled by its asymptotic variance, z = RJt

Avar(RJt)
converges

to a standard normal distribution.6 This test tells us whether a jump occurred

during a particular day, and how much jump(s) contributes to the total realized

variance, i.e., the ratio of
∑1/∆

i=1 (Js
t,i)

2 over RVt.

To identify the actual jump sizes, we further assume that (1) there is at most

one jump per day and (2) jump size dominates return on jump days. Following

the idea of “significant jumps” in Andersen et al. (2004), we use the signed square

root of significant jump variance to filter out the daily realized jumps,

Js
t = sign(rs

t ) ×
√

RVt − BVt × I(z > Φ−1
α ) (15)

where Φ is the probability of a standard normal distribution and α is the level of

significance chosen as 0.999. The filtered realized jumps enable us to estimate the

jump distribution parameters directly,

λ̂s =
Number of Jump Days

Number of Trading Days
(16)

µ̂s
J = Mean of Js

t (17)

σ̂s
J = Standard Deviation of Js

t (18)

Tauchen and Zhou (2005) show that under empirically realistic settings, such

a method of identifying realized jumps and estimating jump parameters yields

reliable results in finite samples, as both the sample size increases and the sampling

interval shrinks. We can also estimate the time-varying jump parameters for

a rolling window (e.g., 1-year horizon λ̂s
t , µ̂s

J,t, and σ̂s
J,t). Equipped with this

technique, we are ready to re-examine the impact of jumps on credit spreads.

3 Data

Throughout this paper we choose to use the credit default swap (CDS) premium

as a direct measure of credit spreads. CDS is the most popular instrument in the

rapidly growing credit derivatives markets. Under a CDS contract the protection

6See Appendix A for implementation details. Similar to Huang and Tauchen (2005), we find
that using the test level of 0.999 produces the most consistent results. We also use staggered
returns in constructing the test statistics, to control for the potential measurement error problem.
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seller promises to buy the reference bond at its par value when a pre-defined

default event occurs. In return, the protection buyer makes periodic payments to

the seller until the maturity date of the contract or until a credit event occurs.

This periodic payment, which is usually expressed as a percentage (in basis points)

of its notional value, is called CDS spread. By definition, credit spread provides a

pure measure of the default risk of the reference entity.7

Our CDS data are provided by Markit, a comprehensive data source that as-

sembles a network of industry-leading partners who contribute information across

several thousand credits on a daily basis. Based on the contributed quotes Markit

creates the daily composite quote for each CDS contract.8 Together with the

pricing information, the dataset also reports average recovery rates used by data

contributors in pricing each CDS contract.

In this paper we include all CDS quotes written on US entities (sovereign

entities excluded) and denominated in US dollars. We eliminate the subordinated

class of contracts because of their small relevance in the database and unappealing

implication in credit risk pricing. We focus on 5-year CDS contracts with modified

restructuring (MR) clauses9 as they are the most popularly traded in the US

market. After matching the CDS data with other information such as equity prices

and balance sheet information (discussed below), we are left with 307 entities in

our study. This much larger pool of constituent entities relative to previous studies

makes us more comfortable in interpreting our empirical results.

Our sample coverage starts at January 2001 and ends at December 2003. For

each of the 307 reference entities, we create the monthly CDS spread by calcu-

lating the average composite quote in each month, and, similarly, the monthly

recovery rates linked to CDS spreads.10 To avoid measurement errors we remove

7There has been a growing interest in examining the pricing determinants of credit derivatives
and bond markets (Cossin and Hricko, 2001; Houweling and Vorst, 2005) and the role of the
CDS spreads in forecasting future rating events (Hull et al., 2003; Norden and Weber, 2004).

8Three major filtering criteria are adopted to remove potential measurement errors: (1) an
outlier criterion that removes quotes that are far above or below the average prices reported by
other contributors; (2) a staleness criterion that removes contributed quotes that do not change
for a very long period; and (3) a term structure criterion that removes flat curves from the
dataset.

9Packer and Zhu (2005) examine different types of restructuring clauses traded in the market
and their pricing implications. A modified restructuring contract has more restrictions on de-
liverable assets upon bankruptcy than the traditional full restructuring contract, and therefore
should be related to a lower spread. Typically the price difference is less than 5%.

10Although composite quotes are available on a daily basis, we choose a monthly data frequency
for two major reasons. First, balance sheet information is available only on a quarterly basis.
Using daily data is very likely to understate the impact of firms’ balance sheets on CDS pricing.
Second, as most CDS contracts are not frequently traded, the CDS data suffer significantly from
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those observations for which there exist huge discrepancies (above 20%) between

CDS spreads with modified restructuring clauses and those with full restructuring

clauses. In addition, we also remove those CDS spreads that are higher than 20%,

because they are often associated with absence of trading or a bilateral arrange-

ment of an upfront payment.

Our explanatory variables include our measures of individual equity volatilities

and jumps, rating information, and other standard structural factors including

firm-specific balance sheet information and macro-financial variables. Appendix B

describes the definitions and sources of those variables, and theoretical predictions

of their impact on credit spreads are listed in Table 1.

To be more specific, we use two sets of measures for the equity volatility of

individual firms as defined in Section 2.4: historical volatility calculated from

daily equity prices and realized volatility calculated from intra-day equity prices.

We calculate the two volatility measures over different time horizons (1-month,

3-month, and 1-year) to proxy for the time variation in equity volatility. We also

define jumps on each day based on the ratio test statistics (equation (14)) with

the significance level of 99.9% (see Appendix A for implementation details). After

identifying daily jumps, we then calculate the average jump intensity, jump mean,

and jump standard deviation in a month, a quarter, and a year.

Following the prevalent practice in the existing literature, our firm-specific

variables include the firm leverage ratio, return on equity (ROE), and dividend

payout ratio. And to proxy for the overall state of the economy, we use four

macro-financial variables: the S&P 500 average daily return and its volatility in

the past 6 months, and the average 3-month Treasury rate and the slope of the

yield curve in the previous month.

4 Empirical evidence

In this section we first briefly describe the attributes of our volatility and jump

measures, then mainly examine their role in explaining CDS spread movements.

the sparseness problem if we choose daily frequency, particularly in the early sample period. A
consequence of the choice of monthly frequency is that there is no obvious autocorrelation in
the dataset, so the standard ordinary least squares (OLS) regression is a suitable tool in our
empirical analysis.
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The benchmark regression is an OLS test that pools together all valid observations:

CDSi,t = c + bv · Volatilitiesi,t−1 + bj · Jumpsi,t−1 (19)

+br · Ratingsi,t−1 + bm · Macroi,t−1 + bf · Firmi,t−1 + ǫi,t

where the explanatory variables are vectors listed in Section 3 and detailed in

Appendix B.

Note that we only use lagged explanatory variables, mainly to avoid the simul-

taneity problem. From a theoretical perspective, most explanatory variables, such

as equity return and volatility, ratings, or option-implied volatility and skewness

as used in Cremers et al. (2004a,b), are jointly determined with credit spreads.

Therefore, the explanatory power might be artificially inflated by using simulta-

neous explanatory variables. In particular, it might generate biased results on

the economic relevance of structural factors in explaining credit spreads, as the

regression also tests for the consistency of prices in different markets (CDS, equity,

and option markets).

We first run regressions with only jump and volatility measures. Then we

also include other control variables, such as ratings, macro-financial variables, and

balance sheet information, as predicted by the structural models and evidenced by

empirical literature. The robustness check using a panel data technique does not

alter our results qualitatively. In addition, we also test whether the influence of

structural factors is related to the firms’ financial condition by dividing the sample

into three major rating groups. Our final exercise tests for the nonlinearity of the

volatility and jump effect, as predicted by the model in Section 2.

4.1 Summary statistics

Table 2 reports the sectoral and rating distributions of our sample companies,

and summary statistics of firm-specific accounting and macro-financial variables.

Our sample entities are evenly distributed across different sectors, but the ratings

are highly concentrated in the single-A and triple-B categories (combined 73% of

total). High-yield names represent only 20% of total observations, reflecting the

fact that CDS on investment grade names is still dominating the market.

CDS spreads exhibit substantial cross-sectional differences and time variations

with a sample mean of 172 basis points. By rating categories, the average CDS

spread for single-A to triple-A entities is 45 basis points, whereas the average

spreads for triple-B and high-yield names are 116 and 450 basis points, respec-
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tively. In general, CDS spreads increased substantially in mid-2002, then gradually

declined throughout the remaining sample period, as shown in Figure 4.

The summary statistics of firm-level volatilities and jump measures are re-

ported in Table 3.11 The average daily return volatility (annualized) is between

40-50%, independent of whether historical or realized measures are used. The two

volatility measures are also highly correlated (the correlation coefficient is around

0.9). Concerning the jump measures, we detect significant jumps in about 16% of

the transaction days. In those days when significant jumps have been detected,

the jump component contributes to 52.3% of the total realized variance on average

(the range is around 40-80% across the 307 entities). The infrequent occurrence

and relative importance of the jump component validate the two assumptions we

have used in the identification process.

Like CDS spreads, our volatility and jump measures also exhibit significant

variation over time and across rating groups (Table 3 and Figure 4). High-yield

entities are associated with higher equity volatility, but the distinction within the

investment grade categories is less obvious. As for jump measures, lower-rated

entities tend to be linked with lower jump volatility and smaller jump magnitude.

Another interesting finding is the very low correlation between jump volatility

RV(J) and historical skewness or kurtosis. This looks surprising at first, as both

skewness and kurtosis have been proposed to proxy for the jump risk in previous

studies.12 On careful examination, this may reflect the inadequacy of both vari-

ables in measuring jumps. Historical skewness is an indicator of asymmetry in

asset returns. A large and positive skewness means that extreme upward move-

ments are more likely to occur. Nevertheless, skewness is not a sufficient indicator

of jumps. For example, if upward and downward jumps are equally likely to oc-

cur, then skewness is always zero. However, jump volatility RV(J) and kurtosis

are direct indicators of the existence of jumps in the continuous-time framework,

but the fact that both measures are non-negative suggests that they are unable to

reflect the direction of jumps, which is crucial in determining the pricing impact

of jumps on CDS spreads.13 Given the caveats of these measures, we choose to

11Throughout the remaining part of this paper, “volatility” refers to the standard deviation
term to distinguish from the “variance” representation.

12Skewness is often loosely associated with the existence of jumps in the financial industry,
while kurtosis can be formalized as an econometric test of the jump diffusion process (Drost
et al., 1998).

13We have also calculated the skewness and kurtosis based on 5-minute returns. The results
are similar and therefore not reported in this paper. More importantly, high frequency measures
are not able to get rid of the above shortcomings by definition.
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include the jump intensity, jump mean, and jump volatility measures as defined

in equations (16)-(18). These measures combined can provide a full picture of the

underlying jump risk.

4.2 Volatility and jump effects on credit spreads

Table 4 reports the main findings of OLS regressions, which explain credit spreads

only by different measures of equity return volatility and/or jump measures. Re-

gression (1) using 1-year historical volatility alone yields an R-square of 45%,

which is higher than the main result of Campbell and Taksler (2003, regression

8 in Table II, R-square 41%) with all volatility, ratings, accounting information,

and macro-finance variables combined. Regressions (2) and (3) show that short-

term realized volatility also explains a significant portion of spread variations, and

that combined long-run (1-year HV) and short-run (1-month RV) volatilities give

the best R-square result at 50%. The signs of coefficients are all correct—high

volatility raises credit spread, and the magnitudes are all sensible—a 1 percentage

volatility shock raises the credit spread by about 3 to 9 basis points. The statisti-

cal significance will remain even if we put in all other control variables (discussed

in the following subsections).

The much higher explanatory power of equity volatility may be partly due to

the gains from using CDS spreads, since bond spreads (used in previous stud-

ies) have a larger non-default-risk component. However, our study is distinct

from previous studies in that it includes both long-term and short-term equity

volatilities, which is consistent with the theoretical prediction that equity volatil-

ity affects credit spreads via two factors (Hypothesis I). The existing literature

usually adopts the long-term equity volatility, with the implicit assumption that

equity volatility is constant over time. However, this assumption is problematic

from the theoretical perspective. Note, for instance, that within the Merton (1974)

model, although the asset value volatility is constant, the equity volatility is still

time-varying, because the time-varying asset value generates time variation in the

nonlinear delta function. Within the stochastic volatility model (as discussed in

Section 2), equity volatility is time-varying because both the asset volatility and

the asset value are time-varying. Therefore, a combination of both long-run and

short-run volatility could be used to reflect the time variation in equity volatil-

ity, which has often been ignored in the past but is important in determining

credit spreads, as suggested by the substantial gains in the explanatory power and

statistical significance of the short-run volatility coefficient.
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Another contribution of our study is to construct innovative jump measures

and show that jump risks are indeed priced in CDS spreads. Regression (4) sug-

gests that historical skewness as a measure of jump risk can have a correct sign

(positive jumps reduce spreads), provided that we also include the historical kurto-

sis which also has a correct sign (more jumps increase spread). This is in contrast

with the counter-intuitive finding that skewness has a significantly positive impact

on credit spreads (Cremers et al., 2004b). However, the total predictability of tra-

ditional jump measures is still very dismal—only 3% in R-square. In contrast, our

new measures of jumps—regressions (5) to (7)—give significant estimates, and by

themselves explain 19% of credit spread variations. A few points are worth men-

tioning. First, jump volatility has the strongest impact—raising default spread by

2.5-4.5 basis points for a 1 percentage point increase. Second, when jump mean

effect (-0.2 basis point) is decomposed into positive and negative parts, there is

some asymmetry in that positive jumps only reduce spreads by 0.6 basis point

but negative jumps can increase spreads by 1.6 basis points. Hence, we will treat

the two directions of jumps separately in the remaining part of this paper. Third,

average jump size has only a muted impact (-0.2) and jump intensity can switch

sign (from 0.55 to -0.97), which may be explained by controlling for positive or

negative jumps.

Our new benchmark regression (8) explains 54% of credit spreads with volatil-

ity and jump variables alone, a very striking result compared with previous studies.

The impacts of volatility and jump measures are in line with theoretical predic-

tions and are economically significant as well. The gains in explanatory power

relative to regression (1), which only includes long-run equity volatility, can be at-

tributed to two causes. First, the decomposition of volatility into continuous and

jump components, particularly recognizing the time variation in equity volatility

and different aspects of jump risk, enables us to examine the different impacts

of those variables in determining credit spreads, as laid out in hypotheses (1)-

(4). Second, as shown in a recent study by Andersen et al. (2004), using lagged

realized volatility and jump measures of different time horizons can significantly

improve the accuracy of volatility forecast. Since the expected volatility and jump

measures, which tend to be more relevant in determining credit spreads based on

structural models, are not observable, empirical exercises typically have to rely on

historical observations. Therefore, the gains in explanatory power might reflect

the superior forecasting ability of our set of volatility and jump measures relative

to historical volatility alone.
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4.3 Extended regression with traditional controlling vari-

ables

We then include more explanatory variables—credit ratings, macro-financial con-

ditions, and firms’ balance sheet information—all of which are theoretical deter-

minants of credit spreads and have been widely used in previous empirical studies.

The regressions are implemented in pairs, one with and the other without measures

of volatility and jump. Table 5 reports the results.

In the first exercise, we examine the extra explanatory power of equity volatili-

ties and jumps in addition to ratings. Cossin and Hricko (2001) suggest that rating

information is the single most important factor in determining CDS spreads. In-

deed, our results confirm their findings that rating information alone explains

about 56% of the variation in credit spreads, about the same as volatility and

jump effects are able to explain (see Table 4). By comparing the rating dummy

coefficients, apparently low-rating entities are priced significantly higher than high-

rating ones, which is economically intuitive and consistent with the existing lit-

erature. By adding volatility and jump risk measures, we can explain another

18% of the variation (R2 increases to 74%). All volatility and jump variables have

the correct sign and are statistically very significant. More remarkably, the coeffi-

cients are more or less in the same magnitude as in the regression without rating

information, except that the long-term historical volatility has a smaller impact.

The increase in R2 is also very large in the second pair of regressions. Regres-

sion (3) shows that all other variables, including macro-financial factors (market

return, market volatility, the level and slope of the yield curve), firms’ balance

sheet information (ROE, firm leverage, and dividend payout ratio) and the recov-

ery rate used by CDS price providers, combined explain an additional 7% of credit

spread movements on top of rating information (regression (3) versus (1)). The

combined impact increase is smaller than the volatility and jump effect (18%).

Moreover, regression (4) suggests that the inclusion of volatility and jump effect

provides another 14% of explanatory power compared to regression (3). R2 in-

creases to a very high level of 0.77. The results suggest that the volatility effect

is independent of the impact of other structural or macro factors.

Overall, the jump and volatility effects are very robust, with the same signs and

little change in magnitudes. To measure the economic significance more precisely,

it is useful to go back to the summary statistics presented earlier (Table 3). The

cross-firm averages of the standard deviation of the 1-year historical volatility and
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the 1-month realized volatility (continuous component) are 18.57% and 25.85%,

respectively. Such shocks lead to a widening of the credit spreads by about 50 and

40 basis points, respectively. For the jump component, a one standard deviation

shock in JI, JV, JP and JN (41.0%, 16.5%, 92.9% and 93.4%) changes the credit

spread by about 36, 26, 59, and 34 basis points, respectively. Adding them up,

these factors could explain a large component of the cross-sectional difference and

temporal variation in credit spreads observed in the data.

Judging from the full model of regression (4), macro-financial factors and firm

variables have the expected signs. The market return has a significant negative

impact on the spreads but the market volatility has a significantly positive effect,

consistent with the business cycle effect. High profitability implies an upward

movement in asset value and a lower default probability, and therefore has a

negative impact on credit spreads. A high leverage ratio is linked to a shift in

default boundary, with firms being more likely to default, while a high dividend

payout ratio leads to a reduction in firm asset value, so both have positive impacts

on credit spreads. For short-term rates and the term spread of yield curves, for

which the theory does not give a clear answer, our regression shows that both have

significantly positive effects, suggesting that the market is more likely to connect

them with the change in monetary policy stance.

Another observation which should be emphasized is that the high explanatory

power of rating dummies quickly diminishes when the macro-financial and firm

specific variables are included. The t-ratios of ratings precipitate dramatically

from regressions (1) and (2) to regressions (3) and (4), and the dummy effect

across rating groups is less distinct. At the same time, the t-ratios for jump and

volatility measures remain very high. This result is consistent with the rating

agencies’ practice of rating entities according to their accounting information and

probably macroeconomic conditions as well.

4.4 Robustness check

We implement a robustness check by using a panel data technique with fixed and

random effects (see Table 6). Although the Hausman test favors fixed effects

over random effects, the regression results do not differ much between these two

approaches. In particular, the slope coefficients of the individual volatility and

jump variables are remarkably stable and qualitatively unchanged. Moreover,

the majority of macro-financial and firm accounting variables have consistent and

significant impacts on credit spreads, except that firm profitability (ROE) and
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recovery rate become insignificant. Also of interest is that the R-square can be as

high as 87% in the fixed effect panel regression, if we allow firm specific dummies.14

We also run the same regression using 1-year CDS spreads, provided by Markit

as well.15 All the structural factors, particularly the volatility and jump factors, af-

fected credit spreads with the same signs and similar magnitude. Interestingly, the

explanatory power of those structural factors on the short-maturity CDS spreads

is close to the benchmark (regression (4) in Table 5). This is in contrast with

the finding in the existing literature that structural models are less successful in

explaining the short-maturity credit spreads. Such an improvement can be largely

attributed to the inclusion of a jump process proxied by our jump measures, which

allows the firm’s asset value to change substantially over a short time horizon.

4.5 Estimation by rating groups

We have demonstrated that equity volatility and jump help to determine CDS

spreads. The OLS regression is a linear approximation of the relationship be-

tween credit spreads and structural factors. However, structural models suggest

that those coefficients are largely dependent on firms’ fundamentals (asset value

process, leverages, etc.), or the relationship can be nonlinear (Section 2.3). In

the next two subsections we address these two issues, i.e., whether the impacts of

structural factors are intimately related to firms’ credit standing and accounting

fundamentals, and whether the effect is nonlinear in nature.

We first examine whether the volatility and jump effects vary across different

rating groups. Table 7 reports the benchmark regression results by dividing the

sample into three rating groups: triple-A to single-A names, triple-B names, and

high-yield entities. The explanatory power of structural factors is the highest for

the high-yield group, consistent with the finding in Huang and Huang (2003).

Nevertheless, structural factors explain 41% and 54% of the credit spread move-

ments in the two investment grade groups, much higher than their study (below

20% and in the 30%s respectively).

The regression results show that the volatility/jump impact coefficients for

14We have also experimented with the Newey and West (1987) heteroscedasticity and auto-
correlation (HAC) robust standard error, which only makes the t-ratios slightly smaller but
makes no qualitative differences. This is consistent with the fact that our empirical regressions
do not involve overlapping horizons, lagged dependent variables, or contemporaneous regres-
sors that are related to individual firms’ return, volatility, and jump measures. The remaining
heteroscedasticity is very small given that so many firm-specific variables are included in the
regressions.

15The results are not reported here but are available upon request.
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high-yield entities are typically several times larger than those for the top invest-

ment grade names, and those for BBB entities in between. To be more precise,

for long-run volatility the coefficients for the high-yield group and the top invest-

ment grade are 3.25 vs 0.75, short-run volatility 2.17 vs 0.36, jump intensity 1.52

vs 0.24, jump volatility 3.55 vs -0.03 (insignificant), positive jump -1.10 vs -0.13,

and negative jump 0.52 vs 0.13. Similarly, the t-ratios of those coefficients in the

former group are much larger than those in the top investment grade. If we also

take into account the fact that high-yield names are associated with much higher

volatility and jump risk (Table 3 and Figure 4), the economic implication of the

interactive effect is even more remarkable.

At the same time, the coefficients of macro-financial and firm-specific variables

are also very different across rating groups. Credit spreads of high-yield entities

appear to respond more dramatically to changes in general equity market con-

ditions. Similarly, the majority of firm-specific variables, including the recovery

rate, the leverage ratio, and the dividend payout ratio, have a larger impact (both

statistically and economically) on credit spreads in the low-rating group. Those

results reinforce the idea that the impact of structural factors, including volatility

and jump risks, depends on the firms’ credit ratings and fundamentals.

4.6 The nonlinear effect

While the theory usually implies a complicated relationship between equity volatil-

ity and credit spreads, in empirical exercises a simplified linear relationship is of-

ten used. To test for the nonlinear relationship, we include the squared and cubic

terms of volatility and jump variables, and the results are reported in Table 8.

The regression finds strong nonlinearity in the effect of long-run and short-run

volatility, jump volatility, and positive and negative jumps, consistent with the

prediction from hypotheses 1, 3, and 4 in Section 2.3. Moreover, in line with

hypothesis 2, the regression suggests that the effect of jump intensity is more

likely to be linear, as both squared and cubic terms turn out to be statistically

insignificant.

Given that the economic implications of those coefficients are not directly in-

terpretable, Figure 5 illustrates the potential impact of the nonlinear effect. The

solid lines plot the pricing impact of 1-year and 1-month volatility, jump intensity,

jump volatility, and positive and negative jumps, respectively, with each variable

of interest ranging from its 5th and 95th percentile distributions. Compared with

the calibration exercise as plotted in Figure 3, it is quite striking that the regression
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result fits extremely well with the model predictions. Volatility and jump mea-

sures both have convex nonlinear effects on credit spreads. The jump mean has an

asymmetric impact, with negative jumps having larger pricing implications. The

only difference lies in the impact of positive jumps, which increase credit spreads

in the calibration but have an opposite effect in the regression. However, the

positive relationship between credit spreads and positive jumps in the calibration

might be due to the particular parameter values used in the example, and is more

likely to be ambiguous from theoretical perspective (Table 1).

The existence of the nonlinear effect could have important implications for em-

pirical studies. In particular, it suggests that the linear approximation can cause

substantial bias in calibration exercises or the evaluation of structural models.

This bias can arise from two sources, namely by assuming a linear relationship

between credit spreads and structural factors or by using the group average of

particular structural factors (the so-called Jensen inequality problem). The con-

sequence of the former issue can be easily judged by comparing our regression

results in Table 8 and Table 5, so here we mainly focus on the second issue.

We use an example in Huang and Huang (2003), in which they use the average

equity volatility within a rating class in their calibration exercise, and find that

the predicted credit spread is much lower than the observed value (average credit

spreads in the rating class). The under-fitting of structural model predictions

is also known as the credit premium puzzle. Nevertheless, this “averaging” of

individual equity volatility could be problematic if its true impact on credit spread

is nonlinear. The quantitative relevance of the Jensen inequality problem depends

on the convexity of the relationship between the two variables.

Using our sample and regression results, the averaging of 1-year volatility can

cause an under-prediction of credit spreads by 13 basis points.16 Similarly, the

averaging of 1-month volatility, jump volatility, and negative jumps will cause the

calibrated value to be lower by 12, 3, and 4.5 basis points respectively. By contrast,

the averaging of positive jumps causes an overestimation by about 7 basis points.

The aggregate impact of this nonlinear effect is about 25 basis points, which is not

trivial considering that the average CDS spread is 172 basis points. Even though

this nonlinear effect explanation is not the only one that contributes to Huang

and Huang’s finding and may not be able to fully reconcile the disparity, it can

16The calculation is based on the difference between F (E(HV ),Ω) and E[F (HV,Ω)], where
F (·) refers to the estimated relationship between CDS spread and explanatory variables, and Ω
refers to other structural factors.
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perhaps point us in a promising direction for future research to address this issue.

5 Conclusions

In this paper we have extensively investigated the impact of theoretical determi-

nants, particularly firm-level equity return volatility and jumps, on the level of

credit spreads in the credit default swap market. Our results find strong volatility

and jump effect, which predicts an extra 14-18% of the total variation in credit

spreads after controlling for rating information and other structural factors. In

particular, when all these control variables are included, equity volatility and

jumps are still the most significant factors, even more so than the rating dummy

variables. This effect is economically significant and remains robust to the cross-

sectional controls of fixed effect and random effect, suggesting that the temporal

variations of credit spreads are adequately explained by the lagged structural ex-

planatory variables. The volatility and jump effects are strongest for high-yield

entities and financially stressed firms. Furthermore, these estimated effects exhibit

strong nonlinearity, which is consistent with the implications from a structural

model with stochastic volatility and jumps.

We adopted an innovative approach to identify the realized jumps of individ-

ual firms’ equity, which enabled us to directly assess the impact of various jump

risk measures (intensity, variance, and negative jump) on the default risk premia.

These realized jump risk measures are statistically and economically significant,

which contrasts with the typical mixed findings in the literature using historical

or implied skewness as jump proxies.

Our study is only a first step towards improving our understanding of the

impact of volatility and jumps on credit risk markets. Calibration exercises that

take into account the time variation of volatility and jump risks and non-linear

effects could be a promising area to explore in order to resolve the so-called credit

premium puzzle. Related issues, such as rigorous specification tests of structural

models with time-varying volatility and jumps, are also worth more attention from

research professionals.
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Appendix

A Test statistics of daily jumps

Barndorff-Nielsen and Shephard (2004), Andersen et al. (2004), and Huang and

Tauchen (2005) adopt test statistics of significant jumps based on the ratio statis-

tics as defined in equation (14),

z =
RJt

[((π/2)2 + π − 5) · ∆ · max(1, TPt

BV2

t

)]1/2
(20)

where ∆ refers to the intra-day sampling frequency, BVt is the bipower variation

defined by equation (13), and

TPt ≡
1

4∆[Γ(7/6) · Γ(1/2)−1]3
·

1/∆
∑

i=3

|rt,i|4/3 · |rt,i−1|4/3 · |rt,i−2|4/3

When ∆ → 0, TPt →
∫ t

t−1
σ4

sds and z → N(0, 1). Hence daily “jumps” can be

detected by choosing different levels of significance.

In implementation, Huang and Tauchen (2005) suggest using staggered returns

to break the correlation in adjacent returns, an unappealing phenomenon caused

by microstructure noise. In this paper we follow this suggestion and use the

following generalized bipower measures (j = 1):

BVt ≡ π

2

1/∆
∑

i=2+j

|rt,i| · |rt,i−(1+j)|

TPt ≡ 1

4∆[Γ(7/6) · Γ(1/2)−1]3
·

1/∆
∑

i=1+2(1+j)

|rt,i|4/3 · |rt,i−(1+j)|4/3 · |rt,i−2(1+j)|4/3

Following Andersen et al. (2004), the continuous and jump components of

realized volatility on each day are defined as

RV(J)t =
√

RVt − BVt · I(z > Φ−1
α ) (21)

RV(C)t =
√

RVt · [1 − I(z > Φ−1
α )] +

√

BVt · I(z > Φ−1
α ) (22)

where RVt is defined by equation (12), I(·) is an indicator function and α is

the chosen significance level. Based on the Monte Carlo evidence in Huang and

Tauchen (2005) and Tauchen and Zhou (2005), we choose the significance level α

as 0.999 with adjustment for microstructure noise.
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B Data sources and definitions

The following variables are included in our study.

1. CDS data provided by Markit. We calculate average 5-year CDS spreads

and recovery rates for each entity in every month.

2. Historical measures of equity volatility calculated from CRSP data. Based

on the daily equity prices, we calculate average return, historical volatility

(HV), historical skewness (HS), and historical kurtosis (HK) for each entity

over 1-month, 3-month and 1-year time horizons.

3. Realized measures of equity volatility and jump. The data are provided by

TAQ (Trade and Quote), which includes intra-day (tick-by-tick) transaction

data for securities listed on the NYSE, AMES, and NASDAQ. The following

measures are calculated over the time horizon of 1 month, 3,months and 1

year.

• Realized volatility (RV): defined by equation (12).

• Jump intensity (JI): the frequency of business days with non-zero jumps,

where jumps are detected based on the ratio statistics (equation (14))

with the test level of 99.9% (see Appendix A for implementation detail).

• Jump mean (JM) and jump variance (JS): the mean and the standard

deviation of non-zero jumps.

• Positive and negative jumps (JP and JN): the average magnitude of

positive jumps and negative jumps over a given time horizon. JN is

represented by its absolute term.

4. Firm balance sheet information. The accounting information is obtained

from Compustat on a quarterly basis. We use the last available quarterly

observation in regressions, and the three firm-specific variables are defined

as follows (in percentages):

Leverage (LEV ) =
Current debt + Long-term debt

Total equity + Current debt + Long-term debt

ROE =
Pre-tax income

Total equity

Dividend payout ratio (DIV ) =
Dividend payout per share

Equity price

5. Four macro-financial variables collected from Bloomberg. They are: the S&P

500 average daily return and its volatility (in standard deviation terms) in

the past six months, average short-term rate (3-month Treasury rate) and

term spread (the difference between 10-year and 3-month Treasury rates) in

the past month.
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Table 1: Theoretical predictions of the impact of structural factors on credit spreads

Variables Impacts Economic intuitions

Equity return Negative A higher growth in firm value reduces the probability of default (PD).
Equity volatility Positive Higher equity volatility often implies higher asset volatility, therefore the

firm value is more likely to hit below the default boundary.
Equity skewness Negative Higher skewness means more positive returns than negative ones.
Equity kurtosis Positive Higher kurtosis means more extreme movements in equity returns.
Jump component Zhou (2001) suggests that credit spreads increase in jump intensity and

jump variance (more extreme movements in asset returns). A higher jump
mean is linked to higher equity returns and therefore reduces the credit
spread; nevertheless, there is a second-order positive effect as equity volatil-
ity also increases (see Section 2.3).

Expected recovery rates Negative Higher recovery rates reduce the present value of protection payments in
the CDS contract.

Firm leverage Positive The Merton (1974) framework predicts that a firm defaults when its lever-
age ratio approaches 1. Hence credit spreads increase with leverage.

ROE Negative PD is lower when the firm’s profitability improves.
Dividend payout ratio Positive A higher dividend payout ratio means a decrease in asset value, therefore

a default is more likely to occur.
General market return Negative Higher market returns indicate an improved economic environment.
General market volatility Positive Economic conditions are improved when market volatility is low.
Short-term interest rate Ambiguous A higher spot rate increases the risk-neutral drift of the firm value process

and reduces PD (Longstaff et al., 2005). Nevertheless, it may reflect a
tightened monetary policy stance and therefore PD increases.

Slope of yield curve Ambiguous A steeper slope of the term structure is an indicator of improving economic
activity in the future, but it can also forecast an economic environment
with rising inflation rate and monetary tightening of credit.
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Table 2: Summary statistics: (upper left) sectoral distribution of sample entities; (upper right) distribution of credit spread
observations by ratings; (lower left) firm-specific information; (lower right) macro-financial variables

By sector number percentage (%) By rating number percentage (%)

Communications 20 6.51 AAA 213 2.15
Consumer cyclical 63 20.52 AA 545 5.51
Consumer stable 55 17.92 A 2969 30.00
Energy 27 8.79 BBB 4263 43.07
Financial 23 7.49 BB 1280 12.93
Industrial 48 15.64 B 520 5.25
Materials 35 11.40 CCC 107 1.08
Technology 14 4.56
Utilities 18 5.88
Not specified 4 1.30
Total 307 100 Total 9897 100

Firm-specific variables Mean Std. dev. Macro-financial variables Mean (%) Std. dev.
Recovery rates (%) 39.50 4.63 S&P 500 return -11.10 24.04
Return on equity (%) 4.50 6.82 S&P 500 vol 21.96 4.62
Leverage ratio (%) 48.84 18.55 3-M Treasury rate 2.18 1.36
Div. payout ratio (%) 0.41 0.46 Term spread 2.40 1.07
5-year CDS spread (bps) 172 230
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Table 3: Summary statistics of equity returns

3.A Historical measures (%)
Variables 1-month 3-month 1-year

mean std dev mean std dev mean std dev

Hist ret 3.12 154.26 1.58 87.35 -3.22 42.70
Hist vol (HV) 38.35 23.91 40.29 22.16 43.62 18.57
Hist skew (HS) 0.042 0.75 -0.061 0.93 -0.335 1.22
Hist kurt (HK) 3.36 1.71 4.91 4.25 8.62 11.78

3.B Realized measures (%)
Variables 1-month 3-month 1-year

mean std dev mean std dev mean std dev

RV 45.83 25.98 47.51 24.60 50.76 22.49
RV(C) 44.20 25.85 45.96 24.44 49.37 22.25
RV(J) 7.85 9.59 8.60 8.88 9.03 8.27

3.C Correlations
Variables 1-month 3-month 1-year

(HV, RV) 0.87 0.90 0.91
(HV, RV(C)) 0.87 0.89 0.90
(HS, RV(J)) 0.006 0.014 0.009
(HK, RV(J)) 0.040 0.025 0.011

3.D Statistics by rating groups
AAA to A BBB BB and below

Variables mean std dev mean std dev mean std dev

CDS (bps) 52.55 39.98 142.06 130.28 536.18 347.03
1-year HV 36.38 11.28 40.07 13.40 62.41 25.97
1-month RV(C) 38.08 17.56 39.05 18.73 62.47 37.78
1-year JI 20.97 25.94 39.80 45.89 45.09 43.42
1-year JM 15.33 62.09 9.63 149.17 -31.14 310.46
1-year JS 20.63 12.39 24.51 13.50 35.60 22.81
1-year JP 64.00 51.97 99.39 80.10 156.90 128.11
1-year JN 61.54 51.86 91.34 73.78 162.77 132.35

Notes: (1) Throughout the tables, historical volatility HV, realized volatility RV, and its con-

tinuous RV(C) and jump RV(J) components are represented by their standard deviation terms;

(2) The continuous and jump components of realized volatility are defined at a significance level

of 99.9% (see Appendix A); (3) JI, JM, JV, JP, and JN refer to the jump intensity, jump mean,

jump standard deviation, positive jumps, and negative jumps, respectively, as defined in Section

2. Note that negative jumps are defined in absolute terms.
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Table 4: Baseline regression: explaining 5-year CDS spreads using individual equity volatilities and jumps

Dependent variable: 5-year CDS spread (in basis points)

Explanatory variables 1 2 3 4 5 6 7 8

Constant -207.22 -91.10 -223.11 147.35 42.05 85.66 51.93 -272.08
(36.5) (18.4) (40.6) (39.6) (8.2) (20.8) (10.0) (44.4)

1-year HV 9.01 6.51 6.56
(72.33) (40.2) (40.7)

1-year HS -10.23
(3.2)

1-year HK 2.59
(7.5)

1-month RV 6.04 2.78
(60.5) (23.0)

1-month RV(C) 2.58
(22.3)

1-year JI 0.55 -0.97 1.46
(7.0) (7.0) (13.4)

1-year JM -0.21
(14.9)

1-year JV 4.52 2.51 1.32
(28.2) (10.3) (7.2)

1-year JP -0.45 -0.59 -0.63
(7.3) (8.2) (11.7)

1-year JN 1.47 1.59 0.46
(22.9) (22.7) (8.3)

Adjusted R2 0.45 0.37 0.50 0.03 0.15 0.14 0.19 0.54
Obs. 6342 6353 6337 6342 6328 6328 6328 6328

Notes: (1) t-statistics in parentheses; (2) JI, JM, JV, JP, and JN refer to the jump intensity, jump mean, jump standard deviation, positive jumps, and

negative jumps, respectively, as defined in Section 2. Negative jumps are defined in absolute terms.
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Table 5: Regressions with ratings, individual equity volatilities and

jumps, macro-financial variables, firm-specific variables, and recovery

rates

Regression 1 2 3 4

coef t-stat coef t-stat coef t-stat coef t-stat

1-year return -0.87 (18.7) -0.75 (15.8)
1-year HV 2.09 (14.4) 2.79 (18.1)
1-month RV(C) 2.14 (21.6) 1.60 (14.9)
1-year JI 0.93 (10.3) 0.89 (9.4)
1-year JV 1.29 (8.9) 1.58 (11.0)
1-year JP -0.69 (15.8) -0.63 (14.8)
1-year JN 0.39 ( 8.6) 0.36 (8.4)
Rating (AAA) 33.03 (2.1) -160.81 (11.1) -72.09 (1.9) -342.99 (11.1)
Rating (AA) 36.85 (4.6) -143.36 (18.2) -81.66 (2.3) -332.93 (11.3)
Rating (A) 56.62 (15.9) -126.81 (21.7) -68.62 (2.0) -320.11 (11.1)
Rating (BBB) 142.06 (49.9) -60.04 (9.4) 9.31 (0.3) -258.11 (8.9)
Rating (BB) 436.94 (73.4) 158.18 (18.1) 294.02 (8.4) -46.14 (1.6)
Rating (B) 744.95 (77.1) 376.90 (29.7) 556.58 (15.9) 127.03 (4.1)
Rating (CCC) 1019.17 (34.9) 583.74 (22.1) 566.83 (9.9) 9.31 (0.2)
S&P 500 return -1.21 (11.1) -0.82 (8.9)
S&P 500 vol 4.87 (8.4) 0.88 (1.8)
Short rate 13.46 (3.1) 15.52 (4.5)
Term spread 33.38 (6.0) 42.30 (9.5)
Recovery rate -2.65 (-5.4) -0.59 (1.5)
ROE -4.20 (14.3) -0.79 (3.3)
Leverage ratio 0.46 (4.1) 0.68 (7.6)
Div. payout ratio 12.84 (3.0) 21.52 (6.0)
Adjusted R2 0.56 0.74 0.63 0.77
Obs. 6055 5950 4989 4952
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Table 6: Robustness check: panel data estimation

Fixed effect Random effect

Regression 1 2 1 2
coef t-stat coef t-stat coef t-stat coef t-stat

1-year return -0.85 (19.8) -0.83 (19.7)
1-year HV 3.09 (19.2) 1.58 (9.4) 3.54 (23.0) 1.88 (11.5)
1-month RV(C) 2.74 (34.8) 1.58 (18.5) 2.74 (34.9) 1.60 (18.8)
1-year JI 0.21 (1.5) 0.15 (1.1) 0.43 (3.2) 0.35 (2.6)
1-year JV 1.06 (6.9) 1.35 (9.5) 1.01 (6.7) 1.35 (9.7)
1-year JP -0.69 (14.6) -0.55 (12.3) -0.65 (14.0) -0.53 (12.2)
1-year JN 0.46 (8.5) 0.34 (6.7) 0.54 (10.4) 0.40 (8.3)
Rating (AAA) -203.65 4.9) -375.58 (9.3)
Rating (AA) -230.48 (7.8) -393.30 (12.3)
Rating (A) -165.49 (7.2) -330.47 (11.8)
Rating (BBB) -133.47 (6.5) -281.13 (10.1)
Rating (BB) -110.64 (6.5) -207.16 (7.1)
Rating (B) -62.38 (1.9)
Rating (CCC) -40.67 (0.4)
S&P 500 return -0.80 (11.4) -0.81 (11.5)
S&P 500 vol 0.44 (1.2) 0.63 (1.7)
Short rate 16.31 (5.9) 17.80 (6.5)
Term spread 40.78 (11.8) 41.90 (12.2)
Recovery rate -0.13 (0.4) -0.21 (0.6)
ROE 0.02 (0.1) -0.09 (0.4)
Leverage ratio 2.52 (9.0) 2.23 (9.6)
Div. payout ratio 45.23 (9.1) 42.89 (8.9)
Adjusted R2 0.81 0.87 – –
Obs. 6328 4952 6328 4952
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Table 7: Regressions by rating groups

Group 1 Group 2 Group 3

(AAA, AA, and A) (BBB) (High-yield)
Regression coef t-stat coef t-stat coef t-stat

Constant -109.87 (8.0) -347.00 (9.7) -351.10 (2.8)
1-year return -0.12 (3.5) -0.61 (9.3) -0.76 (5.9)
1-year HV 0.75 (6.8) 3.81 (17.8) 3.25 (8.3)
1-month RV(C) 0.36 (5.8) 1.38 (9.9) 2.17 (6.5)
1-year JI 0.24 (3.6) 0.30 (2.6) 1.52 (4.4)
1-year JV -0.03 (0.3) 0.06 (0.2) 3.55 (9.4)
1-year JP -0.13 (4.0) -0.31 (5.6) -1.10 (9.0)
1-year JN 0.13 (4.7) 0.60 (9.4) 0.52 (4.3)
S&P 500 return -0.41 (9.4) -1.29 (11.4) -1.69 (4.0)
S&P 500 vol 0.54 (2.5) 0.31 (0.5) 6.46 (3.0)
Short rate 9.95 (6.1) 14.48 (3.4) -12.12 (0.7)
Term spread 19.03 (9.2) 48.02 (8.8) 59.10 (2.9)
Recovery rate 0.61 (3.0) 1.11 (2.2) -5.32 (3.8)
ROE -1.19 (9.5) -1.85 (5.9) 1.23 (1.4)
Leverage ratio 0.20 (5.5) 0.54 (4.3) 5.19 (11.1)
Div. payout ratio 16.45 (8.1) 24.17 (6.1) 59.83 (3.6)
Adjusted R2 0.41 0.54 0.65
Obs. 1881 2311 760
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Table 8: Nonlinear effects of equity volatilities and jumps

Variables coef t-stat

1-year return -0.73 (15.8)
HV -5.47 (6.8)
HV2 2.04 (11.7)
HV3 -0.13 (12.4)
RV(C) -1.60 (4.2)
RV(C)2 0.44 (7.1)
RV(C)3 -0.01 (3.9)
JI 0.68 (1.5)
JI2 -0.09 (1.2)
JI3 0.006 (1.2)
JV -0.14 (0.3)
JV2 0.27 (3.1)
JV3 -0.01 (2.8)
JP 0.02 (0.1)
JP2 -0.04 (3.2)
JP3 0.0007 (2.7)
JN 0.02 (0.1)
JN2 0.06 (4.8)
JN3 -0.002 (5.5)
Rating (AAA) -134.10 (4.2)
Rating (AA) -128.08 (4.2)
Rating (A) -112.64 (3.8)
Rating (BBB) -49.84 (1.7)
Rating (BB) 159.28 (5.2)
Rating (B) 300.55 (9.7)
Rating (CCC) 282.89 (5.8)
S&P 500 return -0.97 (10.8)
S&P 500 vol 2.04 (4.47)
3M Treasury rate 16.26 (4.9)
Term spread 40.48 (9.6)
Recovery rate -0.44 (1.2)
ROE -0.91 (3.9)
Leverage ratio 0.69 (8.2)
Div. payout ratio 18.22 (5.4)
Adjusted R2 0.80
Obs. 4952
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Figure 5: Nonlinear effect of individual volatility

Note: The illustration is based on regression 1 in Table 8. X-axis variables have
the value range of 5% and 95% percentiles, with the vertical line corresponding to
their mean.
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