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An Empirical Evaluation of Structural Credit Risk Models① 

Nikola A Tarashev② 

Bank for International Settlements 

Abstract 

This paper evaluates empirically the performance of six structural credit risk models by comparing the 

probabilities of default (PDs) they deliver to ex post default rates. In contrast to previous studies 

pursuing similar objectives, the paper employs firm-level data and finds that theory-based PDs tend to 

match closely the actual level of credit risk and to account for its time path. At the same time, non-

modelled macro variables from the financial and real sides of the economy help to substantially 

improve the forecasts of default rates. The finding suggests that theory-based PDs fail to fully reflect 

the dependence of credit risk on the business and credit cycles. Most of the upbeat conclusions 

regarding the performance of the PDs are due to models with endogenous default. For their part, 

frameworks that assume exogenous default tend to under-predict credit risk. Three borrower 

characteristics influence materially the predictions of the models: the leverage ratio; the default 

recovery rate; and the risk-free rate of return. 
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Introduction 

Predictors of credit (or default) risk, ie the risk that a borrower does not fulfil its debt contract, are of 

natural interest to practitioners in the financial industry as well as to regulators. The accuracy of these 

predictors is essential for sound risk management and for supervisory evaluation of the vulnerability of 

lender institutions. In an appreciation of this, the new capital adequacy framework (Basel II) 

encourages the active involvement of banks in measuring the likelihood of defaults. The growing need 

for reliable measures of credit risk prompts the question whether they can be obtained from academic 

theoretical models. 

The finance literature has produced a variety of models that attempt to measure default risk. In this 

paper, I consider the family of structural models, which focus on the stochastic process of a corporate 

obligor’s assets and postulate that a default occurs when these assets cross a threshold value. The 

models can be divided into an “endogenous default” and an “exogenous default” group. The 

frameworks in the former group let borrowers choose strategically the timing of default.1  In contrast, 

the models in the latter group impose an ad hoc default trigger but develop richer stochastic structures 

that capture empirical regularities of credit markets. 

I focus on one component of default risk, the probability of default (PD),2  and attempt to answer the 

question: How do structural credit risk models fare when put to the test of the data? In general terms, 

my conclusions rely on comparisons between firm-specific model-based PDs of corporate borrowers 

and the corresponding ex post default rates. 

The exercise is carried out in the context of two “endogenous default” models, those developed in 

Leland and Toft (1996) (henceforth, LT) and Anderson, Sundaresan and Tychon (1996) (AST), and 

three “exogenous default” frameworks, developed in Longstaff and Schwartz (1995) (LS), Collin-

Dufresne and Goldstein (2001) (CDG) and Huang and Huang (2003) (HH). As benchmarks, I also 

consider PDs delivered by the model of the commercial service Moody’s KMV (henceforth, MKMV). 

The latter framework is not publicly available but is known to share key features of the “academic” 

models, to use proprietary information on credit outlooks and to be estimated on the basis of historical 

default rates. 

One of the main conclusions of the paper is that, in general, theory-based PDs track closely ex post 

default rates and do so for different forecast horizons. The best performers are the “endogenous 

default” models, which feature virtually unbiased forecasts. In contrast, the “exogenous default” 

frameworks tend to underpredict default rates. Considering the entire sample, the bias is small under 

the “exogenous default” LS and HH models but is quite pronounced under the CDG model. The 

                                                      
1 The terms “debtor”, “obligor” and “borrower” are used interchangeably throughout the paper. 
2 Other components of default risk, such as loss given default and exposure at default, are not analysed in this paper. 
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MKMV PDs are found to be the highest across models and to generally overpredict default risk. 

Nevertheless, owing to the short available time series of these PDs, the result remains inconclusive. 

The finding that “academic” models closely match the overall level of default rates stands in sharp 

contrast to a conclusion of Leland (2002). That paper calibrates the LT and LS models to the 

representative borrower and concludes that they substantially underestimate ex post default rates at 

short horizons, such as one year: the horizons typically used in practical applications. The stark 

differences between the findings of this paper and the conclusions of Leland (2002) are due to the 

strongly non-linear relationships between inputs to the models (ie parameter values) and their 

implications for PDs. The non-linearities are such that a high theory-based PD is much more sensitive 

to parameter changes than a low PD. This gives rise to the so-called “Jensen inequality” effect, 

whereby the average theoretical PD across borrowers (which is used here and is an unbiased 

estimator of default rates if its underlying model is correct) is larger than the theoretical PD of the 

average (or representative) borrower (used in Leland (2002)). 

I also examine the economic significance of the errors in theoretical forecasts of default rates. To do 

so, I focus on the foundation IRB approach of Basel II, which provides a formula for mapping a PD into 

minimum capital requirements.3  Using the IRB formula, I compare model-implied capital with the 

“optimal” capital, which is based on the “true” PDs revealed ex post. Adopting perfect knowledge of 

credit risk as a benchmark, the exercise helps appreciate the economic costs of relying on structural 

models for regulatory purposes. 

The results of this stylised exercise reveal a mixed message. At one extreme, the regulatory capital 

implied by the “endogenous default” models tracks extremely closely the “optimal” capital level. In 

particular, when filtered through the IRB approach, the forecast errors of these models represent a 

small fraction of the average level and volatility of the capital requirements under perfect knowledge of 

credit risk. At the other extreme, the “exogenous default” models provide economically significant 

forecast errors and perform more poorly than even the simplest, standardised, approach of Basel II, 

which does not consider explicitly PD estimates but relies exclusively on external credit ratings. 

Finally, I analyse the capacity of the structural models to explain the evolution of credit risk over time. 

In particular, I examine the significance of theoretical PDs as regressors of ex post default rates. As 

control variables, I consider macroeconomic indicators reflecting the real and financial sides of the 

economy. These variables are motivated by Estrella and Hardouvelis (1991) and Smets and 

Tsatsaronis (1997), who identify predictors of economic activity, and by Borio and Lowe (2002), who 

identify predictors of banking system distress. 

The results of the regression analysis indicate that the structural models reveal useful information 

regarding the time pattern of default rates. The message is stronger when the theoretical implications 

are based on a time invariant estimate of the risk-free rate because the “academic” models tend to 

                                                      
3 See Basel Committee on Banking Supervision (2004). “IRB” stands for “internal ratings based”. 
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associate rises in that rate with lower credit risk, which is not supported by the data. In addition, using 

both “endogenous” and “exogenous default” models, as opposed to a single model from either group, 

improves substantially the forecasts of default rates. Nevertheless, the macroeconomic controls do 

add to and, in certain asset classes even substitute for, the informational content of the models. The 

finding reveals that theoretical PDs fail to fully reflect the dependence of credit risk on the business 

and credit cycles.4  A parallel analysis of the MKMV PDs conveys a similar message. 

Disparities in the performance of different academic models can be explained by the way they handle 

two key debt characteristics: the default-trigger value of assets and the dead-weight cost incurred at 

the time of default. Under the “endogenous default” models, these characteristics are to be in line with 

a market-wide estimate of the default recovery rate as well as with a number of other borrower-specific 

features, the most important of which turns out to be firm leverage.5  This leads to a strong dispersion 

of the two debt characteristics across borrowers and, by the “Jensen inequality” effect, raises the 

theoretical predictions to levels that closely match the observed default rates. In addition, the 

“endogenous default” models imply that the default boundary increases in the default cost, which is in 

accord with the empirical regularity that default rates and losses given default tend to move in the 

same direction. By contrast, the “exogenous default” models suggest ad hoc values for both the 

default boundary and the default cost. In such a context, the two debt characteristics are also 

calibrated to be consistent with the default recovery rate but depend little on borrower-specific 

features. This underplays differences in the credit outlooks across firms, which leads to an 

underestimation of default rates. 

Besides the aforementioned Leland (2002), several other articles have also evaluated the empirical 

performance of structural credit-risk models but from a different perspective. Huang and Huang 

(2003), for example, calibrate the models to observed default rates and then study the implied credit 

risk premiums. In a more recent study, Eom, Helwege and Huang (2004) use data on individual bonds 

in order to compare their credit spreads to the predictions of structural credit risk models. While these 

articles examine theoretical pricing implications, which are based on preference-weighted probabilities 

that reflect bond holders’ risk appetite, the analysis herein focuses on actual (or statistical) PDs. 

The rest of the paper is organised as follows. In Section 1, I present the six models and highlight 

assumptions that are expected to have strong implications for the implied PDs. Then, in Section 2, I 

describe the data and, in Section 3, outline how they are employed for the calibration of the models. In 

Section 4, I present the theoretical PDs and explain differences among them on the basis of the 

underlying modelling assumptions. In Section 5, I consider the implications of the models for banks’ 

minimum capital requirements. Finally, in Section 6, I test the statistical significance of the PDs as 

explanatory variables of default rates. 

                                                      
4 Duffie and Wang (2004) reach a similar conclusion in their analysis of non-structural credit risk models. 
5 The default recovery rate equals the fraction of debt principal that is recovered at the time of default. 
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1. The models 

I examine six structural credit risk models that extend the analytic framework of Merton (1974). That 

framework focuses on the credit risk of an individual borrower (as opposed to portfolio credit risk), 

which defaults when its assets fall below a particular threshold. The determination of the threshold 

differs across the models considered below. 

Five of the models are developed in academic articles and, according to the way they tackle the 

decision to default, can best be divided into two categories. The models in the first category adopt an 

exogenous default-trigger value of assets. In contrast, the models in the second category derive the 

decision to default endogenously, as part of the borrower’s optimisation problem. Thus, the 

endogenous default trigger is a function of borrower characteristics. 

The sixth model belongs to MKMV and not all of its features are publicly available. From what is 

known, this model assumes that the default boundary depends on the maturity structure of the debt 

instruments issued by the obligor. 

The five “academic” models assume that the asset value, tV , evolves as follows: 

( ) dWdtrVdV tttt σ+δ−λ+=/        (1) 

where r  denotes the risk-free rate, λ  is the asset risk premium, δ  is the asset payout ratio (reflecting, 

for example, dividend and coupon payments), W  is a Wiener process and σ  is the instantaneous 

asset volatility. Some of the models allow the interest rate or the risk premium to be time varying. 

Given the process in (1), the PD over a particular horizon equals the probability that the first passage 

of V  below the default trigger, *V , occurs within that horizon. *V  is a constant in all but one of the five 

academic models.6 

In such a setup and for a given initial value of assets, 0V , individual parameters affect the theoretical 

PD as follows: 

   0,0,0,0,0
*

>
δ∂

∂
<

λ∂
∂

<
∂
∂

>
σ∂

∂
>

∂
∂ PDPD

r
PDPD

V
PD      (2) 

The PD increases in the default trigger, *V , and in the level of risk, captured by the asset volatility, σ . 

The implications of the remaining three parameters, which determine the drift in the value of assets, 

are best considered together. Tight credit conditions, caused by contractionary monetary policy that 

raises the risk-free rate, r , and/or by stronger aversion to risk that raises the risk premium, λ , seem 

to counterintuitively depress PDs. At the same time, however, tight credit conditions would tend to 

raise the payout ratio, δ , which increases PDs. 
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Some models incorporate a second stochastic process: of the risk-free rate, the asset risk premium or 

the default boundary. In such models, the PD depends also on parameters that define the second 

process and its co-movement with asset values. The discussion of these parameters is deferred to the 

next subsection, which discusses model-specific issues, and to the section on the calibration 

methodology. 

1.1 Models with an exogenous default boundary 

In the three “exogenous default” models, the threshold level of assets, *V , is left unspecified and is 

typically chosen to be in accordance with aggregate historical data. In particular, when the fraction of 

assets lost in default is α  and the face value of debt is P , *V  is set so that the quantity ( )
P

V *1 α−  

equal an estimate of the debt recovery rate after default.7 

In addition, all three models in this category assume that debt is of infinite maturity. The assumption 

delivers analytic tractability but makes it impossible to capture the empirical regularity that borrowers 

are less likely to default over a given horizon if they are to repay the debt principal further in the future. 

The three models are distinguished by their choice of a second stochastic process, which 

complements the process of assets in (1). The second process is introduced in order to allow the 

setups to capture stylised features of the data that have potentially important implications for credit 

risk. I outline these implications in the remainder of the subsection. 

1.1.1 The model of Longstaff and Schwartz (1995) 

In the LS model, the value of assets interacts with a stochastic risk-free rate of return. The correlation 

between the two random variables is assumed to be negative, which intends to capture the cooling 

effect of higher interest rates on the macro economy. Specifically, equation (1) is augmented by: 

r
trtrt dWdtrrkdr σ+⎟

⎠
⎞

⎜
⎝
⎛ −=
−

        (3) 

where r  is the long-run risk-free rate of return, rk  reflects the speed of mean reversion, rσ  is the 

instantaneous volatility of the risk-free rate of return and ( ) 0, <σ≡ rvt
r

t dWdWcorr . 

Under such a specification, a change of r  has an ambiguous impact on the PD. By expression (1), a 

higher interest rate increases the deterministic drift in the value of assets and, ceteris paribus, lowers 

the PD. Nevertheless, since 0<σrv , a higher r  tends to be associated with a negative shock to the 

                                                                                                                                                                      
6 Two of the “exogenous boundary” models assume that *V  is a constant. In contrast, the “endogenous boundary” models 

derive *V  as a time-invariant function of constant parameters. 

7 If the model allows for time variation in *V , the above procedure would set the initial value of the process. 
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value of assets, which raises the PD. The relative importance of the latter impact of the risk-free rate 

increases when asset volatility, σ , is higher and/or the correlation 
σσ

σ

r

rv  is closer to –1. 

1.1.2 The model of Collin-Dufresne and Goldstein (2001) 

Collin-Dufresne and Goldstein observe that firms tend to issue more (less) debt when their asset value 

increases (decreases). This leads to mean reversion in the leverage ratio (ie the ratio of debt to 

assets) – an empirical regularity that the LS model does not account for. The CDG model 

accommodates the empirical regularity, which implies that the default trigger, *
tV , moves in step with 

the value of assets, tV . Under the maintained assumption that *
tV  is a constant fraction of debt: 

( )dtVVkVd ttlt ν−−= ∗∗ lnlnln  ,     0>lk , 0>ν         (4) 

The parameters ν  and lk  have direct implications for the theoretical PD. In particular, 0>ν  implies 

that, in the absence of (transitory) shocks to assets, their value would stay above the default trigger: ie 

the firm would be inherently solvent. The closer is ν  to zero, however, the stronger is the tendency of 
*

tV  and tV  to converge to a common value. This increases default risk, ie the risk of tV  falling below 

*
tV . For its part, a higher lk  implies that the ratio ( )*ln tt VV  is more likely to stay close to its long-run 

value ν . Since the latter value is assumed to be positive, an increase in lk  lowers the PD. 

1.1.3 The model of Huang and Huang (2003) 

There is empirical evidence that equity risk premiums tend to move countercyclically and are, thus, 

negatively correlated with returns on broad equity indices. On the basis of such evidence, the HH 

model postulates negative correlation between the risk premium and unexpected shocks to the return 

on the assets of the typical borrower. Specifically, (1) is augmented by: 

λ
λ

−

λ σ+⎟
⎠
⎞

⎜
⎝
⎛ λ−λ=λ ttt dWdtkd ,       ( ) 0, <σ≡ λ

λ
vtdWdWcorr

t
    (5) 

A higher λ  implies a higher long-run drift in the value of assets, which, ceteris paribus, lowers the PD. 

The impact of λ  is stronger the larger is the mean-reversion parameter λk . In addition, since 0<σλv , 

a negative value of tdW , which puts upward pressure on the PD, tends to be counteracted by an 

increase of the drift in the value of assets. 

1.2 Models with an endogenous default boundary 

The two “endogenous default” models let a borrower decide when to default. The frameworks differ 

mainly in the assumptions underlying the default decision. The AST model allows obligors to renege 

on and then alter the terms of their debt contract. In contrast, a renegotiation is not possible in the LT 

model, in which borrowers service their debt as long as doing so is justified by the expected future 

return on equity. 
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The two models differ also in their assumptions regarding the time to maturity of debt contracts. 

Namely, the AST framework incorporates perpetual bonds, whereas the LT model assumes that the 

firm continuously issues debt of a constant but finite time to maturity. 

1.2.1 The model of Anderson, Sundaresan and Tychon (1996) 

At the time of default, creditors in the AST model can either (i) liquidate the borrowing firm and seize 

its assets net of a bankruptcy cost or (ii) accept the terms of a new debt contract. Since a liquidation of 

the borrowing firm is the worst possible outcome for its equity holders, they propose a post-default 

contract that is acceptable to creditors. 

To rule out arbitrage opportunities in this setup, it is necessary that the value of debt increases 

continuously in the value of assets. In particular, the no-arbitrage condition requires a smooth switch 

between the pre-default and post-default value of debt. On the one hand, given a fixed bankruptcy 

cost, K , incurred only if the creditors liquidate the borrower, the post-default value of debt is set by 

equity holders to equal KVt − . This renders creditors indifferent between re-contracting and liquidating 

the borrower. On the other hand, the pre-default value of debt is also an increasing function of the 

firm’s assets but is shifted upward by a higher risk-neutral drift in their process (ie, a higher r 8  and / 

or a lower δ ), a higher debt principal, P , a higher coupon rate, c , a lower asset volatility, σ , and a 

lower monitoring cost, m .9 

When assets equal the equilibrium default trigger, *
ASTV , the post- and pre-default values of debt are 

the same. A decline in bankruptcy costs K  boosts the post-default value of debt, decreases debtors’ 

bargaining power and induces them to wait longer before renegotiating, ie to set a lower *
ASTV . In 

contrast, an upward shift in the pre-default value of debt prompts debtors to negotiate a more 

advantageous contract earlier: ie set a higher value of *
ASTV . In the light of the previous paragraph, this 

leads to the following comparative statics: 

0,0,0,0,0,0,0
*******

<<
σ

>><
δ

>>
dm

dV
d

dV
dc

dV
dP

dV
d

dV
dr

dV
dK

dV ASTASTASTASTASTASTAST   (6) 

                                                      
8 An increase in r  also decreases the present value of coupon payments, which lowers, ceteris paribus, the pre-default value 

of the bond. The data lead, however, to parameterisations of the model, under which the net impact of r  reflects the 
channel specified in the main text. 

9 The original AST model does not incorporate monitoring costs. They are introduced here in order to dampen the sensitivity 
of theoretical PDs to changes in coupon payments, cP . In mathematical terms, the original formula for *

ASTV  is generalised 

by replacing cP  with ( )cPm−1 . When 0=m  the AST model over-predicts ex post default rates of BB-rated firms by 3.6 
percentage points on average. For BBB-rated and B-rated firms the over-prediction is, respectively, by 1.1 and 4.7 
percentage points. 
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1.2.2 The model of Leland and Toft (1996) 

In the LT model, the borrower forfeits its equity value as soon as it does not fulfil a contracted 

obligation. Thus, the willingness to service debt increases (ie the default trigger *
LTV  decreases) in the 

value of equity, which equals the value of the firm net of the value of its debt.10  Ceteris paribus, the 

value of the firm decreases in the default cost, which is assumed to be an exogenous fraction α  of 

assets. In contrast, since it is assessed over the infinite horizon, the value of the firm is insensitive to 

the time to maturity, T , of the continuously issued debt contracts. For its part, the value of the finitely 

lived debt decreases in α  but by less than the value of the firm. The value of debt decreases also in 

T , a rise in which heightens the risk of a default before the contract matures. The upshot is that the 

value of equity (the default trigger *
LTV ) decreases (increases) in the default cost but increases 

(decreases) in the time to debt maturity. 

The implications of the other model parameters are similarly rationalised. The coupon rate, c , the 

principal, P , and the asset payout rate, δ  decrease, while the risk-free rate, r , asset volatility, σ , 

and tax benefits, τ , increase the value of equity. Thus, taking into account the discussion in the 

previous paragraph, one obtains: 

0,0,0,0,0,0,0,0
********

<
τ

<
σ

<>
δ

>><>
α d

dV
d

dV
dr

dV
d

dV
dP

dV
dc

dV
dT

dV
d

dV LTLTLTLTLTLTLTLT  (7) 

1.3 The MKMV model 

The sixth model belongs to the commercial service MKMV. A step in the MKMV approach estimates 

the asset value and asset volatility of the borrowing firm. The step is based on: (i) an option pricing 

model; (ii) data including equity prices and contractual liabilities; and (iii) information about the 

borrower’s size, industry, profitability and geographical location. Another step of the MKMV approach 

delivers a default-trigger value of assets, which increases in the borrower’s book liabilities. In the 

determination of the default barrier, short-term liabilities are weighted roughly twice as much as long-

term liabilities. In addition, there is an underlying assumption that a default occurs as soon as the 

lender incurs economic loss. 

Finally, an MKMV proprietary model uses the estimates of the borrower’s asset value, asset volatility, 

and default boundary to deliver a firm-specific PD. The model is estimated on the basis of historical 

default rates and credit spreads. Those data are obtained from the largest available public-firm default 

database, which has been collected by MKMV.11 

To the extent that MKMV’s rich proprietary data sources have value added and/or the future 

resembles the past, the commercial service would produce better out-of-sample forecasts of default 

                                                      
10 In the LT model, the (market) value of the firm equals the asset value plus the value of tax benefits, less the value of 

bankruptcy costs, over the infinite horizon. 
11 For a more detailed account of, and references on, the MKMV approach, see Leland (2002). 
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rates than the academic models, the calibration of which is based exclusively on public data and is not 

validated in sample. This fact motivates including MKMV PDs in the analysis, even though, as I 

explain in the next section, they are available in quite short time series. 

2. Data: sources, filtering and descriptive statistics 

Data availability limits the analysis to corporate borrowers domiciled in the United States. Firm-specific 

borrower and debt characteristics are provided by Moody’s (rating of senior unsecured debt,12  coupon 

rate and time to maturity of outstanding bond issues), Bloomberg (book value of total debt13  and 

market capitalisation) and Datastream (price of equity and dividend rate). In addition, data on the face 

value of defaulted debt and its price 30 days after default, provided by Moody’s, help estimate default 

recovery rates. 

Moody’s also provides data on default rates over different time horizons.14  The one-year default rate, 

for example, is calculated as the number of firms that defaulted within a year divided by the number of 

firms that could have defaulted within that year. In most general terms, Moody’s defines default as the 

instance in which the lender incurs an economic loss, which matches an assumption of all the models 

considered in this paper.15 The firms, tracked for the calculation of a particular default rate, are chosen 

according to the rating of their senior unsecured debt and, in this paper, the focus is on firms with a 

BBB, BB, or B rating.16  The average number of firms tracked for the calculation of default rates is 517 

(BBB rating), 389 (BB rating), and 482 (B rating). Firms in higher rating classes only rarely fail on debt 

obligations. Thus, the default history in those rating classes carries little information with respect to 

changes in the creditworthiness of the constituent firms. Further, Moody’s coverage of firms rated C or 

below is limited and prevents meaningful analysis. 

The macroeconomic variables are provided by the IMF, the Congressional Budget Office and the BIS 

and consist of: an index of US asset prices;17  the US GDP gap; the US credit-to-GDP ratio; the term 

spread in the Treasury rate; and the one-year Treasury rate. The first two variables are deflated by the 

US CPI. The credit-to-GDP ratio and the asset-price index reflect the credit cycle and are used as 

gaps from their respective stochastic trends. Following Borio and Lowe (2002), the trends are 

                                                      
12 When a firm does not have senior unsecured debt, Moody’s interpolates the rating. 
13 Total debt includes all interest-bearing obligations. 
14 Overall, the paper uses the Default Risk and Credit Risk Calculator databases of Moody’s Investors Service. The databases 

provide information about all bond issues in Moody’s rating universe as well as ratings and default data. 
15  Mood§y’s definition of default is spelled out in Moody’s Investors Services (1998). 
16 In terms of Moody’s rating convention, BBB corresponds to a rating between Baa1 and Baa3, BB to Ba1-Ba3, and B to B1-

B3. 
17 The index is a weighted geometric mean of equity prices, residential and non-residential property prices. The weights 

change through time and are based on households’ annual net wealth. The data sources are: S&P Corporate 500 (equity 
prices); National Council of Real Estate Investment Fiduciaries (commercial property prices) and US Office of Federal 
Housing Enterprise Oversight (residential property prices). 



 

10 
 

calculated on the basis of data available in real time.18  The term spread and the GDP gap reflect 

developments on the real side of the economy. The former variable is set equal to the difference 

between the ten-year and three-month Treasury rates, whereas the latter variable is calculated as the 

difference between log real GDP and log potential real GDP. Finally, the one-year Treasury rate is 

used for estimating the risk-free rate of return. 

The calculation of firm-specific PDs requires data from different sources and it is the intersection of the 

Moody’s and Bloomberg datasets that restricts the sample size. The upshot is that the available data 

allow for obtaining firm-specific PDs at a quarterly frequency: from Q1 1990 to Q2 2003. The smallest 

cross sections of PDs are at the beginning of the sample: 16 BBB-, 15 BB- and 6 B-rated firms. The 

cross-sections then expand monotonically through time and attain an average (maximum) size of: 77 

(140) for BBB-, 77 (127) BB-, and 59 (172) for B-rated firms. The sample is dominated by non-financial 

firms, which constitute 86%, 91% and 92% of, respectively, the “BBB”, “BB” and “B” firms.19, 20 

Besides the PDs implied by structural models from the academic literature, I also examine expected 

default frequencies (EDFs) calculated by the commercial service MKMV. The EDFs are MKMV 

estimates of corporate borrowers’ one-year default rates and, as such, are the exact counterparts of 

the one-year PDs implied by the academic models. In comparison to the data employed for the 

calculation of “academic” PDs, the available MKMV EDFs feature richer cross sections, consisting on 

average of 319 BBB-, 279 BB- and 277 B-rated firms, but span twice as short a time period, from Q4 

1996–Q2 2003. 

3. Calibration methodology 

In this section, I outline the calibration of the academic models. Except for rare cases, discussed in 

Sections 1.1.1–1.1.3, the analytical solutions of the models are obtained under the assumption that 

the parameters stay constant through time. Since key parameters reflect risk premiums, debt-service 

payments, equity volatility, etc, the assumption is unrealistic and should be interpreted as referring to 

steady-state borrower characteristics that convey a long-term level of risk. One of the objectives of this 

paper, however, is to evaluate the time path of default rate forecasts that have a short, one-year, 

horizon. Over such a horizon, the credit risk of a firm depends significantly on transitory shocks to its 

characteristics. In the light of this, I calibrate the model parameters to their short-term estimates, 

                                                      
18 Specifically, a date-t point on the trend is calculated via a Hodrick-Prescott filter, which uses data only up to time t. The 

parameter of the HP filter is set to 1600. 
19 Since financial firms enter Moody’s calculation of default rates, the consistency of the analysis requires that such firms be 

considered in the derivation of theoretical PDs. That said, excluding financial firms from the sample leaves the results 
virtually unchanged. 

20 The reported sample sizes are obtained after filtering the data in order to exclude leverage ratios, dividend rates and equity 
volatilities that do not belong to the interval (0,1). (The calibration of leverage and equity volatility is described in Section 3). 
Such a filter removes a relatively small number of observations and is unlikely to influence the analysis. In addition, I also 
filter out firm-quarter observations that imply a default-trigger value of assets that is larger than 90% of the assets’ initial 
value. A similar but more drastic filter is applied by MKMV: whenever the MKMV model delivers a PD greater than 20%, the 
PD is reported as equal to 20%. 
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obtained at the time when a PD is constructed. Provided that debt characteristics are expected to 

change little over the PD horizon, the calibration procedure is largely consistent with the assumptions 

of the models and allows them to capture time variability in firms’ credit risk.21 

To the extent that the data permit it and subject to issues of comparability across models (described 

below), I calibrate the model parameters at the firm level and update them in each quarter of the 

sample.22  More specifically, I obtain yearly values for the coupon rate, c , and time to maturity, T , 

directly from data on bond issues.23  The maintained assumption is that c  and T  are representative 

for all (bank and non-bank debt) of the obligor. Turning to the risk-free rate, r , I estimate it in two 

alternative ways. First, I consider theoretical predictions based on a constant value of r , which equals 

the average one-year Treasury rate over the entire sample. Then, I base another set of results on a 

quarterly time series of r : an entry in that series equals the average Treasury rate in the 

corresponding quarter. 

The initial value of assets, 0V , enters the parameterisation of the models only as a fraction of the 

default boundary *V . Since, recalling (1), assets are assumed to follow a geometric Brownian motion, 

the exact value of 0V  is normalised to 100 without loss of generality. 

I set the debt principal 0*VlP =  after calculating the leverage, l , as the ratio of the book value of total 

debt to the sum of total debt and market capitalisation of the firm. In turn, following Huang and Huang 

(2003), I set the payout ratio ( ) dlcl *1* −+=δ , where d  is the dividend rate paid out to the firm’s 

equity holders.24  Both l  and d  are calibrated quarterly and at the firm level. 

I derive firm-specific values of the asset risk premium and volatility at the quarterly frequency by first 

estimating the corresponding equity premium, eλ , and equity volatility, eσ . Since equation (1) implies 

that the value of equity follows a geometric Brownian motion, I estimate a firm-specific eσ  as the 

standard deviation of equity returns realised over the year ending with the current quarter. For its part, 

the estimation of eλ  proceeds in three steps. In the first step, I make use of Tarashev and Tsatsaronis 

(2005), which employs options data to estimate, inter alia, a time varying risk premium for the S&P 500 

stock market index. On the basis of that estimate, I obtain a quarterly time series of market premiums, 

which peaks in the late 1990s and averages 8%. In the second step, I use results of Bhandari (1988), 

                                                      
21 For the “endogenous default” models, one also needs to assume that the parameter variability is small enough to have a 

negligible importance on the default trigger value of assets. In general, the latter value would depend on both short-term and 
long-term borrower characteristics. 

22 If a parameter is stochastic in model but fixed in another one, the parameter’s initial value in the former model is set equal to 
its constant value in the latter model. This procedure follows Huang and Huang (2003). 

23 For each firm-year pair in the sample, I set c and T to be equal, respectively, to the average coupon rate and time to 
maturity of the firm’s outstanding bond issues. The averages use weights proportional to the face values of the 
corresponding bonds. Since, on a firm-by-firm basis, the average time to maturity declines typically through time, the 
calibrated value of T is roughly twice as large as the average time to maturity over the remaining life of the firm’s 
outstanding debt. This is consistent with the maturity structure assumed in the LT model. 

24 Ideally, d  would also incorporate sales and repurchases of equity shares. The employed data sources do not, however, 
provide a comprehensive coverage of that variable. 
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which derives a firm-level relationship between leverage and risk premiums. Employing Bhandari’s 

estimate of that relationship and firm-specific leverage ratios, I obtain quarterly cross-sections of firm-

specific equity premiums. Finally, I transform each of these cross sections so that their average values 

match the corresponding stock market risk premiums from the first step.25 

The conversion of equity premiums and volatility into their asset counterparts, λ  and σ , uses theory-

implied relationships between the value of equity and the value of assets. In order to ultimately 

underscore differences in the way the theoretical models process similar information, I focus on two 

simple (and similar) specifications of equity as a function of assets. One of these specifications is 

derived within the LS model after setting the volatility of the risk-free rate to zero; the other 

specification is implied by the LT model in the limit in which the time to maturity of debt shoots to 

infinity.26  The first specification is used for estimating λ  and σ  in the three “exogenous default” 

models, whereas the second specification is employed for the calibration of the “endogenous default” 

models.27 

For the calibration of certain parameters, which are constant across firms and time, I rely on the extant 

literature and especially on Leland (2002) and Huang and Huang (2003). Namely, for the LS model, I 

set: 226.0=rk , 0468.0=σr , 062.0=r , 25.0, −=σ vr ; for the HH model: 202.0=λk , 031.0=σλ , 

04165.0=λ , 35.0, −=σλ v ; and for the CDG model: 2.0=lk , and 0.7523=ν .28  In addition, I adopt 

15.0==τ m .29 

The last two parameters that remain to be set are: the fraction of assets lost in default, α , (or  the 

fixed bankruptcy cost, K , in the AST model) and the default-trigger value of assets, *V . The 

determination of these parameters relies on an estimate of the default recovery rate, which is defined 

as the price of debt 30 days after default divided by the associated face value. The estimate of the 

recovery rate, ρ , is allowed to change from year to year but stays constant across firms in each 

quarter. 

I base the estimate ρ  on information available to bond holders and obligors in real time. That 

information is likely to consist of past recovery rates and additional news that is reflected in next-in-line 

                                                      
25 The transformation is necessitated by the fact that the estimates of Bhandari (1988) do not account for time variation in the 

market risk premium. 
26 The simplified LS and LT setups allow for analytic expressions of asset premium and volatility as functions of equity 

premium and volatility. Those setups are examined by Huang and Huang (2003) where they are referred to as the “base 
case” and “endogenous default boundary” models, respectively. 

27 Switching between the two specifications has no material impact on the implied PDs. 

28 I also explored the implications of alternative parameterisations of the HH and CDG models. In these parameterisations, λ  
and ν  were calibrated to firm-specific data: the time average of a firm’s asset risk premium and leverage ratio, respectively. 
Switching to these alternative parameterisations has virtually no effect on the implied PDs. 

29 Estimating the monitoring costs, m , is beyond the scope of this paper, whereas the adopted value of τ  is as assumed in 
Leland (2002). In the light of the similar implications of m  and τ  for the PDs implied, respectively, by the AST and LT 
models, I assign the same value to both parameters. 
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defaults. In the light of this, I set each year-specific ρ  equal to two-thirds times the mean recovery rate 

of all the defaults up to the current calendar year plus one-third times the mean recovery rate in the 

current year.30  For consistency with the way Moody’s calculates default rates, and with technical 

assumptions of the theoretical models under study, I calculate recovery rates using only defaults on 

senior unsecured debt.31 

The procedure for assigning values to the default trigger, *V , and the default cost, α  (or K ), is model 

specific. Namely, the calibration of *V  reflects the fact that the “endogenous default” and “exogenous 

default” models treat borrowers’ decision to default differently. In addition, the models in the former 

group allow for deriving the value of α  (or K ) on the basis of other, independently calibrated, model 

parameters. By contrast, the “exogenous default” models do not provide any guidance regarding the 

value of α . Nevertheless, the two types of models incorporate the default costs in a conceptually 

identical way, via an exogenous constant. This prompts aligning the value of α  across models. 

For the two “endogenous default” models, the values of *V  and α  (or K ) are determined 

simultaneously by the requirement that, in each quarter-rating class, the average (latent) recovery rate 

of the riskier 50% of the firms is to equal the current estimate of the market-wide recovery rate: 32 

( ) ( )
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∈

αα−
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tNi ti
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V *
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,     (8) 

where t  indexes the quarter and i  the firm, tN  is the set of the riskier half of the firms and the 

principal tiP  is calculated as described earlier in the section. The default costs are kept constant 

across firms but vary quarterly, whereas the default triggers vary both quarterly and across firms. The 

first subscript of *
LTV  and *

ASTV  indicates that the default triggers are also functions of firm-specific 

parameters (recall (6) and (7)). 

In the case of the “exogenous default” models, I set 40.0=α , which is between the value adopted in 

Leland (2002) (ie, 0.3) and the average α  derived in this paper under the LT model (ie, 0.46). Then, I 

                                                      
30 Alternative calibration procedures include setting ρ  equal to the average recovery rate (i) over the entire sample or (ii) up to 

the current year. The former alternative fixes ρ  through time and thus insulates the analysis from any empirical relationship 
between PDs and losses given default. Implementing the latter alternative, instead of the procedure proposed in the main 
text, has a small quantitative impact on the implications of the models. 

31 The estimate of the default recovery rate in 1990 is based on 33 defaults, whereas the corresponding value of ρ  in 2003 is 

based on 561 defaults. The average number of defaults, which underlie the time series of ρ , is 161. 

32 I consider only the riskier firms because they are expected to actually default and, thus, determine the recovery rates in the 
data. In the AST model, the value of K  increases if, instead, one bases its calibration on the riskiest 25% of the firms. This 
translates into higher model-implied PDs: the average PD of B-rated firms increases from 4.5% to 4.7%. For BB-rated firms, 
the increase is from 1.2% to 1.9%, and for BBB-rated firms from 0.2% to 0.4%. The impact is similar within the LT model but 
is attained on the back of unrealistically high values of α . In contrast, the results do not change materially if one calibrates 
α  and K on the basis of all the firms in the cross section as opposed to the riskiest 50%. 
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allow the default trigger to vary quarterly and across firms by setting it according to the following 

version of equation (8): 33 

( )
ti

ti
t P

V *1 α−
=ρ          (9) 

Tables 1–3 allow for an appreciation of the calibration methodology and its implications. Table 1 

recapitulates all the model parameters and features of their calibration, whereas Table 2 catalogues 

how changes in the parameters affect theory implied PDs. For its part, Table 3 reports parameter 

averages alongside characteristics of the representative firm, as adopted by Leland (2002) and/or 

Huang and Huang (2003). 

The differences between the calibration results of this paper and those of the previous literature are 

due primarily to three factors. First, this paper calibrates separately three rating classes whereas the 

earlier papers base certain aggregate values on the entire spectrum of ratings. Second, the data 

underlying the fourth column in Table 3 uses data starting as early as 1970 whereas the data used 

herein start in 1990.34  Third, this paper calculates the leverage ratio on the basis of total debt, 

whereas the earlier papers rely on estimates of leverage that are provided by Standard & Poor’s 

(1999) and incorporate total liabilities.35 

4. The model-implied PDs 

Leland (2002) finds that the LT and (a simplified version of) the LS models imply one-year PDs that 

underpredict consistently and substantially ex post default rates. He conjectures that this might be due 

to his calibration of the models, which focuses on the “representative” firm endowed with the average 

borrower characteristics. In examining the cross-sectional variability of firm-specific PDs, this section 

demonstrates inter alia that Leland’s conjecture is indeed borne out. 

                                                      
33 There is no consensus in the literature regarding the value of α : at one extreme, Andrade and Kaplan (1998) argue that it 

should not exceed 20%; at the other extreme Leland and Toft (1996) set it to 50%. Reducing the value of α  to 30% in the 
“exogenous default” models does not affect the time pattern of the cross-sectional averages of PDs but shifts them down 
substantially: by 0.068 percentage points (on average) for BBB-rated firms, by 0.61 percentage points for BB-rated firms 
and by 2.5 percentage points for B-rated firms. 

34 This affects especially the estimate of the risk-free rate of return because the 1990s witnessed levels of the interest rate that 
were low by historical standards. 

35 The leverage used in previous studies is larger because total liabilities provide a broader measure of financial obligations. In 
addition to debt, total liabilities include obligations that do not involve interest payments (eg promises for physical deliveries). 
There are three reasons for choosing to work with total debt as opposed to total liabilities. First, a leverage ratio that is 
based on total liabilities would lead to an overestimation of coupon payments and payout rates. In turn, this would lead to 
too high values of model-based PDs. Second, total debt tracks more closely the bond instruments underlying the calculation 
of default recovery rates. Third, total debt underlies the calculation of MKMV PDs, which are used here to benchmark the 
performance of the academic models. Finally, it is necessary to also acknowledge that, by ignoring a portion of liabilities, 
total debt is likely to impute too big of a fraction of the equity risk premium and volatility onto the asset risk premium and 
volatility. The impact of leverage on the calibration of the latter two parameters translates, however, into a small quantitative 
impact on model-implied PDs. 



 

 
 

15

Irrespective of which set of parameters one chooses to work with in Table 3, the implied one-year 

probabilities of default are orders of magnitude smaller than the corresponding default rate. This is 

illustrated by Table 4, which reports average ex post default rates of B, BB and BBB-rated firms 

together with two sets of PDs: one associated with the representative firm in Leland (2002) and one 

with the “average” firms in this paper. 

Even though the theoretical one-year PD of the representative firm underestimates severely default 

risk, the models perform starkly better when employed for the calculation of firm-specific PDs. 

Focusing on one rating class-quarter at a time and averaging the PDs in the associated cross section 

produces the time series of theoretical predictions portrayed in Figure 1.36  In the figure, an average 

one-year PD is aligned with the default rate realised over the following year within the corresponding 

rating class. Considered even casually, the figure suggests that the bias in average firm-specific PDs 

vis-à-vis ex post default rates is either negligible or much smaller than the bias in the PDs of the 

representative or “average” firms. 

Table 4 reveals directly the small bias in theoretical default predictions. It is illustrated by the small 

difference between the time averages of the LT forecasts portrayed in Figure 1 and the corresponding 

average default rates.37 Such a small difference is expected to prevail if a valid credit-risk model is 

applied to a random selection of firms in a rating class and the sample period is sufficiently long. 

Figure 1 includes PDs implied by the “endogenous default” setups, the LT and AST models, and only 

one of the “exogenous default” setups, the HH model. The reason for not showing the implications of 

the LS model is that they are virtually identical to their counterparts in the HH model. This is due to the 

two models differing only in their choice of a second stochastic process (for the risk-free rate of return 

or the risk premium) whose quantitative implication for PDs turns out to be negligible. In order to avoid 

repetition, I suppress the LS setup from the subsequent analysis. In addition, the CDG model under-

predicts consistently the ex post default rates. The result is driven by the two parameters lk  and ν , 

whose values imply that the default boundary tends to stay far below the value of assets (recall 

equation (4) and the accompanying discussion). This depresses the theoretical PDs. Having identified 

a pronounced bias in the implications of the CDG model, I do not include it further in the analysis.38 

4.1 Firm-level data and theoretical predictions of default rates39 

In this subsection, I explain the pronounced difference between default-rate predictions based on firm-

specific PDs and alternative predictions based on “average” borrower characteristics. To illustrate the 

                                                      
36 The series in Figures 1–3 are based on the time-varying calibration of the risk free rate, r . The implications of fixing the 

value of r  through time are discussed in Section 4.5. 
37 The message of Table 4 changes little in the context of the AST, HH and LS models: see Tarashev (2005). 
38 As the speed of mean reversion, lk , decreases towards zero, the PDs generated by the CDG model converge to the ones 

generated by the LS and HH models. 
39 For expositional purposes, I focus predominantly on BB-rated firms for the remainder of Section 4. The predictions of the 

models as regards the default rates of BBB- and B-rated firms can be dissected similarly. 
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issues involved, I focus on a cross-section of one-year PDs that is derived within the LT setup and is 

associated with BB-rated firms in Q4 2001. 

Figure 2 provides a histogram of the cross-section, which is characteristic of the entire sample and 

reveals that only a fraction of the firms represent non-negligible credit risk. These firms are behind the 

long right tail (right skew) of the distribution. Their relative number in the cross section and the 

magnitudes of their PDs drive the models’ predictions of the one-year default rate. 

The skew of the distribution is an illustration of the so-called “Jensen inequality” effect, which arises 

because of a non-linear (convex) relationship between the parameters of the model and the implied 

PD. The importance of the “Jensen inequality” effect is best appreciated when the PD is considered as 

a function of only one variable. Figure 3 illustrates such a hypothetical scenario by focusing on the 

leverage ratios of the firms behind the plot in Figure 2. Figure 3 reveals that the LT model (crystallising 

in the middle panel) translates a slight skew in the leverage ratios into a highly skewed distribution of 

PDs when all the other parameters of the model are kept at their cross-sectional averages. 

The upshot of the Jensen inequality effect is that the average PD in a cross-section is substantially 

larger than the PD of the corresponding representative firm, which is endowed with the average 

borrower characteristics. In the above example, the “average” BB-rated firm in Q4 2001 has a model-

implied PD equal to 0.18%, whereas the average of firm-specific PDs is 3.7%. 

4.2 Time variability of PDs 

Figure 1 reveals substantial time variation in the theory-based PDs, which can be rationalised on the 

basis of the discussion of the models in Section 1 and their calibration outlined in Section 3. To 

illustrate, I consider here the implications of the LT model for firms rated BB in Q4 2001 and Q1 2002. 

Between these two quarters, there is a substantial drop of the average PD: from 3.7% to 1.1%. 

Zooming on the riskiest 20 firms in each cross-section of firm-specific PDs, ie the firms that drive the 

default forecasts of the model, the average coupon rate and time to maturity of outstanding debt are 

virtually identical in the two quarters. In contrast, the average asset pay-out rate, δ , decreases from 

6% to 5% while the average leverage ratio, l , decreases sharply from 62% to 49% and the average 

asset volatility, σ , shoots up from 29% to 37%.40  Expression (7) indicates that such changes in δ , l  

and σ  decrease the default boundary, *
LTV  and, by expression (2), decrease the probability of default. 

As also indicated by expression (2), the parameters δ  and σ  affect the PD via a second channel as 

well: via their implications for the process of assets. It turns out, however, that the first channel 

dominates. 

                                                      
40 The change in parameters may seem too abrupt since it occurs between two consecutive quarters. Note, however, that it is 

due partly to exit/entry of firms from/in the BB-rating class and partly to changes in firm characteristics between the two 
quarters. In particular, roughly half of the riskiest 20% of the “BB” firms in Q4 2001 are no longer in the BB-rating class in 
Q1 2002: this contributes to the decrease in leverage ratios reported above. In addition, those of the riskiest BB-rated firms, 
which stay in the same class over the two quarters, experience on average a 6 percentage point decline in leverage. 
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Expressions (1)–(9) and the logic of the previous paragraph help rationalise intertemporal changes in 

the default predictions of each one of the considered theoretical setups. Nevertheless, the 

understanding of these setups is greatly enhanced by an across-models comparison of the implied 

PDs. 

4.3 A comparison between the “exogenous default” and “endogenous default” models 

In this subsection, I identify key factors behind differences in the default-rate forecasts of models in the 

“exogenous default” group, on the one hand, and those in the “endogenous default” group, on the 

other. As revealed by Figure 1, these differences are substantial, especially during the second half of 

the sample period. 

The differences between the implications of the two groups of models turn out to be due to disparities 

in the relative importance of the default recovery rate, ρ , which is estimated on a market-wide basis, 

and firm-specific leverage, l . The greater the relative role of the former parameter, the smaller is the 

effective dispersion of borrower characteristics in the cross sections and the weaker is the “Jensen 

inequality” effect described in Section 4.1. In the “endogenous default” LT and AST models, l  is the 

dominant factor behind default-rate predictions because it affects the calibration of the default trigger 

(and, by expression (2), the PD) via two mutually reinforcing channels. On the one hand, by 

expressions (6) and (7), *
ASTV  and *

LTV  are increasing functions of the debt principal P  and thus l . On 

the other hand, by equation (8) and for a given default recovery rate, a higher l  (P) has to be matched 

by higher values of *
LTV  and *

ASTV .41  In contrast, recalling the discussion in Section 3, only the second 

channel operates when the default trigger is exogenous, as is the case in the HH model. This weakens 

the impact of leverage on *
HHV , and on the associated PD, relative to the impact of the default recovery 

rate, conveyed by equation (9).42 

A concrete illustration of the argument is obtained by focusing on Q2 1999 and Q4 2000 and 

considering alternative theoretical predictions of one-year default rates in the universe of BB-rated 

firms. Over the seven-quarter period, the estimated recovery rate falls from 46% to 37% and the 

leverage ratio of the riskiest 20% of the firms rises from 65% to 72%, while the other borrower and 

debt characteristics remain roughly constant. In accord with the above discussion, the change in 

leverage is at the root of the increase in the average PDs implied by the LT and AST models: from 

0.8% to 2.6% and from 0.7% to 3.6%, respectively. In contrast, the change in the recovery rate forces 

                                                      
41 In mathematical terms, both channels operate because one solves simultaneously for *

LTV  and α , in the LT model, and for 
*
ASTV and K , in the AST model. 

42 To a lesser extent, other borrower-specific characteristics also explain the differences between the PDs implied by the two 
groups of models. Time to maturity of outstanding debt, asset payout ratio and asset volatility influence the dynamics of *

LTV  

and / or *
ASTV  but none of them enters the calibration of *

HHV . 
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the calibrated values of *
HHV  to drop, which decreases the average PD implied by the HH model: from 

0.6% to 0.2%. 

The ex post default rates of BB-rated firms increases from 1.1% in Q2 1999 to 2.3% in Q4 2000. The 

above example thus helps illustrate a general finding that, unlike “exogenous default” models, their 

“endogenous default” brethren are able to capture an increase in the default rate accompanied by a 

decline in the default recovery rate. The tendency of default and recovery rates to move in opposite 

directions has been recorded in the literature as an empirical regularity.43 

4.4 A comparison between the “endogenous default” models 

Figure 1 also helps detect time periods, over which the predictions of the two “endogenous default” 

models move in opposite directions. By expressions (2), (6) and (7), this phenomenon must be due to 

a change in: (i) the asset payout ratio, δ , a rise in which raises *
LTV  but lowers *

ASTV ; and/or (ii) the 

risk-free rate, r , a rise in which lowers *
LTV  but raises *

ASTV . 

The predictions of the two models regarding BB-rated firms in Q3 1992 and Q4 1994 provide a case in 

point. Between the two quarters, the riskiest 20% of the firms in the cross-sections exhibit a drop in the 

asset payout ratio (from 8% to 7% on average) while the risk-free rate shoots up (from 3.4% to 6.6%). 

The changes in these two parameters drive the cumulative changes in the theoretical default 

boundaries over the seven-quarter period and lead to a 2.5 percentage point decrease in the average 

PD implied by the LT model but a corresponding 1.5 percentage point increase within the AST model. 

The story reverses between Q1 2001 and Q1 2003 when a drop of the risk-free rate from 4.6% to 

1.3% results in the LT (AST) model pointing to an increased (decreased) default risk. 

4.5 The impact of different calibrations of the risk free rate 

It has been documented in the literature that Treasury yields, which enter the determination of the PDs 

portrayed in Figure 1, might lead to a poor estimate of the risk-free rate of return, r .44  To examine the 

sensitivity of the structural credit risk models to the value of r , I shut off its time variability by setting it 

equal to the average of the one-year Treasury rates over the entire sample. 

The set of model-implied PDs, obtained under the time invariant estimate of r , is portrayed in Figure 

1a along with the corresponding ex post default rates. In comparison to the plots in Figure 1, the 

overall level of the PDs remains largely unaffected but they tend to match more closely the actual 

default rates. The closer match is more pronounced in the context of the “endogenous default” models, 

whereas changes in the estimate of the risk free rate have a limited impact on the time profiles of 

“exogenous default” PDs. 

                                                      
43 See Altman et al. (2003) and Altman et al. (2004). 
44 See, for example, Feldhütter and Lando (2004). 
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Recalling Section 3, the calibration of the exogenous default trigger is independent of the risk-free 

rate, which enters the determination of “HH” PDs only via the law of motion of assets (equation (1)). 

Since that law of motion is the same across all academic models, the “HH” lines in Figures 1 and 1a 

convey a general implication: the impact of the different calibrations of r  on the drift in asset values 

tends to be translated into a limited impact on PDs.45 

For their part, the endogenous default triggers *
ASTV  and *

LTV  do depend on the risk-free rate. As a 

result, setting r  to be constant through time smoothes out swings in the PDs implied by the AST and 

LT models. Since the risk free rate affects the two default-trigger values in opposite directions (it raises 
*

ASTV  but lowers *
LTV ) the move from a time-varying to a constant r  also increases the correlation 

between the PD series delivered by the two “endogenous default” models. 

4.6 Theory-based predictions of default rates over longer horizons 

From the point of view of lending institutions, the relevant horizon of a PD reflects the time period 

needed for the disposal of credit risk and the remaining life of the particular debt instrument. Risk-

management considerations should thus be expected to often draw banks’ attention to PDs with 

horizons beyond the one-year one considered in the paper so far. 

Figure 4 compares five-year ex post default rates to the corresponding PDs implied by the LT, AST 

and HH models. The calibration of the models underlying Figure 4 is at the yearly frequency and, in 

most general terms, adopts the methodology outlined in Section 3 and used for the calculation of one-

year PDs. However, I implement the notion that the long-term (steady-state) characteristics of a firm 

become more relevant as the horizon of the PD increases. To proxy for the steady state at the 

borrower level, I set the firm-specific parameters, the default recovery rate and the risk-free rate of 

return equal to their time averages.46 

Several lessons can be drawn from Figure 4. Against the backdrop of one-year PDs, the main 

message is that the bias in the theoretical predictions of default rates remains small or virtually non-

existent over longer horizons as well. Furthermore, in all three rating classes, the theory-implied PDs 

capture the increase in ex post default rates from 1995 to 1999. In contrast, the time pattern of 

defaults in the first half of the sample is matched only partially at best. 

A comparison of Figure 4 to Figures 1 or 1a reveals that the differences across models are smaller 

when the horizon of default forecasts is longer. On the one hand, this is driven by the underlying 

calibration approaches. The one used for five-year PDs smoothes the characteristics of each rating 

class across time and thus significantly dampens the transient swings in model-implied PDs. On the 

                                                      
45 An exception to this general finding occurs in 1990–91. When the risk-free rate is allowed to change through time, the high 

interest rates in these two years lead to a large positive drift in the asset value and depress substantially the PDs delivered 
by the HH model. 

46 Averaging firm-specific parameters through time has a limited impact on the overall level of theoretical PDs but reduces their 
intertemporal variability. Specifically, the average PD in a rating class changes through time only as a result of the exit 
(entry) of firms out of (in) that rating class. 



 

20 
 

other hand, the finding is also due to the three models differing (to a first-order approximation) only in 

their determination of the default-trigger value of assets. As the horizon increases, the uncertainty 

about future asset values intensifies and theoretical PDs become less sensitive to changes in the 

default trigger. 

Mimicking the construction of Table 4, Table 5 helps appreciate the bias in alternative model-based 

five-year PDs vis-à-vis the corresponding default rates. A comparison of the last two columns in the 

table reveals that the “Jensen inequality” effect, discussed at length in Section 4.1, is still at work. 

Namely, the average firm-specific PDs are significantly larger (and closer to the ex post default rates) 

than the PDs of the “average” firm. 47 

5. Economic significance of the forecast errors in model-implied PDs 

The analysis in Section 4 helps one rationalise the performance of the different credit risk models. For 

example, the evolution of firms’ leverage is seen to drive the close match between the one-year “BB” 

PDs implied by the “endogenous default” models and the corresponding default rates.48  For its part, 

the over-reliance of the calibration of the “exogenous default” models on the default recovery rate 

results in persistent underprediction of one-year default rates across all rating classes. In the context 

of B-rated firms, markedly low leverage and asset payout ratios lead all models to severely under-

predict the default rates in 1990 and 1991. 

Having rationalised the implications of the academic models, I evaluate them in economic terms in this 

section. In particular, I consider a lender who determines the amount of capital to set aside by 

assessing the credit risk of an exposure on the basis of one of these models. Then, I compare the 

lender’s capital to two benchmarks: (i) capital based on perfect knowledge of credit risk; and (ii) capital 

based on the credit rating of the exposure. Except in the latter benchmark case, I treat PDs as the 

(sole) measure of credit risk and assume that the lender adopts the foundation IRB approach of Basel 

II. That approach delivers regulatory capital solely on the basis of a PD estimate. 

The short time span of the MKMV PDs limits significantly the scope of their evaluation. Nevertheless, 

by being based on a particularly rich proprietary dataset, these PDs provide an additional perspective 

on the implications of the academic models.49 

Consider six hypothetical banks that invest in a bond, the ex ante PD of which equals the ex post 

default rate in a particular rating class (BBB, BB, or B). Two of the banks are “benchmark” ones. One 

                                                      
47 Table 5 suggests that, as the rating of the firms improves, so does the performance of the Leland (2002) parameterisation of 

the LT model. This, however, results from Leland’s calibrating virtually all of the parameters (the exception is leverage) to 
borrower characteristics averaged across all rating classes. Such a calibration inflates artificially the riskiness of BBB-rated 
firms and understates the riskiness of B-rated firms. 

48 Refer to Figures 1-3 or 1a–3a. 
49 The data cross sections underlying the PDs of the academic models are, in general, different from the cross sections 

underlying the MKMV PDs. The working assumption is that each cross section is representative of the cross section 
determining the corresponding ex post default rate. 
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of them is assumed to possess perfect foresight regarding the probability that the bond defaults over 

the next year. To calculate the regulatory capital of that bank in a particular quarter, I use the ex post 

one-year default rate in the relevant rating class and the foundation IRB approach. The other 

“benchmark” bank adopts the standardised approach of Basel II and, thus, calculates its capital 

requirements on the basis of the rating of the bond issuer: the capital requirements of this bank do not 

change through time. Each one of the remaining four banks relies on a particular model: the LT, AST, 

HH or MKMV model. In each quarter of the sample, such a bank determines its regulatory capital on 

the basis of the average one-year PD implied by the adopted model and the foundation IRB 

approach.50 

In order to be able to draw sharp conclusions, I assume that the optimal capital levels are those 

calculated by the “perfect foresight” bank.51  At the other extreme is the bank adopting the 

standardised approach (SA). That approach relies on publicly available credit ratings which, in 

principle, reflect borrowers’ relative creditworthiness as opposed to probabilities of default.52  Thus, in 

the context of this section, a credit risk model provides value added only if the bank relying on it 

matches the optimal level of capital more closely than the “SA” bank.53 

Table 6 summarises the results of the exercise. The table is divided into three vertical panels, each 

one of which corresponds to a particular rating class. The top rows provide descriptive statistics of the 

optimal capital requirements. The bottom rows report mean and mean absolute discrepancies (or 

errors) between the optimal capital requirements and those deduced by the “LT”, “AST”, “HH”, 

“MKMV” and “SA” banks. The mean error reveals whether the small bias in theoretical PDs vis-à-vis 

default rates translates into a small bias in model-implied capital. For its part, the mean absolute error 

reveals whether the model-implied and optimal capital levels tend to stay close to each other through 

time. In general, the sample period is from Q1 1990 to Q2 2003. The numbers in parentheses are 

based on the shorter period covered by the MKMV sample: from Q4 1996 to Q2 2003. 

Given the higher incidence of default among lower-grade obligors, the regulatory capital of the “perfect 

foresight” bank increases when moving from BBB to BB and then to single-B rated entities. In addition, 

the IRB approach maps PDs into capital requirements via a concave function, which dampens 

(amplifies) the variability of regulatory capital at high (low) PD levels. As a result, the volatility of the 

                                                      
50  The risk-free rate of return, which is a parameter in the LT, AST and HH models, is assumed to be time invariant for this 

exercise. In other words, the banks relying on these three models use the PD series portrayed in Figure 1a. 
51 Since the exercise is extremely stylised, I make no distinction between regulatory (or required) capital and economic (or 

optimal) capital. 
52 The officially announced objective of credit rating agencies is to rate firms according to their long-term financial 

characteristics. This means that, conditional on the latter characteristics, credit ratings should not vary across the business 
cycle, even though PDs are largely procyclical. In addition, credit ratings are supposed to distinguish riskier from safer firms 
and, thus, need to provide an ordinal ranking of firms but need not reflect an absolute measure of default risk. For further 
discussion on the issue, refer to Amato and Furfine (2003). 

53 Note that the “optimal” capital is based on ex post default rates and thus may incorporate more information about PDs than 
what could possibly be known ex ante. In this sense, the model-implied capital cannot be expected to match exactly the 
“optimal” one. 
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capital requirements of the “perfect foresight” bank stays virtually constant across rating classes, even 

though the volatility of default rates increases as the credit rating worsens. 

The performance of the “SA” bank is mixed. On the one hand, that bank matches quite closely the 

optimal regulatory capital for single-B exposures. This might reflect an intended feature of Basel II: to 

have the standardised and the foundation IRB approaches calibrated so that they produce similar 

capital requirements on the basis of historical default rates of B-rated obligors. On the other hand, the 

“SA” bank performs significantly worse in the BBB rating class. The latter result reflects the well-known 

fact that the standardised approach assigns the same regulatory capital (8% per unit of exposure) to 

both BBB and BB rated exposures. The requirements are conservative and overshoot somewhat the 

optimal regulatory capital even for the “BB” bonds. In the context of “BBB” bonds, however, the 

average overshooting is substantial: at 5.3 percentage points, it is twice as large as the corresponding 

mean capital requirement of the “perfect foresight” bank. 

The bottom rows of Table 6 suggest that the performance of the credit risk models is quite stable 

across rating classes. In other words, as the credit rating of obligors deteriorates, the regulatory capital 

of the “LT”, “AST” and “HH” banks increases (on average) by roughly as much as the optimal 

regulatory capital. Being responsive to changes in the underlying credit risk, the regulatory capital of 

these four banks improves on the performance of the “SA” bank in the context of BB and, especially, 

BBB rated obligors. By contrast, there is no such improvement in the context of the riskiest group of  

borrowers, as foreshadowed by the weak relationship between theoretical PDs and default rates in the 

B-rating class (bottom panel of Figure 1a). 

A comparison across the three “academic” models reveals that, according to the adopted criteria, the 

LT model provides the best forecasts of ex post default rates. The result holds true for all three rating 

classes considered and is expressed by the “LT” bank incurring the lowest mean and mean absolute 

errors. The virtual lack of bias in that bank’s capital, expressed by mean errors that are a small fraction 

of the average optimal capital, is particularly impressive. Having said that, the LT model leads to non-

negligible point-in-time discrepancies in regulatory capital: in the context of B-rated firms, for example, 

the mean absolute error is only slightly lower than the standard deviation of the optimal capital 

requirements. Recalling the bottom panel of Figure 1a, this is due primarily to time periods at the 

beginning and the end of the sample. As argued by Kurbat and Korablev (2002), however, large point-

in-time discrepancies between model forecasts and ex post default rates need not be due to invalid 

theoretical firm-specific PDs but might be a consequence of a large dispersion in the statistical 

distribution underlying default rates.54 

Among the “academic” models, the HH setup leads to the worst match of optimal capital requirements. 

In addition, the model underperforms the standardised approach within both the BB- and B-rating 

                                                      
54  The dispersion in the distribution of default rates is more likely to be pronounced the more strongly correlated are individual 

defaults. 



 

 
 

23

classes. Recalling Figure 1a, the weak performance of the HH model reflects its undershooting ex post 

default rates over most of the sample. 

Surprisingly, the “MKMV” bank does not outperform all the banks relying on the “academic” credit risk 

models. Across all rating classes, the MKMV model fares consistently better than the HH model in 

terms of both mean and mean absolute errors. In contrast, the capital requirements implied by the 

model of the commercial service show an unambiguous improvement upon the LT and AST 

frameworks only in the context of B-rated firms. 

The performance of the MKMV PDs reflects a sustained overprediction of default rates. Known to be 

based partly on historical data, the parameterisation of the MKMV model may have been influenced 

unduly at the end of the 1990s by the high levels of credit risk at the beginning of that decade. In 

addition, however, the short available time series of MKMV PDs are likely to provide a distorted picture 

of the bias in the model’s predictions. Since, as argued by Kurbat and Korablev (2002), ex post default 

rates are typically draws from a dispersed right-skewed distribution, their average level would tend to 

converge to the average of the true firm-specific PD’s only over a long time period.55 

6. Model-implied PDs and turning points in the outlook of credit risk 

The analysis of Section 5 examines time aggregates of the forecast errors of structural credit risk 

models. The section thus sheds little light on the degree to which theoretical PDs explain the 

intertemporal evolution of ex post default rates. In order to further the analysis on that front, I 

incorporate the implications of the models in time-series regressions and report the estimation results 

in Tables 7, 8 and 9. 

In most general terms, I regress one-year ex post default rates on ex ante theory-implied PDs. In all 

regressions, period-t PDs forecast the default rate realised over the year starting in t. To examine the 

robustness of the models’ explanatory power, I consider several control variables: the past default rate 

(realised over the year ending in t) and macroeconomic indicators (realised prior to the year ending in 

t). The PDs delivered by the ideal credit risk model would incorporate all the currently available 

information that is useful for forecasting default rates. Such PDs would thus be the sole significant 

explanatory variable in the regressions. 

All regressions include 54 quarterly observations, from Q1 1990 to Q2 2003, and focus on one rating 

class at a time.56  The exercise uses the model-implied PD series portrayed in Figure 1a:57  the series 

                                                      
55  The length of the time period, over which the bias in a model’s default rate predictions can be meaningfully tested, would 

depend on the true default risk of the firms in focus, their number and the correlation of their defaults. 
56 I report a regression with the lagged dependent variable only when the associated coefficient is statistically significant at the 

5% level. Owing to the overlapping horizons of PDs and default rates (recall that I consider quarterly series while the horizon 
is one year), the regression errors should be expected to be serially correlated. To account for this, I base the derived p 
values on Newey-West robust covariance matrices (for the regressions pertaining to BB- and B-rated firms) or on Huber-
White robust covariance matrices (for the regressions pertaining to BBB-rated firms). 
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are thus based on the time invariant estimate of the risk-free rate and an entry in them is equal to the 

average firm-specific PD in a particular quarter. The regressions are weighted with the weight in each 

quarter increasing in the number of firms that underlie the average theoretical PD in the quarter. Within 

the BBB-rating class, a significant number of the ex post default rates equal zero and I use a 

censored-regression specification based on the Tobit model.58 

6.1 “Models only” regressions 

The first four columns in Tables 7, 8 and 9 contain the estimated coefficients of regressions that 

incorporate exclusively the LT, AST and/or HH models. The first three regressions focus on one of the 

models at a time, whereas the fourth one represents a “horse race” among all three models. 

In accordance with the conclusions drawn from the “regulatory capital” exercise in Section 5, the LT 

model outperforms the other two structural frameworks in forecasting ex post default rates. The 

coefficients of the LT PDs are invariably of the expected positive sign and are statistically significant in 

all three “horse race” regressions and in two out of the three applicable “one model” regressions. In 

addition, the latter two regressions (which pertain to BB- and BBB-rated firms) score better in the 

goodness of fit measure than the corresponding regressions incorporating only the AST or HH PDs. 

Including all three model-implied PDs as explanatory variables substantially improves the fit of the 

regressions. The improvement is greatest in the context of the BB rating class where the LT and HH 

PDs complement each other in capturing the three phases of credit risk observed in the sample: (i) the 

spike in default rates in 1990–91; (ii) their subsequent drop until 1998; and (iii) the moderate pickup 

thereafter. On the one hand, the LT PDs match on average the ex post default rates but miss their 

relative levels in phases (i) and (iii); on the other hand, the HH PDs underpredict over most of the 

sample but exhibit a global peak in the early 1990s, just like default rates. At another extreme, the 

models perform worst in forecasting the credit risk of B-rated borrowers. The regression results reflect 

all the models missing the spike in “single-B” default rates in the early nineties and the sharp downturn 

starting at the end of 2001. 

The AST PD enters insignificantly all “one model” regressions but, surprisingly, attains a statistically 

significant negative coefficient in the “horse race” regressions using data on BBB- and B-rated 

obligors. Any difference across models with respect to the signs of the associated regression 

coefficients is due to the asset payout ratio δ , which is the sole parameter with opposite impacts on 

the LT and HH PDs, on the one hand, and AST PDs, on the other.59, 60  Thus, the negative regression 

                                                                                                                                                                      
57 As could be conjectured by comparing Figures 1–3 to Figures 1a–3a, the time-varying estimates of the risk-free rate weaken 

the explanatory power of the models. 
58 22 of the 54 ex post default rates in the BBB-rating class equal zero. The zero value of default rates do not imply absence of 

default risk but are an artefact of there being a finite number of low-risk borrowers. To account for this, I assume that default 
rates are “censored” at a low positive value (specifically, 0.03%). Under the censored regression model, the reported 
adjusted R2  reflects the goodness of fit vis-à-vis the latent dependent variable, which is a linear function of the regressors. 

59 The “horse race” regressions estimate what the relationship between each one of the PDs and ex post default rates would 
be if the other PDs were to stay constant. Thus, in switching from “one model” to “horse race” regressions, one obtains PD 
coefficients that reflect to a smaller (greater) degree parameters with similar (disparate) implications in the different models. 
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coefficient of the AST PD is an empirical rejection of the AST model’s implication that default risk 

decreases in the asset payout ratio. 

6.2 Macroeconomic variables and credit risk 

As indicated in the previous section and illustrated in Figures 1 and 1a, the theory-based PDs miss the 

direction of ex post default rates over certain time periods. In the light of the firm-specific calibration of 

the models, the finding suggests that there might be market-wide determinants of credit risk that are 

not captured by the models. In order to investigate the presence and importance of such global 

factors, I incorporate macroeconomic variables in the regression analysis. 

In choosing the specific variables, I rely on the extant literature which has identified predictors of 

turning points in the credit and business cycles. In particular, Borio and Lowe (2002) discover that 

positive deviations of real asset prices and the credit-to-GDP ratio from their respective trends 

(estimated on the basis of historical data available in real time) reflect the build-up of financial market 

imbalances and forecast well banking system distress years down the road. To the extent that the 

distress is associated with a deterioration of banks’ lending portfolios, the two financial variables 

should help predict spikes in default rates. In addition, in order to account for real-side imbalances that 

might translate into loosening or tightening of lending criteria, I consider the deviation of real GDP from 

its potential level as a harbinger of future changes in credit risk. Finally, I also incorporate the Treasury 

term spread which helps predict changes in real economic activity according to Estrella and 

Hardouvelis (1991) and Smets and Tsatsaronis (1997). In so far as the business cycle affects firms’ 

willingness/capacity to service their debt, the term spread should also help predict default rates. 

With the above motivation, I use the Treasury term spread, the asset-price, credit-to-GDP and GDP 

gaps, together with model-based PDs, as explanatory variables of default rates. The results are 

reported in columns 5 to 11 in Tables 7, 8 and 9 and shed light on two related questions: (i) Could the 

forecast errors of theoretical PDs be attributed to factors related to the business and/or credit cycles? 

and (ii) Is the explanatory power of theoretical PDs robust to controlling for variables that capture 

market-wide phenomena? 

Focusing on the two financial-side variables, the results suggest an affirmative answer to the first 

question. The credit-to-GDP gap and the real asset-price gap enter the regressions with statistically 

significant coefficients and improve substantially the fit.61  In the context of BB-rated firms, for 

example, the adjusted R2 reaches 79%, which is 24 percentage points higher than the highest R2 in 

the “models only” regressions. In addition, in line with the conclusions of Borio and Lowe (2002), 

                                                                                                                                                                      
60 Recall Table 2 and that the risk-free rate is being kept constant. The asset payout ratio increases the AST PD via its impact 

on the process of assets but decreases the AST PD via its impact on the default trigger. The second channel dominates. 
61 When I introduce a single macroeconomic variable in a regression, I pick the lag of the variable that minimises the Akaike 

information criterion. The lag is allowed to change with the rating class. Later, when two or more macro variables are used 
simultaneously in a regression, I preserve their initially determined lags. 
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positive shocks to the financial-side variables indicate a build-up of financial vulnerabilities and tend to 

increase default rates 3–5 years in the future.62 

Examination of the real-side macro variables also suggests that the forecast errors of the structural 

credit-risk models can be attributed in part by factors related to the business cycle. The GDP gap and 

the term spread improve substantially the goodness of fit of the regressions: in the context of BB-rated 

firms, for example, the adjusted R2 reaches 69%. Positive shocks to the GDP gap indicate an 

overheating of the economy, which tends to be associated with an increase of default rates 1–2 years 

into the future. In contrast, negative shocks to the term spread are associated with higher default rates 

within the following 2 years. This is consistent with findings of Estrella and Hardouvelis (1991) and 

Smets and Tsatsaronis (1997) that a tightening of the term spread heralds recessions up to 2 years in 

the future. 

As regards the second question posed above, the explanatory power of theoretical PDs is largely 

robust to controlling for financial-side macro variables. The point is seen most sharply when one 

focuses on the LT PDs whose coefficient remains positive and significant across all rating classes. 

Except for the BBB-rating class, the same is true for the PDs implied by the HH model. For the 

reasons discussed in Section 6.1, the AST PDs attain significant negative coefficients. 

The inclusion of the GDP gap and the term spread as explanatory variables of default rates suggests 

that the predictions of the structural credit-risk models may be influenced by market-wide factors. 

When one forecasts the default rates of BBB- and B-rated firms, the real-side macro variables tend to 

substitute for the information in theory-based PDs. In the context of BB-rated firms, however, the 

explanatory power of theoretical PDs is quite robust and complements the explanatory power of the 

GDP gap and the term spread. 

For completeness, in column 11 of Tables 7, 8 and 9, I report the results of regressing ex post default 

rates on all the explanatory variables mentioned above. The message of this specification is consistent 

with the conclusions of the smaller regressions. In addition, one observes that the real-side and 

financial-side macro variables often fail to provide complementary information regarding default rates. 

6.3 MKMV PDs as predictors of default rates 

The PDs provided by MKMV explain well the time profile of default rates. These PDs enter regressions 

of default rates with statistically significant positive coefficients and render the coefficients of other 

model-implied PDs insignificant and/or negative. The result, which is robust across all “models only” 

equations and across the three rating classes, reveals the value added of the MKMV proprietary 

information. Furthermore, the explanatory power of the MKMV PDs tends to be robust to the inclusion 

of macroeconomic controls. This is seen in Tables 10-12, which report the results of regressions that 

                                                      
62 The similarities between the results of the present exercise and the findings of Borio and Lowe (2002) notwithstanding, one 

should keep in mind that the latter paper builds a non-linear indicator of banking system distress. The length of the sample 
size employed herein limits the analysis to the linear case. 
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mimic the specification adopted for the “academic” models.63  Nevertheless, considering macro 

variables from the financial and the real sides of the economy substantially improves the goodness of 

fit measures, especially in the BBB and B rating classes. The MKMV-related results are, however, 

preliminary because they are based on less than seven years of data that do not encompass a full 

credit cycle. 

Conclusion 

The paper uses firm-level data and evaluates six structural credit risk models by examining the overall 

level and the time path of the PDs they deliver. In contrast to the previous literature, the analysis finds 

that the PDs implied by some of the models match well the time average of ex post default rates. The 

models are also in a position to capture, albeit partially, the intertemporal evolution of default rates. 

The purely theoretical forecasts of credit risk are substantially improved upon by the introduction of 

macroeconomic variables, which reflect the business and credit cycles. 

The best performer among the “academic” frameworks is the “endogenous default” model developed 

in Leland and Toft (1996). The predictions of that model are quite sensitive to the dynamics of firms’ 

leverage but this sensitivity is borne out by the data. As a result, the LT PDs not only match closely the 

overall level of default rates but also consistently help to explain their time path. 

The ad hoc nature of defaults in the “exogenous default” models is a drag on their performance. The 

PDs delivered by these models tend to overreact to the level of the default recovery rate, which leads 

to systematic under-prediction of default rates. Nevertheless, “exogenous default” models do exhibit 

significant explanatory power in forecasting credit risk. 

Future research could provide a useful contribution to the subject matter of this paper by resolving 

data limitations identified in the main text. These limitation are to be kept in mind when interpreting the 

results presented above. On the one hand, longer data series, incorporating several credit cycles, 

would shed further light on the robustness of the models’ success in accounting for upturns and 

downturns in credit risk. On the other hand, larger cross-sections would increase significantly one’s 

confidence in the theoretical forecasts of default rates at different points in time. 

Resolving the data limitations would provide solid grounding for research that goes beyond the topic of 

this paper. The derivation of firm-specific theoretical PDs constitutes a useful first step towards 

analyses of portfolio risk. Such PDs and estimates of default correlations across firms provide 

sufficient inputs for copula methods, which deliver the probability of any number of defaults in a group 

of borrowers. 

                                                      
63 In particular, the lags of the macroeconomic controls in Tables 10, 11 and 12 are the same as in Tables 7, 8 and 9, 

respectively. 
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Figures and Tables 

Figure 1 
One-year default rates and average model-implied PDs (time varying risk-free rate) 

 
BBB-rated firms 

 
BB-rated firms 

 

B-rated firms 

 

Note: In each quarter, a plotted PD stands for the average of firm-specific model-based PD’s. AST refers to Anderson, 
Sundaresan and Tychon (1996), LT refers to Leland and Toft (1996) and HH refers to Huang and Huang (2003). 
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Figure 1a 

One-year default rates and average model-implied PDs (constant risk-free rate) 

 

BBB-rated firms 

 

BB-rated firms 

 

B-rated firms 

 

Note: In each quarter, a plotted PD stands for the average of firm-specific model-based PD’s. AST refers to Anderson, 
Sundaresan and Tychon (1996), LT refers to Leland and Toft (1996) and HH refers to Huang and Huang (2003). 
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Figure 2 

Implications of the LT model for firms rated BB in Q4 2001 
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Figure 3 

Illustration of the “Jensen inequality” effect (LT model, BB-rated firms, Q4 2001) 
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Note: LT refers to Leland and Toft (1996). In Figure 3, the derivation of firm-specific PDs (middle and bottom panel) uses 
leverage data “as is” but keeps all other parameters at their means in the cross section. 
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Figure 4 

Five-year default rates and average model-implied PDs 
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B-rated firms 

 

Note: In each quarter, a plotted PD stands for the average of firm-specific model-based PD’s. AST refers to Anderson, 
Sundaresan and Tychon (1996), LT refers to Leland and Toft (1996) and HH refers to Huang and Huang (2003). 
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Table 1 

Model parameters and their calibration1 

Parameter Description Firm specific 
Y or N 

Time varying 
Y (y or q) or N 

c  Coupon rate Y Y(y) 

T  Time to maturity Y Y(y) 

r  Risk-free rate of return N Y(q) or N 

l  Leverage ratio Y Y(q) 

δ  Asset payout rate Y Y(q) 

λ  Asset risk premium Y Y(q) 

σ  Asset volatility Y Y(q) 

ρ  Default recovery rate N Y(y) 

α  or K  Default cost2 N 

Y(q) 

in “endogenous default”  
models 

N 

in “exogenous default”  
models 

∗V  Default boundary2 Y Y(q) 

τ  Tax rate N N 

m  Monitoring cost N N 

ν
σλσ

σσ

λλλ

,
,,,,

,,,,

lk
k

rk

v

rvrr
−

−

 

Parameters of the second 
stochastic process 
[“exogenous default” models only] 

N N 

Note: Y = yes, N = no, y = yearly, q = quarterly 

1  Unless stated explicitly otherwise, the parameter values are the same across models and are based on assumptions 
adopted by Leland (2002) and/or Huang and Huang (2003).    2  The calibrated values of the default boundary and the (dead-
weight) default cost depend on the type of the underlying model and on the values of other model parameters. In the 

“exogenous default” models, α  is fixed at 40% and, given an estimate of leverage, ∗V  is set to be consistent with an 

estimate of the default recovery rate. In the “endogenous default” models, the values of α  (or K ) and ∗V  are determined 
simultaneously by estimates of the following debt characteristics: coupon rate; time to maturity (LT model only); risk-free rate 
of return; leverage; asset pay-out rate and volatility; default recovery rate; relevant tax rate (LT model only); and monitoring 
cost (AST model only). 
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Table 2 

The impact of parameter changes on model-implied PDs1 

“exogenous default” models “endog. def.” models  
Parameter Description Channel of the 

impact 
CDG LS HH LT AST 

assets process      
c Coupon rate 

default trigger2    + + 

assets process      
T  Time to maturity 

default trigger    –  

assets process – – – – – 
r  Risk-free rate of 

return default trigger    – + 

assets process      
l  Leverage ratio2 

default trigger + + + + + 

assets process + + + + + 
δ  Asset payout 

rate default trigger    + – 

assets process – – – – – 
λ  Asset risk 

premium default trigger      

assets process + + + + + 
σ  Asset volatility 

default trigger    – – 

assets process      ρ  Default 
recovery rate2 default trigger + + + + + 

assets process      
α or K  Default cost2 

default trigger + + + + + 

assets process      
τ  Tax rate 

default trigger    –  

assets process      
m  Monitoring cost 

default trigger     – 

assets process –     
lk  mean reversion 

in leverage default trigger      

assets process  –    
rvσ  covariance of 

r and assets3 default trigger      

assets process   –   
vλσ  covariance of 

λ  and assets3 default trigger      

1 Unless explicitly stated otherwise, the table reports the sign of the partial derivative of the PD with respect to the parameter in the row 
heading. An empty cell signifies “not applicable in the particular model”. The last three rows contain key parameters of the second 
stochastic process of the “exogenous default” models.    2 In all the models, the default trigger and the default cost are calibrated to be 
consistent with the default recovery rate and leverage. In the “endogenous default” models the default trigger is also influenced by 
coupon rate; time to maturity; risk-free rate of return; asset pay-out rate and volatility; default recovery rate; relevant tax rate; and 
monitoring cost.     3 An increase in this parameter increases/decreases the probability that a positive shock to assets raises the PD. 
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Table 3 

Key parameters of the structural credit risk models 

 BBB-rated firms1 

(averages) 
BB-rated firms1 

(averages) 
B-rated firms1 

(averages) 
Representative 

firm2 

Expected return 
on assets 10.5% 10.4% 10.2% 12% 

Asset payout rate 4% 4.2% 5.8% 6% 

Asset volatility 26% 31.2% 32% 23% 

Leverage 32% 39% 53.4% 
43.3% (BBB)
53.5% (BB) 
66% (B) 

Coupon rate 7.7% 8.6% 9.8% 8% 

Time to maturity 10 years 8.6 years 8.3 years 10 years 

1   Based on the data and calibration methodology described in Sections 2 and 3, respectively.   2  Parameter values adopted 
by Leland (2002) and/or Huang and Huang (2003). 
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Table 4 

The “Jensen inequality” effect 

(1-year default rates vs. 1-year PDs, all numbers in percentage points) 

 Average ex post 
default rates1,2 

PDs of 
representative 

firms3 
PDs of “average” 

firms1,4 
Averages of firm-

specific PDs1,4 

B 6.2 0.2 0.9 6.5 

BB 1.2 3.5 ∗  10-3 5 ∗  10-2 1.4 

R
at

in
g 

BBB 0.2 2.7 ∗  10-5 2.3 ∗  10-4 0.2 

1  Sample period: Q1 1990 to Q2 2003.     2  Source: Moody’s Investors Service.     3  As implied by the Leland (2002) 
calibration of the Leland and Toft (1996) model.    4  As implied by the model of Leland and Toft (1996) when it is calibrated 
according to the methodology of Section 3. 

 

 

 

Table 5 

The “Jensen inequality” effect 

(5-year default rates vs. 5-year PDs, all numbers in percentage points) 

 Average ex post 
default rates1,2 

PDs of 
representative 

firms3 
PDs of “average” 

firms1,4 
Averages of firm-

specific PDs1,4 

B 22.0 12.0 14.6 18.0 

BB 6.9 4.0 4.1 6.0 

R
at

in
g 

BBB 1.2 1.2 0.4 1.8 

1  Sample period: Q1 1990 to Q2 2003.     2  Source: Moody’s Investors Service.    3  As implied by the Leland (2002) 
calibration of the Leland and Toft (1996) model.    4  As implied by the model of Leland and Toft (1996) when it is calibrated 
according to the methodology of Section 3. 
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Table 6 

Credit Risk Models and Basel II 
(all numbers in percentage points)1 

BBB BB B 
 

Descriptive statistics of “optimal” capital 

Mean2 2.7 6.7 12.5 

Standard deviation2 2.1 2.7 2.7 

Descriptive statistics of discrepancies between “optimal” capital and model-implied capital 
 

LT3 AST3 HH3 M KMV3 SA4 LT AST HH M KMV SA LT AST HH M KMV SA 

Mean Error 
-0.0 

(-0.9)2 

0.0 

(-1.9) 

1.0 

(-2.4) (2.2) 
5.3 

(4.3) 

0.6 

(0.3) 

0.4 

(-1.0) 

-1.2 

(-2.6) (2.0) 
1.3 

(0.7) 

0.5 

(1.2) 

-1.2 

(-2.0) 

-2.2 

(-3.2) (0.8) 
-0.5 

(0.1) 

Mean Absolute 
Error 

1.4 

(1.7) 

2.1 

(2.1) 

1.7 

(2.4) (2.5) 
5.3 

(4.3) 

1.7 

(1.5) 

2.4 

(2.1) 

2.4 

(3.7) (2.0) 
2.3 

(1.1) 

2.3 

(1.8) 

2.9 

(2.8) 

3.6 

(4.2) (1.2) 
2.2 

(1.7) 

1  Main results correspond to the period Q1 1990 to Q2 2003. Numbers in parentheses pertain to the period Q4 1996 to Q2 2003.    2  Based on the IRB regulatory capital implied by actual default 
rates.    3  Based on the discrepancy between the IRB regulatory capital implied by actual default rates and the IRB regulatory capital implied by the particular model.    4  Based on the discrepancy 
between the IRB regulatory capital implied by actual default rates and the regulatory capital implied by the standardised approach. 
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Table 7 

BBB-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 10 11 

Constant 
-0.002 
(0.11)2 

-0.001 
(0.44) 

-0.001 
(0.34) 

-0.003 
(0.13) 

-0.003 
(0.02) 

-0.002 
(0.12) 

-0.004 
(0.02) 

-0.001 
(0.33) 

0.005 
(0.00) 

0.000 
(0.78) 

0.001 
(0.62) 

ex post default rate 
(4-quarter lag) 

0.66 
(0.02) 

0.63 
(0.03) 

0.62 
(0.03) 

0.76 
(0.01)     0.49 

(0.02)   

PD from LT model3 0.62 
(0.08)   1.58 

(0.00) 
0.78 

(0.04) 
0.96 

(0.02) 
0.73 

(0.04) 
0.28 

(0.28) 
0.36 

(0.30) 
0.21 

(0.44) 
0.21 

(0.42) 

PD from AST model3  -0.39 
(0.47)  -1.79 

(0.06) 
0.84 

(0.21) 
-2.24 
(0.01) 

-0.20 
(0.80) 

-0.78 
(0.10) 

-0.57 
(0.36) 

-0.66 
(0.17) 

-0.63 
(0.29) 

PD from HH model3   -0.14 
(0.87) 

-0.79 
(0.58) 

-2.99 
(0.00) 

1.33 
(0.29) 

-1.23 
(0.31) 

0.45 
(0.54) 

-0.39 
(0.67) 

0.35 
(0.62) 

0.32 
(0.73) 

Credit/GDP gap 
(12-quarter lag)     0.27 

(0.00)  0.21 
(0.00)    0.04 

(0.36) 

Asset price gap 
(21-quarter lag)      0.10 

(0.00) 
0.04 

(0.03)    0.02 
(0.15) 

GDP gap  
(8-quarter lag)        0.36 

(0.00)  0.32 
(0.00) 

0.18 
(0.06) 

Term spread  
(6-quarter lag)         -0.46 

(0.00) 
-0.08 
(0.41) 

-0.15 
(0.13) 

adjusted R2 (4) 0.13 0.07 0.07 0.25 0.67 0.51 0.70 0.78 0.64 0.78 0.80 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and one-year ex post default rates. 54 observations from Q1 1990 to Q2 2003. Estimation adopts the Tobit model: 
there are 32 censored and 22 uncensored observations of the dependent variable.    2  The p-values (in parentheses) are based on Huber-White robust covariance matrices. Entries in bold 
indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant coefficients that are of the “wrong” sign.    3  LT refers to Leland and Toft (1996), 
AST refers to Anderson, Sundaresan and Tychon (1996), and HH refers to Huang and Huang (2003).     4  Reflects the goodness of fit vis-à-vis the latent dependent variable. 



 

 
 

40  

 
Table 8 

BB-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 10 11 

Constant 
0.004 

(0.01)2 
0.003 

(0.21) 
0.007 

(0.00) 
0.003 

(0.14) 
0.007 

(0.00) 
0.003 

(0.00) 
0.006 

(0.00) 
0.003 

(0.01) 
0.007 

(0.02) 
0.005 

(0.03) 
0.006 

(0.00) 

ex post default rate 
(4-quarter lag)  0.40 

(0.08)          

PD from LT model3 0.42 
(0.01)   0.44 

(0.00) 
0.17 

(0.02) 
0.20 

(0.00) 
0.11 

(0.06) 
0.18 

(0.01) 
0.25 

(0.01) 
0.15 

(0.02) 
0.11 

(0.04) 

PD from AST model3  0.26 
(0.22)  -0.18 

(0.17) 
-0.21 
(0.01) 

-0.17 
(0.03) 

-0.20 
(0.02) 

0.09 
(0.22) 

0.01 
(0.86) 

0.12 
(0.12) 

-0.18 
(0.03) 

PD from HH model3   0.62 
(0.00) 

0.54 
(0.00) 

0.62 
(0.00) 

0.73 
(0.00) 

0.71 
(0.00) 

0.59 
(0.00) 

0.59 
(0.00) 

0.60 
(0.00) 

0.71 
(0.00) 

Credit/GDP gap 
(18-quarter lag)     0.19 

(0.00)  0.13 
(0.00)    0.13 

(0.00) 

Asset price gap 
(21-quarter lag)      0.10 

(0.00) 
0.06 

(0.00)    0.06 
(0.00) 

GDP gap  
(8-quarter lag)        0.24 

(0.00)  0.19 
(0.00) 

0.01 
(0.74) 

Term spread  
(8-quarter lag)         -0.28 

(0.01) 
-0.12 
(0.26) 

0.01 
(0.86) 

adjusted R2 31% 24% 23% 55% 74% 73% 79% 69% 63% 69% 79% 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and one-year ex post default rates. 54 observations from Q1 1990 to Q2 2003.    2  The p-values (in parentheses) 
are based on Newey-West robust covariance matrices (3 lags). Entries in bold indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant 
coefficients that are of the “wrong” sign.    3  LT refers to Leland and Toft (1996), AST refers to Anderson, Sundaresan and Tychon (1996), and HH refers to Huang and Huang (2003).  
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Table 9 

B-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 10 11 

Constant 
0.02 

(0.12)2 
0.03 

(0.00) 
0.02 

(0.23) 
-0.01 
(0.46) 

0.02 
(0.16) 

-0.03 
(0.11) 

0.004 
(0.80) 

0.003 
(0.85) 

0.02 
(0.09) 

0.01 
(0.53) 

0.02 
(0.15) 

ex post default rate 
(4-quarter lag) 

0.37 
(0.06) 

0.45 
(0.04) 

0.46 
(0.01) 

0.39 
(0.02)  0.29 

(0.04)  0.40 
(0.00) 

0.55 
(0.00) 

0.45 
(0.00)  

PD from LT model3 0.13 
(0.61)   0.73 

(0.00) 
0.39 

(0.03) 
0.59 

(0.00) 
0.34 

(0.03) 
0.01 

(0.96) 
0.26 

(0.11) 
0.04 

(0.79) 
-0.09 
(0.57) 

PD from AST model3  -0.26 
(0.21)  -0.57 

(0.00) 
-0.61 
(0.01) 

-0.24 
(0.26) 

-0.34 
(0.18) 

0.33 
(0.01) 

0.00 
(0.98) 

0.28 
(0.04) 

0.19 
(0.33) 

PD from HH model3   0.13 
(0.69) 

0.52 
(0.05) 

0.94 
(0.01) 

0.80 
(0.01) 

1.09 
(0.00) 

0.37 
(0.07) 

0.27 
(0.11) 

0.32 
(0.07) 

0.77 
(0.01) 

Credit/GDP gap 
(21-quarter lag)     1.04 

(0.00)  0.84 
(0.01)    0.73 

(0.00) 

Asset price gap 
(16-quarter lag)      0.34 

(0.00) 
0.27 

(0.00)    0.11 
(0.09) 

GDP gap  
(4-quarter lag)        1.44 

(0.00)  1.05 
(0.07) 

1.14 
(0.02) 

Term spread 
(2-quarter lag)         -1.69 

(0.00) 
-0.57 
(0.45) 

0.06 
(0.91) 

adjusted R2 27% 29% 26% 40% 54% 51% 61% 74% 70% 74% 76% 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and one-year ex post default rates. 54 observations from Q1 1990 to Q2 2003.    2  The p-values (in parentheses) 
are based on Newey-West robust covariance matrices (3 lags). Entries in bold indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant 
coefficients that are of the “wrong” sign.    3  LT refers to Leland and Toft (1996), AST refers to Anderson, Sundaresan and Tychon (1996), and HH refers to Huang and Huang (2003). 
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Table 10 

BBB-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 

Constant 
-0.005 
(0.05)2 

-0.0004 
(0.03) 

-0.016 
(0.00) 

-0.004 
(0.21) 

-0.013 
(0.01) 

0.0002 
(0.88) 

0.002 
(0.40) 

0.002 
(0.20) 

0.003 
(0.20) 

ex post default rate 
(4-quarter lag)          

PD from LT model3  -1.22 
(0.10)        

PD from AST model3  1.04 
(0.65)        

PD from HH model3  3.95 
(0.20)        

PD, MKMV model3 1.11 
(0.00) 

1.56 
(0.00) 

1.29 
(0.00) 

0.68 
(0.11) 

0.96 
(0.03) 

-0.18 
(0.46) 

0.73 
(0.00) 

-0.05 
(0.81) 

-0.80 
(0.80) 

Credit/GDP gap 
(12-quarter lag)   0.40 

(0.00)  0.37 
(0.00)    -0.02 

(0.62) 

Asset price gap 
(21-quarter lag)    0.04 

(0.16) 
0.02 

(0.23)    0.02 
(0.10) 

GDP gap  
(8-quarter lag)      0.39 

(0.00)  0.30 
(0.00) 

0.24 
(0.00) 

Term spread  
(6-quarter lag)       -0.45 

(0.00) 
-0.18 
(0.05) 

-0.23 
(0.01) 

adjusted R2 (4) 0.39 0.42 0.84 0.41 0.83 0.79 0.68 0.81 0.81 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and one-year ex post default rates. 27 observations from Q4 1990 to Q2 2003. Estimation adopts the Tobit model: 
there are 10 censored and 17 uncensored observations of the dependent variable.    2  The p-values (in parentheses) are based on Huber-White robust covariance matrices. Entries in bold 
indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant coefficients that are of the “wrong” sign.    3  LT refers to Leland and Toft (1996), 
AST refers to Anderson, Sundaresan and Tychon (1996), HH refers to Huang and Huang (2003), and M KMV refers to Moody’s KMV.     4  Reflects the goodness of fit vis-à-vis the latent 
dependent variable. 
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Table 11 

BB-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 

Constant 
0.002 

(0.27)2 
0.004 
(0.12) 

0.005 
(0.10) 

0.004 
(0.06) 

0.005 
(0.09) 

0.004 
(0.04) 

0.006 
(0.05) 

0.006 
(0.00) 

0.006 
(0.01) 

ex post default rate 
(4-quarter lag)          

PD from LT model3  0.05 
(0.72)        

PD from AST model3  -0.29 
(0.03)        

PD from HH model3  -0.18 
(0.33)        

PD, MKMV model3 0.39 
(0.00) 

0.45 
(0.00) 

0.25 
(0.07) 

0.27 
(0.00) 

0.23 
(0.08) 

0.27 
(0.00) 

0.32 
(0.00) 

0.24 
(0.00) 

0.25 
(0.02) 

Credit/GDP gap 
(18-quarter lag)   0.07 

(0.14)  0.07 
(0.38)    -0.02 

(0.72) 

Asset price gap 
(21-quarter lag)    0.04 

(0.03) 
0.03 

(0.05)    0.008 
(0.72) 

GDP gap  
(8-quarter lag)      0.18 

(0.00)  0.15 
(0.00) 

0.15 
(0.04) 

Term spread  
(8-quarter lag)       -0.24 

(0.09) 
-0.17 
(0.20) 

-0.17 
(0.34) 

adjusted R2 0.53 0.56 0.57 0.59 0.59 0.64 0.59 0.67 0.64 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and one-year ex post default rates. 27 observations from Q4 1990 to Q2 2003.    2  The p-values (in parentheses) 
are based on Newey-West robust covariance matrices (2 lags). Entries in bold indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant 
coefficients that are of the “wrong” sign.    3   LT refers to Leland and Toft (1996), AST refers to Anderson, Sundaresan and Tychon (1996), HH refers to Huang and Huang (2003), and M KMV 
refers to Moody’s KMV. 
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Table 12 

B-rated firms1 

Dependent variable: ex post default rate 

 “Models only” regressions Regressions with model-based PDs and macro variables 

 1 2 3 4 5 6 7 8 9 

Constant 
-0.01 
(0.37)2 

-0.02 
(0.11) 

-0.03 
(0.16) 

-0.01 
(0.63) 

-0.03 
(0.16) 

0.02 
(0.01) 

0.03 
(0.01) 

0.02 
(0.01) 

0.04 
(0.00) 

ex post default rate 
(4-quarter lag)          

PD from LT model3  0.13 
(0.50)        

PD from AST model3  -0.75 
(0.00)        

PD from HH model3  0.10 
(0.45)        

PD, MKMV model3 1.04 
(0.00) 

1.29 
(0.00) 

1.34 
(0.00) 

0.82 
(0.01) 

1.14 
(0.00) 

0.41 
(0.00) 

0.63 
(0.00) 

0.42 
(0.00) 

0.23 
(0.02) 

Credit/GDP gap 
(21-quarter lag)   -0.28 

(0.25)  -0.34 
(0.12)    0.11 

(0.23) 

Asset price gap 
(16-quarter lag)    0.17 

(0.17) 
0.20 

(0.14)    0.06 
(0.22) 

GDP gap  
(4-quarter lag)      1.18 

(0.00)  1.03 
(0.00) 

0.88 
(0.00) 

Term spread 
(2-quarter lag)       -1.36 

(0.00) 
-0.24 
(0.43) 

-0.50 
(0.16) 

adjusted R2 0.51 0.76 0.54 0.54 0.58 0.92 0.83 0.92 0.93 

1  Regressions based on cross-sectional averages of one-year theoretical PDs and ex post default rates. 27 observations from Q4 1990 to Q2 2003.    2  The p-values (in parentheses) are based 
on Newey-West robust covariance matrices (2 lags). Entries in bold indicate coefficients that are statistically significant at the 10% level. Italicised entries mark statistically significant coefficients 
that are of the “wrong” sign.    3   LT refers to Leland and Toft (1996), AST refers to Anderson, Sundaresan and Tychon (1996), HH refers to Huang and Huang (2003), and M KMV refers to 
Moody’s KMV. 
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