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Abstract

This paper estimates recent default risk premia for U.S. corporate
debt, based on a close relationship between default probabilities, as
estimated by Moody’s KMV EDFs, and default swap (CDS) market
rates. The default-swap data, obtained through CIBC from 22 banks
and specialty dealers, allow us to establish a strong link between actual
and risk-neutral default probabilities for the 69 firms in the three
sectors that we analyze: broadcasting and entertainment, healthcare,
and oil and gas. We find dramatic variation over time in risk premia,
from peaks in the third quarter of 2002, dropping by roughly 50% to
late 2003.
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1 Introduction

This paper estimates recent default risk premia for U.S. corporate debt, based
on a close relationship between default probabilities, as estimated by the
Moody’s KMV EDF measure, and default swap (CDS) market rates. The
default-swap data, obtained by CIBC from 22 banks and specialty dealers,
allow us to establish a strong link between actual and risk-neutral default
probabilities for the 69 firms in the three sectors that we analyzed: broad-
casting and entertainment, healthcare, and oil and gas.

Based on over 49,000 CDS rate quotes, we find that 5-year EDFs explain
over 70% of the cross-sectional variation in 5-year CDS rates, after control-
ling for sectoral and temporal effects. We find that the marginal impact of
default probability on credit spreads is significantly greater for high-credit-
quality firms than for low-credit-quality firms. We also find that, for a given
default probability, there is substantial variation over time in credit spreads.
For example, after peaking in the third quarter of 2002, credit risk premia
declined steadily and dramatically through late 2003, when, for a given de-
fault probability, credit spreads were o n average roughly 50% lower than at
their peak, after controlling for sectoral effects.

If a firm’s risk-neutral default intensity λ∗ and risk-neutral expected frac-
tion L∗ of notional lost at default are assumed to be relatively stable over
time, the firm’s CDS rate and its par-coupon credit spread would be approx-
imately equal to the risk-neutral mean loss rate, λ∗L∗, ignoring illiquidity
effects.1

The lowest annual cross-sectional sample mean of loss given default dur-
ing our sample period was reported by Altman, Brady, Resti, and Sironi
(2003) to be approximately 75%. Using 75% as a rough estimate for L∗,
our measured relationship between CDS and EDF implies that risk-neutral
default intensities are roughly double actual default intensities (proxied by
EDFs), on average, although this premium is much higher for high quality

1This close relationship between risk-neutral mean loss rate and par credit spreads is
from Duffie and Singleton (1999). The close relationship between par credit spreads and
CDS rates is explained by Duffie (1999). With illiquidty, however, Duffie and Singleton
(1999) show a divergence between spreads and risk-neutral mean loss rates. Longstaff,
Mithal, and Neis (2003) claim that there are indeed illiquidity effects, measuring yield
spreads relative to Treasury yields. Blanco, Brennan, and Marsh (2003) suggest that the
illiquidity differences causing bond spreads and default swap rates to diverge are small if
using interest-rate swap yields as a benchmark for bond spreads.
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firms, and lower for low quality firms. This ratio of risk-neutral to actual
default intensities is a default-timing risk premium whose size and behavior
over time is a primary objective of our analysis.

This simple estimate of the default risk premium does not consider: (i)
the effect of random fluctuations in actual and risk-neutral default intensities,
(ii) the potential impact of illiquidity on CDS rates, (iii) variation between
actual and risk-neutral mean fractional losses given default, (iv) correlation
between fluctuations over time in risk-neutral mean losses given default and
risk-neutral default intensities, (v) the effect of cheapest-to-deliver settlement
options on default swap rates, and (vi) sample noise. We shall address the
impact of each of these later in the paper.

Fons (1987) gave the earliest empirical analysis, to our knowledge, of the
relationship between actual and risk-neutral default probabilities. By using
ex-post default rates and excess returns on corporate debt, he was able to
show that, for his data set treating the early 1980s, that market implied
risk-neutral default rates were about 5% larger than actual default rates.

Driessen (2002) recently estimated the relationship between actual and
risk-neutral default probabilities, using U.S. corporate bond price data (rather
than CDS data), and using average long-horizon default frequencies by credit
rating (rather than contemporaneous firm-by-firm EDFs). Driessen reported
an average risk premium across his data of 1.89, after accounting for tax
and liquidity effects, that is roughly in line with the estimates that we pro-
vide here. While the conceptual foundations of Driessen’s study are similar
to ours, there are substantial differences in our respective data sources and
methodology. First, the time periods covered are different. Second, the cor-
porate bonds underlying Driessen’s study are less homogeneous with respect
to their sectors, and have significant heterogeneity with respect to maturity,
coupon, and time period. Each of our CDS rate observations, on the other
hand, is effectively a new 5-year par-coupon credit spread on the underlying
firm that is not as corrupted, we believe, by tax and liquidity effects, as are
corporate bond spreads. Most importantly, we do not rely on historical av-
erage default rate by credit rating as a proxy for current conditional default
intensity.

Because the corporate bonds in Driessen’s study involve taxable coupon
income, extracting credit spreads required an estimation by him of the por-
tion of the bond yield spread that is associated with taxes. As for the esti-
mated actual default probabilities, Driessen’s reliance on average frequency of
default for bonds of the same rating rules out conditioning on current market
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conditions, which Kavvathas (2001) and others have shown to be significant.
Reliance on default frequency by rating also rules out consideration of dis-
tinctions in default risk among bonds of the same rating. Moody’s KMV
EDF measures of default probability provide significantly more power to dis-
criminate among the default probabilities of firms (Kealhofer (2003), Kurbat
and Korbalev (2002)). Finally, while Longstaff, Mithal, and Neis (2003) and
Blanco, Brennan, and Marsh (2003) show that bond yield spreads and CDS
rates provide roughly contemporaneous information, our enquiries of market
participants have led us to the view that default swaps, because they are
“un-funded exposures,” in the language of dealers, have rates that are less
sensitive to liquidity effects than are bond yield spreads.

Fisher (1959) took a simple regression approach to explaining yield spreads
on corporate debt in terms of various credit-quality and liquidity related vari-
ables.

Bohn (2000), Delianedis and Geske (1998), G. Delianedis Geske and Corzo
(1998), and Huang and Huang (2000) use structural approaches to estimating
the relationship between actual and risk-neutral default probabilities, gener-
ally assuming that the Black-Scholes-Merton model applies to the asset value
process, and assuming constant volatility.

The potential applications of our study are numerous, and include: (i)
the relationship between risk and expected return for the credit component
of corporate debt, and (ii) analysis of the extent to which the default-risk
premia of different firms have common factors, as well as the dynamics and
macroeconomics of these common factors. These applications can, in turn,
be further applied to a range of pricing and portfolio investment decisions
involving corporate credit risk.

An example of our results is illustrated in Figure 1, which shows estimated
actual and risk-neutral 1-year default probabilities for Vintage Petroleum,
based on EDF and CDS rate data from Moody’s KMV and CIBC, respec-
tively. Figure 1 shows the typical pattern in our sample of high default risk
premium in the third quarter of 2002.

The remainder of the paper is structured as follows. Section 2 describes
our data, including a brief introduction to default swaps and to the con-
struction of the Moody’s KMV EDF measure of default probability. Section
3 presents simple descriptive statistical evidence of a strong relationship be-
tween CDS rates and EDFs across several sectors. Section 4 introduces a
simple approximate time-series model of actual default intensities, and a
maximum-likelihood approach to parameter estimation. Section 4 also con-
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Figure 1: Estimated 1-year default probabilities for Vintage Petroleum.
Sources: Moody’s KMV and CIBC.

tains parameter estimates for each firm, based on 10 years of monthly ob-
servations of 1-year EDFs for each firm. Section 5 provides a reduced-form
pricing model for default swaps, based on time-series models of actual and
risk-neutral default intensities. Section 5.2 introduces our parameterization
of the time-series model for risk-neutral default intensities, using both EDFs
and CDS rates. Section 5.3 provides estimates of the parameters for each of
the three sectors. Section 6 discusses the results, and then concludes.

2 The EDF and CDS Data

This section discusses our data sources for conditional default probabilities
and for default swap rates.

4



2.1 The EDF Data

Moody’s KMV provides its customers with, among other data, current firm-
by-firm estimates of conditional probabilities of default over time horizons
that include the benchmark horizons of 1 and 5 years. For a given firm
and time horizon, this “EDF” estimate of default probability is fitted non-
parametrically from the historical default frequency of other firms that had
the same estimated “distance to default” as the target firm. The distance to
default of a given firm is, roughly speaking, the number of standard deviations
of annual asset growth by which its current assets exceed a measure of book
liabilities. The liability measure is, in the current implementation of the
EDF model, equal to the firm’s short-term book liabilities plus one half of
its long-term book liabilities. Estimates of current assets and the current
standard deviation of asset growth (“volatility”) are calibrated from historical
observations of the firm’s equity-market capitalization and of the liability
measure. The calibration is based on the model of Black and Scholes (1973)
and Merton (1974), by which the price of a firm’s equity may be viewed as
the price of an option on assets struck at the level of liabilities. Crosbie and
Bohn (2002) and Kealhofer (2003) provide more details on the KMV model
and the fitting procedures for distance to default and EDF. While one could
criticize the EDF measure as an estimator of the “true” conditional default
probability, it has a number of important merits for business practice and for
our study, relative to other available approaches to estimating conditional
default probabilities. First, it is readily available for essentially all public
U.S. companies, and for a large fraction of foreign public firms. (There is
a private-firm EDF model, which we do not rely on, since our CDS data
are for public firms.) Second, while the EDF model is based on a single
covariate, distance-to-default, for default prediction, and one might wish to
exploit additional covariates (Duffie and Wang (2003), Shumway (2001)), the
distance-to-default (DD) covariate has a strong underlying theoretical basis
in the Black-Scholes-Merton model, within which DD is a sufficient statistic
for conditional default probabilities.

Third, the EDF is fitted non-parametrically to the distance-to-default,
and is therefore not especially sensitive, at least on average, to model mis-
specification. While the measured distance-to-default is itself based on a
theoretical option-pricing model, the function that maps DD to EDF is con-
sistently estimated in a stationary setting. That is, conditional on only the
distance to default, the measured EDF is equal to the “true” DD-conditional
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default probability as the number of observations goes to infinity, under typ-
ical mixing and other technical conditions for non-parametric qualitative-
response estimation.

An alternative industry measure of default likelihood is the average his-
torical default frequency of firms with the same credit rating as the target
firm. This measure is often used, for example, in implementations of the
Credit Metrics approach (www.creditmetrics.com), and is convenient given
the usual practice by financial-services firms of tracking credit quality by
internal credit ratings based on the approach of the major recognized rating
agencies such as Moody’s and Standard and Poors. The ratings agencies,
however, do not claim that their ratings are intended to be a measure of
default probability, and they acknowledge a tendency to adjust ratings only
gradually to new information, a tendency strongly apparent in the empirical
analysis of Behar and Nagpal (1999), Lando and Skødeberg (2000), Kav-
vathas (2001), Nickell, Perraudin, and Varotto (2000), among others.

The Moody’s KMV EDF measure is also extensively used in the financial
services industry. For example, from information provided to us by Moody’s
KMV, 40 of the world’s 50 largest financial institutions are subscribers. In-
deed, it is the only widely used name-specific major source of conditional
default probability estimates of which we are aware, covering over 26,000
publicly traded firms.

Our basic analysis in Section 3 directly relates daily observations of 5-
year CDS rates to the associated daily 5-year EDF observations. In order to
develop a time-series model of default intensities, however, we turn in Section
4 to monthly observations of 1-year EDFs. By sampling monthly rather than
daily, we mitigate equity market microstructure noise, including intra-week
seasonality in equity prices, and we also avoid the intra-month seasonality in
EDFs caused by monthly uploads of firm-level accounting liability data. By
using 1-year EDFs rather than 5-year EDFs, our intensity estimates are less
sensitive to model mis-specification, as the 1-year EDF is theoretically much
closer to the intensity than is the 5-year EDF.

2.2 Default Swaps and the CDS Database

A default swap, often called, with inexplicable redundancy, a “credit default
swap” (CDS), is an over-the-counter derivative security designed to transfer
credit risk. With minor exceptions, a default swap is economically equivalent
to a bond insurance contract. The buyer of protection pays periodic (usually
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quarterly) insurance premiums, until the expiration of the contract or until
a contractually defined credit event, whichever is earlier. For our data, the
stipulated credit event is default by the named firm. If the credit event occurs
before the expiration of the default swap, the buyer of protection receives
from the seller of protection the difference between the face value and the
market value of the underlying debt, less the default-swap premium that has
accrued since the last default-swap payment date. The buyer of protection
normally has the option to substitute other types of debt of the underlying
named obligor. The most popular settlement mechanism at default is for the
buyer of protection to submit to the seller of protection debt instruments of
the named firm, of the total notional amount specified in the default-swap
contract, and to receive in return a cash payment equal to that notional
amount, less the fraction of the default-swap premium that has accrued (on
a time-proportional basis) since the last regular premium payment date.

The CDS rate is the annualized premium rate, as a fraction of notional.
Using an actual-360 day-count convention, the CDS rate is thus four times
the quarterly premium. Our observations are at-market, meaning that they
are bids or offers of the default-swap rates at which a buyer or seller of
protection is proposing to enter into new default swap contracts, without an
up-front payment. Because there is no initial exchange of cash flows on a
standard default swap, the at-market CDS rate is, in theory, that for which
the net market value of the contract is zero. In practice, there are implicit
dealer margins that we treat by assuming that the average of the bid and
ask CDS rates is the rate at which the market value of the default swap is
indeed zero.

For the purpose of settlement of default swaps, the contractual definition
of default normally allows for bankruptcy, a material failure by the obligor to
make payments on its debt, or a restructuring of its debt that is materially
adverse to the interests of creditors. The inclusion, or not, of restructuring
as a covered default event has been a question of debate among the commu-
nity of buyers and sellers of protection. ISDA, the industry coordinator of
standardized OTC contracts (www.isda.org), has arranged a consensus for a
standardized contractual definition of default that, we believe, is likely to be
reflected in most of our data. This consensus definition of default has been
adjusted over time, and to the extent that these adjustments during our ob-
servation period are material, or to the degree of heterogeneity in our data
over the definition of default that is applied, our results could be affected.
The contractual definition of default can affect the estimated risk-neutral im-
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plied default probabilities, since of course a wider definition of default implies
a higher risk-neutral default probability.

If restructuring is included as a contractually covered credit event, then
there is the potential for significant heterogeneity at default in the market
values of the various debt instruments of the obligor, as fractions of their
respective principals, especially when there is significant heterogeneity with
respect to maturity. The resulting cheapest-to-deliver option can therefore
increase the loss to the seller of protection in the event of default. Without,
at this stage, data bearing on the heterogeneity of market value of the pool
of deliverable obligations for each default swap, we are in effect treating
the cheapest-to-deliver option value as a constant that is absorbed into the
estimated risk-neutral fractional loss L∗ to the seller of protection in the event
of default. While we vary L∗ as a parameter, we generally assume that L∗ is
constant across the sample. To the extent that L∗ varies over time or across
issuers, our implied risk-neutral default probabilities would be corrupted.
This is not crucial, as we shall show, when modeling the CDS rates implied
by a given EDF. This robustness also applies to the mark-to-market pricing
of old default swaps, which is an increasingly important activity, given that
the notional amount of debt covered by default swaps is almost doubling
each year, and is expected to reach 4 trillion U.S. dollars in 2004, according
to the British Bankers Association (www.bba.org).

For a given level of seniority (our data are based on senior unsecured
debt instruments), there is less recovery-value heterogeneity if the event of
default is bankruptcy or failure to pay, for these events normally trigger
cross-acceleration covenants that cause debt of equal seniority to convert
to immediate obligations that are pari passu, that is, of equal priority. In
any case, the option held by the buyer of protection to deliver from a list
of debt instruments will cause the effective fractional loss given default to
the seller of protection to be the maximum fractional loss given default of
the underlying list of debt instruments. If restructuring is included as a
covered default event, the impact of this cheapest-to-deliver option is, within
the current “modified-modified” ISDA standard contract, mitigated by a
contractual restriction on the types of deliverable debt instruments, especially
with respect to maturity.

Ignoring the cheapest-to-deliver effect, the CDS rate is, in frictionless
markets, extremely close to the par-coupon credit spread of the same matu-
rity as the default swap, as shown by Duffie (1999). Our results thus speak
to the relationship between EDFs and corporate credit spreads. We are told
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Figure 2: Distribution of CDS quote providers by number of quotes provided

by market participants that asset swaps, synthetic approximations of par-
coupon bonds, as explained in Duffie (1999), trade at “par spreads” that
are, on average, becoming closer to CDS rates as the CDS market matures
and grows in volume, liquidity, and transparency. This is confirmed to some
extent in empirical studies by Longstaff, Mithal, and Neis (2003) and Blanco,
Brennan, and Marsh (2003), provided one measures bond spreads relative to
interest-rate swap yields.

Our CIBC data set consists of over 49,000 intra-day CDS rate quotes on
69 firms from three Moody’s industry groups. The sources of these quotes
include 12 investment banks and 10 default-swap brokers. The cross-sectional
concentration of the number of quotes by source is shown in Figure 2. A
breakdown of the number of quotes by banks and by default-swap brokers is
given in Table 1.

The three representative Moody’s industry groups that we selected for
analysis are North American Broadcasting and Entertainment, North Amer-

9



Table 1: Breakdown of number of CDS quotes by type of source

Total Median Average Sources Min Max
Banks 34462 871 2872 12 116 9523

Brokers 15030 620 1503 10 147 5431
All 49492 702 2250 22 116 9523

ican Oil and Gas, and North American Healthcare. The quotes are all for
5-year, quarterly premium, senior unsecured, US-Dollar-denominated, at-
the-money default swaps. A company from any of these 3 sectors is included
in our study if and only if at least 50 historical CDS bid/ask quotes for that
firm were available during the sample period. The range of credit qualities
of the included firms may be judged from Figure 3, which shows, for each
credit rating, the number of firms in our study of that median Moody’s rating
during the sample period. Figure 3 indicates a concentration of Baa-rated
firms.

Daily CDS mid-point rate quotes were generated from intra-day bid and
ask quotes using the following algorithm.

1. If a bid and an ask were present, we record the bid-ask spread.

2. If the bid is missing, we subtract the average bid-ask spread to estimate
the ask.

3. If the ask is missing, we add the average bid-ask spread to estimate the
bid.

4. From the resulting bid and ask, we calculate the mid-quote as the
average of the bid and ask quotes.

The firms that we studied from the broadcasting-and-entertainment in-
dustry are listed in Table 2, along with their median 1-year EDF, median
Moody’s credit rating during the sample period, and the number of CDS
quotes available for each. The same information covering firms from the
healthcare and oil-and-gas industries is provided in Tables 8 and 9 of Ap-
pendix C, respectively.
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Figure 3: Distribution of firms by median credit rating during the sample
period. Source: CIBC.

3 Descriptive EDF-CDS Model

A simple preliminary linear model of the relationship between a firm’s 5-year
CDS (Yi) and the 5-year EDF (Xi) measured in basis points on the same day
is

Yi = 52.26 + 1.627Xi + ei, (1)

(1.58) (0.007)

where Xi is the observed 5-year EDF of a given firm on a given day, Yi is
an observed CDS rate of the same firm on the same day, ei is a random
disturbance. Standard errors are shown parenthetically. The ordinary-least-
squares coefficient estimates are based on 18,259 paired EDF-CDS observa-
tions from September 2000 to August 2003, with most observations during
2002.

The associated coefficient of determination, R2, is 0.718. Figure 4 illus-
trates the fit of (1), for all firms in our study, and all time periods. The 5-year

11



Table 2: Broadcasting and Entertainment Firms

Name of Firm Median EDF Median Rating No. Quotes
(basis points)

Adelphia Communications 349 B2 279
AOL Time Warner 11 N/A 3447

Charter Communications 281 B3 444
Clear Channel Communications 29 Baa3 1698

Comcast 39 Baa3 1043
COX Communications 36 Baa1 2153

Insight Communications 173 B3 303
Liberty Media 21 Baa3 515

Mediacom Communications 286 Caa1 168
Primedia 65 Ba3 325

Royal Caribbean Cruises 134 Baa2 462
Viacom 13 Baa1 2458

Walt Disney 7 N/A 2745

CDS rate is thus estimated to increase by approximately 16 basis points for
each 10 basis point increase in the 5-year EDF. If one were to take the risk-
neutral expected loss given default to be, say, 75% and the default intensities
(actual and risk-neutral) to be constant, this would imply an average ratio
of risk-neutral to actual default intensity ϕ of approximately (16/0.75)/10,
or 2.0.

Linearity of the CDS-EDF relationship, however, is placed in doubt by
the sizable intercept estimate of roughly 50 basis points, more than 30 times
its standard error. Absent an unexpectedly large liquidity impact on CDS
rates, the fitted default swap rate should be closer to zero at low levels of
EDF. While there may be mis-specification due to the assumed homogeneity
of the relationship over time and across firms, we have verified with sector and
quarterly regressions that the associated intercept estimates are unreasonably
large in magnitude. We also noted that scatter plots of the CDS-EDF rela-
tionship indicated a pronounced concavity at low levels of EDF. That is, the
sensitivity of credit spreads to a firm’s estimated default probability seems to
decline at larger levels of default risk. There is also apparent heteroskedas-
ticity; with greater variance for higher EDFs. The slope of the fit illustrated
in Figure 4 is thus heavily influenced by the CDS-to-EDF relationship for

12
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Figure 4: Scatter plot of EDF and CDS observations and OLS fitted rela-
tionship. Source: CIBC (CDS) and Moody’s KMV (EDF).

lower-quality firms. Accordingly, we next turned to the specification2

log Yi = α + β log Xi + zi, (2)

for coefficients α and β, and a residual zi. The fit, illustrated in Figure 5,
shows much less heteroskedasticity, although some potential corruption from
the granularity of EDFs of extremely high-quality firms.

We have taken CDS rate observations (Yi) by two approaches: (i) the
daily median CDS for each given name, and (ii) all CDS observations for that
day. The second approach, which has substantially more CDS observations

2We also examined the fit, by non-linear least squares, of the model, Yi = αXβ
i + ui,

which differs from (2) by having a residual that is additive in levels, rather than additive in
logs. An informal comparison shows that the non-linear least-squares model is somewhat
preferred for lower-quality firms.
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Figure 5: Scatter plot of EDF and CDS observations, logarithmic, and OLS
fitted relationship. Source: CIBC (CDS) and Moody’s KMV (EDF).

per EDF observation, has by construction a lower coefficient of determination
(R2), and is likely to have more precise estimates of the intercept and slope
coefficients, a and b. (This is necessarily so if the model is correctly specified.)
It is from this model with more observations that we would thus anticipate
getting a more precise notion of how CDS rates are related to EDFs.3 All of
our regressions were fit by ordinary least squares.

We anticipate that practitioners will fit CDS rates to EDFs along these
lines a tool for marking-to-market positions for which liquid CDS quotes are

3Technically, the two cases (daily median CDS observations, and all CDS observations)
would not both be consistent with equation (2), since the median is an order statistic that
depends on sampling noise in a non-linear fashion. We prefer, in any case, the median to
the average daily CDS observation as we believe it to be more robust to outliers induced
by observation noise.
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Figure 6: Intraday distribution of ratio of five-year CDS bids to median bid,
after removing the median bids. Source: CIBC.

not always available.
Figure 6 shows a histogram of the ratio of quotes to the daily median

quote for the same name, after removing the points associated with the me-
dian quote itself (of which there are approximately 19,500). The plot shows
substantial intraday variation in CDS quotes of a given name.

One might have considered a model in which the CDS rate is fit to both
5-year and 1-year EDF observations, given the potential for additional in-
fluences of near-term default risk on CDS rates. We have found, however,
that the 1-year and 5-year EDFs are highly correlated, presumably because
they are both images of the same covariate, distance to default. As might be
expected, adding 1-year EDFs to the regression has no major impact on the
quality of fitted CDS rates, and involves substantial noise in the slope coeffi-
cients, presumably from multi-collinearity. We do not report the results for
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the multiple regressions. In any case, the 5-year EDF captures the average
effect of default risk over the 5-year period, as does the CDS. This is not to
suggest, however, that default risk premia implicit in the CDS rates necessar-
ily have the same term structure. We have little information about this term
structure to report at this time. (We plan to later analyze short-maturity
CDS data.)

Moving from a pooled regression, we control for changes in the CDS-
to-EDF relationship across time and across sectors. Table 10, found in the
appendix, presents the results of a regression of the logarithm of the daily
median CDS rate on the logarithm of the associated daily 5-year EDF ob-
servation (18, 259 observations in all), including dummy variables for sectors
and months. For example, extracting from Table 10 the fit implied for the
oil-and-gas sector, we have

log CDSi = 0.912 + 0.828 log EDFi +
∑

β̂jDmonth j(i) + zi, (3)

(0.029) (0.004)

where β̂j denotes the estimate for the dummy multiplier for month j, with
j running from December 2000 through August 2003, and zi denotes the
residual. We obtain an R2 of about 74%. From the one-standard-deviation
confidence band implied by normality of the residuals for the logarithmic fit,
the associated confidence band for a given CDS rate places it between 58%
and 171% of the fitted rate.

From the dummy coefficient estimate for the healthcare sector, the CDS
rate for a healthcare firm is estimated to be 20% higher than that of an oil-
and-gas firm with the same EDF. A broadcasting-and-entertainment firm is
estimated to have a 39% higher CDS than an oil-and-gas firm with the same
reported EDF. As one can see from Figure 7, showing selected Moody’s
average sectoral default recoveries for 1982 to 2003, some of these sectoral
spread-to-EDF differences are due to sectoral differences in default recovery.
For example, assuming that the ratio of the risk-neutral mean loss given
default in the oil-and-gas sector to another sector is the same as the ratio
of the empirical average loss given default, then broadcasting-entertainment
spreads would be approximately 62%/52% − 1 = 19% higher than oil-and-
gas sector, for equal risk-neutral default probabilities. Similarly, healthcare
spreads would be approxmately 67%/52%−1 = 29% higher than oil-and-gas
sector, for equal risk-neutral default probabilities.4

4From the Moody’s sectoral data, the average recovery for the oil and gas sector is
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Figure 7: Sectoral differences in average default recovery, 1982-2003. Source: Moody’s
Investor Services.

The fitted model also shows highly significant variation in risk premia
across the months of 2002 and 2003, with the highest risk premia during the
third quarter of 2002, when, for a given EDF, spreads are estimated to have
been roughly 50% higher than they were in August, 2003. Figure 8 illustrates
this variation over time with a plot of the dummy variables of the regression
model 3, indicating the percentage increase in CDS rates at a given EDF
assocaited with each month. Figure 9 tells a similar story with a plot of the
weekly average of the daily median, by sector, of the ratio of the 5-year CDS
rate to the 5-year EDF. This index of default risk premium peaks, for every
sector, during July and August of 2002.

estimated from the simple average of the of the Moody’s “Oil and Oil Services” and the
“Utility-Gas” sectors, at 48%. Broadcasting and Entertainment recoveries are estimated
at the ‘Media Broadcasting and Cable’ average of 38%, and Healthcare at 32.7%.
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Figure 8: Monthly dummy multipliers in CDS-to-EDF fit.

4 Actual Default Intensity from EDF

The default intensity of an obligor is the instantaneous mean arrival rate of
default, conditional on all current information. To be slightly more precise,
we suppose that default for a given firm occurs at the first event time of
a (non-explosive) counting process N with intensity process λ, relative to
a given probability space (Ω,F , P ) and information filtration {Ft : t ≥ 0}
satisfying the usual conditions. In this case, so long as the obligor survives,
we say that its default intensity at time t is λt. Under mild technical condi-
tions, this means that, conditional on survival to time t and all information
available at time t, the probability of default between times t and t + h
is approximately λth for small h. We also adopt the relatively standard
simplifying doubly-stochastic, or Cox-process, assumption, under which the
conditional probability at time t, for a currently surviving obligor, that the
obligor survives to some later time T , is

p(t, T ) = E

(
e−

R

T

t
λ(s) ds

∣∣∣∣ Ft

)
. (4)
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Figure 9: Weekly average of sector-median 5-year CDS-to-EDF ratio.

For our analysis, we ignore mis-specification of the EDF model itself, by
assuming that 1 − p(t, t + 1) is indeed the current 1-year EDF. From the
Moody’s KMV data, then, we observe p(t, t + 1) at successive dates t, t + h,
t + 2h, . . ., where h is one month. From these observations, we estimate a
time-series model of the underlying intensity process λ, for each firm. In
total, we analyzed 69 firms.

After some preliminary diagnostic analysis of the EDF data set, we opted
to specify a model under which the logarithm Xt = log λt of the default
intensity satisfies the Ornstein-Uhlenbeck equation

dXt = (a − κXt) dt + σ dBt, (5)

where B is a standard Brownian motion, and a, κ, and σ are constants to be
estimated. The behavior for λ = eX is sometimes called a Black-Karasinski
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model.5 This leaves us with a vector Θ = (a, κ, σ) of unknown parameters
to estimate from the available monthly EDF observations of a given firm.
We have 123 months of 1-year EDF observations for most of the firms in our
sample, for the period January, 1993 to August, 2003.

In general, given the log-autoregressive form of the default intensity in (5),
there is no closed-form solution available for the 1-year EDF, 1 − p(t, t + 1)
from (4). We therefore rely on numerical lattice-based calculations of p(t, t+
1). We have implemented the two-stage procedure for constructing trinomial
trees proposed by Hull and White (1994), as well as a more rapid algorithm,
explained in the Appendix B, based on approximation of the solution in terms
of a basis of Chebyshev polynomials. (Our current parameter estimates are
for the trinomial-tree algorithm.)

The maximum likelihood estimator (MLE) Θ̂ of the parameter vector Θ
is then obtained, firm by firm, using a fitting algorithm described in the
appendix. That is, for a given firm, Θ̂ solves

sup
Θ

L ({1 − p(ti, ti + 1) : 1 ≤ i ≤ N}; Θ) , (6)

where t1, t2, . . . , tN are the N observation times for the given firm, and L
denotes the likelihood score of observed EDFs given Θ. This is not a routine
MLE for a discretely-observed Ornstein-Uhlenbeck model, for several reasons:

1. Evaluation of the likelihood score requires a numerical differentiation
of the modeled EDF,

G(λ(t); Θ) = 1 − EΘ

(
e−

R

t+1

t
λ(s) ds

∣∣∣∣ λ(t)

)
, (7)

where EΘ denotes expectation associated with the parameter vector Θ.

2. As indicated by Kurbat and Korbalev (2002), Moody’s KMV caps its
1-year EDF estimate at 20%. Since this truncation, if untreated, would
bias our estimator, we explicitly account for this censoring effect on the
associated conditional likelihood, as explained in Appendix A.

3. Moody’s KMV also truncates the EDF below at 2 basis points. More-
over, there is a significant amount of integer-based granularity in EDF
data below approximately 10 basis, as indicated in Figure 5. We there-
fore remove from the sample any firm whose sample-mean EDF is below
10 basis points.

5See Black and Karasinski (1991).
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4. There were occasional missing data points. These gaps were also treated
exactly, assuming the event of censoring is independent of the under-
lying missing observation.

5. For a small number of firms, an exceptional 1-month fluctuation in the
1-year EDF generated an obviously unrealistic estimate of the mean-
reversion parameter κ for that company. We ignored Enron’s data
point for December 2002, the month it defaulted. Similarly, Magellan
Health Services filed for protection under Chapter 11 in March 2003 (we
used the EDFs through February 2003), and Adelphia Communications
petitioned for reorganization under Chapter 11 in June 2002 (we used
the EDFs through May 2002). For Forest Oil, we ignored the outlier
months of January and February 1993. Finally, we removed Dynergy
from our data set as its 1-year EDF is capped at 20% for most of 2002
and 2003.

We have not imposed a joint distribution of EDFs across firms. It could
be feasible, for example, to impose joint normality of the Brownian motions
driving each firm’s EDFs, with a specified cross-firm correlation structure.
(This is planned for subsequent research.)

Table 3 lists the firms for which we have EDF data, showing the number
of monthly observations for each as well as the number of EDF observations
that were truncated at 20%. Frequency plots of the estimated volatility
and mean-reversion coefficients, σ and κ, are shown in Figures 11 and 10,
respectively. The estimated parameter vector for each firm is provided in
Table 12, found in Appendix C.

One notes significant dispersion across firms in the estimated parameters.
Monte-Carlo analysis revealed substantial small-sample bias in the MLE esti-
mators, especially for mean reversion. We therefore obtained sector-by-sector
estimates for κ and σ, shown in Table 4, while allowing for a firm-specific
drift parameter a, listed in Table 13 in Appendix C.6

5 Risk-Neutral Intensity from CDS and EDF

This section explains our methodology for extracting risk-neutral default
intensities, and probabilities, from CDS and EDF data.

6The intensity λ is measured in basis points.
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Table 3: Number of observations of 1-year EDFs. Data: Moody’s KMV.

Ticker uncensored capped total Ticker uncensored capped total
at 20% at 20%

ABC 92 0 92 HAL 123 0 123
ABT 123 0 123 HCA 123 0 123
ADELQ 97 16 113 HRC 123 0 123
AGN 123 0 123 HUM 121 0 121
AHC 123 0 123 ICCI 44 0 44
AMGN 123 0 123 JNJ 123 0 123
AOL 123 0 123 KMG 123 0 123
APA 123 0 123 KMI 123 0 123
APC 123 0 123 KMP 121 0 121
BAX 123 0 123 L 81 0 81
BEV 121 2 123 LLY 123 0 123
BHI 123 0 123 MCCC 35 0 35
BJS 123 0 123 MDT 123 0 123
BMY 123 0 123 MGLH 103 19 122
BR 123 0 123 MRO 123 0 123
BSX 123 0 123 NBR 123 0 123
CAH 123 0 123 NEV 123 0 123
CAM 92 0 92 OCR 123 0 123
CCU 123 0 123 OEI 123 0 123
CHIR 123 0 123 OXY 123 0 123
CHK 109 13 122 PDE 123 0 123
CHTR 33 7 40 PKD 123 0 123
CMCSA 123 0 123 PRM 86 3 89
CNG 85 0 85 PXD 123 0 123
COC 45 0 45 RCL 120 0 120
COP 123 0 123 RIG 119 0 119
COX 95 0 95 SBGI 92 0 92
CVX 123 0 123 THC 123 0 123
CYH 76 0 76 TLM 123 0 123
DCX 53 0 53 TRI 46 0 46
DIS 123 0 123 TSO 123 0 123
DO 86 0 86 VIA 123 0 123
DVN 123 0 123 VLO 123 0 123
DYN 0 0 0 VPI 123 0 123
ENRNQ 106 1 107 WFT 123 0 123
EP 122 1 123 WLP 123 0 123
F 123 0 123 WMB 115 8 123
FST 121 0 121 WYE 123 0 123
GENZ 123 0 123 YBTVA 99 0 99
GM 123 0 123
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Figure 10: Distribution of estimated default intensity mean-reversion param-
eters (κ).

5.1 Default Swap Pricing

We begin with a simple reduced-form arbitrage-free pricing model for default
swaps. Under the absence of arbitrage and market frictions, and under mild
technical conditions, there exists a “risk-neutral” probability measure, also
known as an “equivalent martingale” measure, as shown by Harrison and
Kreps (1979) and Delbaen and Schachermayer (1999). In our setting, markets
should not be assumed to be complete, so the martingale measure is not
unique. This pricing approach nevertheless allows us, under its conditions,
to express the price at time t of a security paying some amount, say W , at
some stopping time τ > t, of

St = EQ

(
e−

R

τ

t
r(u) du W

∣∣∣∣ Ft

)
, (8)
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Figure 11: Distribution of estimated default intensity volatility parameters
(σ).

where r is the short-term interest-rate process7 and EQ denotes expectation
with respect to an equivalent martingale measure Q, that we fix. One may
view (8) as the definition of such a measure Q. The idea is that the actual
measure P and the risk-neutral measure Q differ by an adjustment for risk
premia.

Under our earlier assumption of default timing according to a default in-
tensity process λ (under the actual probability measure P that generates our

7Here, r is a progressively measurable process with
∫ t

0 |r(s)| ds < ∞ for all t, such that
there exists a “money-market” trading strategy, allowing investment at any time t of one
unit of account, with continual re-investment until any future time T with a final value of

e
R

T

t
r(s) ds.
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Table 4: Sector EDF-implied default intensity parameters.

mean(θ̂) κ̂ σ̂ no. firms
Oil and Gas 3.3309 0.4663 1.2910 32
Healthcare 3.3784 0.6559 1.5123 17
Broadcasting and Entertainment 4.2625 0.7082 1.6372 14

data), Artzner and Delbaen (1992) show that there also exists a default inten-
sity process λ∗ under Q. Even though we have assumed the double-stochastic
property under P , this need not imply the same convenient double-stochastic
property under Q as well. Indeed, Kusuoka (1999) gave a counterexample.
We will nevertheless assume the double-stochastic property under Q. (Suffi-
cient conditions are given in Duffie (2001), Appendix N.) Thus, we have

Q(τ > T | Ft) = p∗(t, T ) = EQ

(
e−

R

T

t
λ∗(u) du

∣∣∣∣ Ft

)
, (9)

provided the firm in question has survived to t.
For convenience, we assume independence, under Q, between interest

rates on the one hand, and on the other the default time τ and loss given
default. We have verified that, except for levels of volatility of r and λ∗ far
in excess of those for our sample, the role of risk-neutral correlation between
interest rates and default risk is in any case negligible for our parameters.
This is not to suggest that the magnitude of the correlation itself is negligible.
(See, for example, Duffee (1998).) It follows from (8) and this independence
assumption that the price of a zero-coupon defaultable bond with maturity
T and zero recovery at default is given by

d(t, T ) = δ(t, T )p∗(t, T ), (10)

where δ(t, T ) = EQ
t

(
e−

R

T

t
r(s) ds

)
is the default-free market discount and

p∗(t, T ) is the risk-neutral conditional survival probability of (9).
Extensions to the case of correlated interest rates and default times are

treated, for example, in Lando (1998).
A default swap stipulates quarterly payments by the buyer of protection

of premiums at an annual rate of c, as a fraction of notional, until the default-
swap maturity or default, whichever is first. From (10), the market value of
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the payments by the buyer of protection at the origination date of a default
swap of unit notional size is thus cg(t), where

g(t) =
1

4

n∑

i=1

δ(t, t(i))p∗(t, t(i)), (11)

for premium payment dates t(1), . . . , t(n). The market value of the potential
payment by the seller of protection on this default swap is

h(t, c) = EQ

(
δ(t, τ)W c

τ 1τ≤t(n)

∣∣∣∣ Ft

)
, (12)

for the payment at default, if it occurs at time t, of

W c
t = L∗

t − c

(
t − b4tc

4

)
, (13)

where bxc denotes the largest integer less than x, and where L∗
t denotes the

risk-neutral expected fractional loss of notional at time t, assuming immedi-
ate default.8 The second term in (13) is a deduction for accrued premium.

The current CDS rate is that choice C(t) for the premium rate c at which
the market values of the payments by the buyer and seller of protection are
equal. That is, C(t) solves

C(t)g(t) = h(t, C(t)). (14)

Noting that h(t, c) is linear with respect to c, this is a linear equation to solve
for C(t).

We turn to the calculation of h(t, c). By the doubly-stochastic property
(see, for example, Duffie (2001), Chapter 11), we first condition on (λ∗, L∗),
and then use the conditional risk-neutral density e−

R

s

t
λ∗(u) duλ∗(s) of τ at

time s to get

h(t, c) =

∫ t(n)

t

δ(t, s)EQ

(
e−

R

s

t
λ∗(u) duλ∗(s)W c

s

∣∣∣∣ Ft

)
ds. (15)

We take L∗ to be constant and use, as a numerical approximation of the
integral in (15),

h(t, c) '
n∑

i=1

δ

(
t,

t(i) + t(i − 1)

2

)
[p∗(t, t(i−1))−p∗(t, t(i))]

(
L∗ − c

8

)
, (16)

8A more precise definition of L∗
t is given on page 130 of Duffie and Singleton (2003).

26



which involves a time discretization of the integral in (15) that, in effect,
approximates, between quarter ends, with a linear discount function and
risk-neutral survival function. Then C(t) is calculated from (14) using this
approximation.

5.2 Model Specification

For a parametric specification of the risk-neutral default intensity process λ∗,
motivated by our regression results, we suppose that

log λ∗
t = α + β log λt + ut, (17)

where α and β are constants, X = log λ is as specified earlier by (5), and u
satisfies

dut = −κuut dt + σu dξt, (18)

where, under the actual probability measure P , we take ξ to be a standard
Brownian motion independent of the Brownian motion B of (5).

The risk-neutral distribution of (λ∗, λ) is specified by assuming that

dBt = −(γ0 + γ1Xt) dt + dB̃t (19)

and

dξt = −(γ0
u + γ1

uut) dt + dξ̃t, (20)

where (B̃, ξ̃) is a two-dimensional standard Brownian motion under Q, and
where γ0, γ1, γ0

u, and γ1
u are constants. In addition to the parameter vector

Θ, the model for λ∗ requires an estimator of the parameter vector

Θ∗ = (α, β, κu, σu, γ
0, γ1, γ0

u, γ
1
u).

5.3 Estimation Strategy and Results

For any given firm, we estimate the parameters (Θ, Θ∗) for the joint model
of actual and risk-neutral intensity processes in a two-step procedure. First,
we estimate the parameter vector Θ of the actual intensity model λ following
the procedure described in Section 4. In a second step, fixing the estimate of
Θ, and treating this estimate as though in fact equal to the true parameter
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vector, we estimate the parameter vector Θ∗ governing the risk-neutral in-
tensity process λ∗ on a sector-by-sector basis. For this second step, our data
consists of weekly observations of 5-year default swap rates and 1-year EDFs,
over a time period from 9/27/00 until 4/9/03. As with the actual default
intensity model, this is not a routine MLE procedure since the evaluation
of the likelihood function requires a numerical differentiation of the modeled
CDS rate C(t) determined by (14), which we approximate using (16). In the
current implementation, we only use pairs of CDS-EDF observations where
neither the CDS or the EDF data is missing, and for which the EDF is not
censored at 20%. In addition, we remove from the sample any firm whose
sample-mean EDF is below 10 basis points.

Preliminary investigations have shown that, by restricting Θ∗ so that the
parameter-implied stationary mean of u is equal to its model-implied sample
mean across all firms in a given sector, one obtains considerable improvement
in the interpretability of the parameter estimates, facilitating the comparison
of the implied values for λ and λ∗. On the same grounds, and because
the data were unable to sharply pin down the market-price-of-credit-risk
factors γ0 and γ0

u exactly, we set γu
0 = 0 and further restrict Θ∗ so that

the parameter-implied risk-neutral stationary mean of λ∗ for a given firm is
equal to the sample mean of CDS rates divided by the risk-neutral mean loss
rate at default. In addition, we also impose, in this current implementation,
that λ∗ is a one-dimensional lognormal intensity process under Q, by taking
κ̃ = κ̃u. Here, κ̃ and κ̃u denote the risk-neutral mean-reversion parameters
of X and u, respectively.9 We anticipate relaxing the latter two restrictions
in a subsequent version of the model.

Preliminary sector-by-sector parameter estimates for the broadcasting-
and-entertainment, healthcare, and oil-and-gas industries are summarized in
Table 5.10 We allow for a firm-specific market-price-of-default-risk parameter
γ0. Estimates by firm are listed in Table 14, Appendix C. Figure 12 shows
the implied sample paths of λ∗ and λ for Vintage Petroleum, and Figure 13
displays the time series of Vintage’s estimated default risk premia, that is,
the ratio of its risk-neutral to its actual default intensities.

For example, extracting from Table 5 the fit implied for the healthcare
sector, we have

log λ∗
t = 2.49 + 0.63 log λt + ut,

9From Equations (5) and (18) through (20) we have κ̃ = κ + γ1σ and κ̃u = κu + γ1
uσu.

10Both λ and λ∗ are measured in basis points.
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Table 5: Preliminary sector CDS-implied risk-neutral default intensity pa-
rameter estimates

Oil and Gas Healthcare Broadcasting and
Entertainment

α̂ 2.8987 2.4917 4.5272

β̂ 0.4167 0.6290 0.2451
κ̂u 1.6218 1.7509 0.8603
σ̂u 1.8311 2.2719 1.6911
mean(γ̂0) 0.4025 0.4637 1.3007
γ̂1 −0.0790 −0.0668 −0.2880
γ̂1

u −0.6867 −0.5264 −0.3688

mean(λ∗/λ) 2.53 5.59 5.50
no. firms 29 14 12
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Figure 12: Implied default intensities for Vintage Petroleum. Sources:
Moody’s KMV and CIBC.
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Figure 13: Estimated default risk premia, λ∗/λ, for Vintage Petroleum.

or equivalently,

λ∗
t = 12.06 λ0.63

t eut ,

where λt and λ∗
t are measured in basis points. So, for an actual default

intensity of 100 basis points and ut = 0, we get a risk-neutral default intensity
of roughly 219 basis points. The risk-neutral distribution of λ∗ is estimated
as

d log λ∗
t = (ˆ̃a − 0.55 log λ∗

t ) dt + 2.46 dB∗
t ,

where ã = â − γ̂0σ̂. The sample averages of the estimated risk premia are
2.53, 5.59, and 5.50 for the oil-and-gas, healthcare, and broadcasting-and-
entertainment sector, respectively.

As a diagnostic check, we examine the behavior of the standardized in-
novations εt+h, εt+2h, . . . of ut, defined by

ut+h = e−κuhut + σu

√
1 − e−2κuh

2κu

εt+h.

30



Under the specified model, and under the actual probability measure P ,
these innovations are independent standard normals. Table 6 lists the sample
mean and the sample standard deviation (SD) of the fitted versions of these
standardized innovations, for each of the three sectors. Finally, Figure 14
shows the associated histogram of fitted εt, merging across all firms, plotted
along with the standard normal density curve.

Table 6: Sample moments for standardized innovations

Mean SD
Healthcare -0.0101 0.9962
Oil and Gas -0.0590 0.9760
Broadcasting and Entertainment -0.0006 1.0008
All -0.0347 0.9862

6 Discussion and Conclusion

We compare our results on default risk premia to those available in the
literature. Using the structural model of Leland and Toft (1996), Huang
and Huang (2000) calibrated parameters for the model determining actual
and risk-neutral default probabilities, by credit rating, that are implied from
equity market risk premia, recoveries, initial leverage ratios, and average
default frequencies. All underlying parameters were obtained from averages
reported by the credit rating agencies, Moody’s and Standard and Poors,
except for the equity-market risk premia, which were obtained by rating from
estimates by Bhandari (1999). At the five-year maturity point, the estimated
ratios of annualized risk-neutral to actual five-year default probabilities are
reported in Table 7. In magnitude, the results are roughly consistent with
those of Driessen (2002). One notes that the risk premium typically declines
as default probability increases, as suggested by the results of our basic log-
log regression model, and as captured by our time-series formulation.
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Figure 14: Estimated innovations ε across all sectors,
and the standard normal density.

Table 7: Five-year default risk premium implied by structural-model results
of Huang and Huang (2001)

Initial Premium Q(τ < 5) P (τ < 5)
Rating (ratio) (percent) (percent)
Aaa 1.7497 0.04 0.02
Aa 1.7947 0.09 0.05
A 1.7322 0.25 0.15
Baa 1.4418 1.22 0.84
Ba 1.1658 9.11 7.85
B 1.1058 25.61 23.41
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A MLE for Intensity from EDFs

This appendix shows our methodology for MLE estimation of the parameters
of the default intensity, including the effects of missing EDF data as well as
censoring of EDFs by truncation above 20%. Our data is the monthly ob-
served EDF level Yi at month i, for each of N month-end times t0, t1, . . . , tN .

From (5), for any time t and time step h (which is 1/12 in our application),
the discretely sampled log-intensity process X satisfies

Xt+h = b0 + b1Xt + εt+h, (A.1)

where b1 = e−κh, b0 = a/(κ(1 − b1)), and εt+h, εt+2h, . . . are iid normal with
mean zero and variance σε = σ2(1 − e−2κh)/(2κ).

For a given firm, we initialize the search for the parameter vector Θ =
(a, κ, σ) as follows. First, we regress log(1 − Yi) on log(1 − Yi−1), using
only months at which both the current and the lagged EDF are observed
and not truncated at 20%. The associated regression coefficient estimates,
denoted by b̂0 and b̂1, are considered to be starting estimates of b0 and b1,
respectively. The sample standard deviation of the fitted residuals, σ̂ε, is our
starting estimate for σε. We then start the search for Θ = (a, κ, σ) at

κ0 = − log(b̂1)

h
,

a0 =
b̂0

1 − b̂1

κ0,

σ0 = σ̂ε

√
2κ0

1 − exp(−2κ0h)
.

If Θ is the true parameter vector, then Yi = G(λ(ti); Θ), where G is
defined via (7).

Suppose, to pick an example of a censoring outcome from which the
general case can easily be deduced, that for months k through k̄ > k + 1,
inclusive, the EDFs are truncated at ζ = 20%, meaning that the censored
and observed EDF is 20%, implying that the actual EDF was larger than or
equal to 20%, and moreover that the EDF data from month l + 1 to month
l̄ are missing. Let I = {i : k + 1 ≤ i ≤ k̄} ∪ {i : l + 1 ≤ i ≤ l̄} denote
the censored month numbers. Then the likelihood of the censored EDFs
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Y = {Yi : i 6∈ I} evaluated at outcomes y = {yi : i 6∈ I}, using the usual
abuse of notation for measures, is defined by

L(Y, I; Θ) dy =
k−1∏

n=0

P (Yn+1 ∈ dyn+1; Yn = yn, Θ)

× P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ, Yk̄+1 ∈ dyk̄+1; Yk = yk, Θ)

×
l−1∏

n=k̄+1

P (Yn+1 ∈ dyn+1; Yn = yn, Θ)

× P (Yl̄+1 ∈ dyl̄+1; Yl = yl, Θ)

×
N−1∏

n=l̄+1

P (Yn+1 ∈ dyn+1; Yn = yn, Θ),

where P ( · ; Yn = yn; Θ) denotes the distribution of {Yn+1, Yn+2, . . .} associ-
ated with initial condition yn for Yn, and associated with parameter vector
Θ. A maximum likelihood estimator (MLE) Θ̂ for Θ solves

sup
Θ

L(Y, I; Θ). (A.2)

For z ∈ R, we let g(z; Θ) = G(ez; Θ), and let ZΘ
i = g−1(Yi; Θ) denote

the logarithm of the default intensity at time ti that would be implied by
a non-censored EDF observation Yi, assuming the true parameter vector is
Θ. Letting Dg( · ; Θ) denote the partial derivative of g( · ; Θ) with respect to
its first argument, and using standard change-of-measure arguments, we can
rewrite the likelihood as

L(Y, I; Θ) =
k−1∏

n=0

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

× P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ ; Yk = yk, Yk̄+1 = yk̄+1, Θ)

× P (ZΘ
k̄+1; Z

Θ
k , Θ)

(
Dg(ZΘ

k̄+1; Θ)
)−1

×
l−1∏

n=k̄+1

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

× P (ZΘ
l̄+1; Z

Θ
l , Θ)

(
Dg(ZΘ

l̄+1; Θ)
)−1

×
N−1∏

n=l̄+1

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

. (A.3)
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The second term on the right-hand side of (A.3) is equal to

q(Y ; Θ) = P (ZΘ
k+1 ≥ g−1(ζ ; Θ), . . . , ZΘ

k̄
≥ g−1(ζ ; Θ) ;

ZΘ
k = g−1(yk; Θ), ZΘ

k̄+1 = g−1(yk̄+1; Θ), Θ).

In the remainder of this appendix, we describe how to compute q(Y ; Θ) by
Monte Carlo integration, and hence P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ ; Yk = yk, Yk̄+1 =
yk̄+1, Θ). In order to simplify notation we suppress Θ in what follows. We
observe that for any time t between times s and u, the conditional distribution
of X(t) given X(s) and X(u) is a normal distribution with mean M(t | s, u)
and variance V (t | s, u) given by

M(t | s, u) =
1 − e−2κ(u−t)

1 − e−2κ(u−s)
M(t | s) +

e−2κ(u−t) − e−2κ(u−s)

1 − e−2κ(u−s)
M(t | u),

V (t | s, u) =
V (t | s)V (u | t)

V (u | s) ,

where, for times t before u, we let

M(u | t) = θ + e−κ(u−t)(X(t) − θ)

V (u | t) =
σ2

2κ
(1 − e−2κ(u−t))

M(t | u) = eκ(u−t)(X(u) − θ(1 − e−κ(u−t)))

denote the conditional expectation and variance, respectively, of X(u) given
X(t), and the conditional expectation of X(t) given X(u). As a consequence,
letting Zk = X(tk), we can easily simulate from the joint conditional distri-
bution of (Zk+1, . . . , Zk̄) given Zk and Zk̄+1 which is given by

P (Zk+1, . . . , Zk̄ |Zk, Zk̄+1) = P (Zk+1 |Zk, Zk̄+1)

k̄−(k+1)∏

j=1

P (Zk+j+1 |Zk+j, Zk̄+1).

We are now in a position to estimate the quantity in (A.4) by generating some
“large” integer number J of independent sample paths {(Zj

k+1, . . . , Z
j

k̄
); 1 ≤

j ≤ J} from the joint conditional distribution of (Zk+1, . . . , Zk̄) given Zk and
Zk̄+1, and by computing the fraction of those paths for which Zj

i ≥ g−1(ζ)
for all i in {k + 1, . . . , k̄}.
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B Solution of Log-Normal Intensity Model

This appendix provides an algorithm, prepared for this project by Gus-
tavo Manso, for computing the survival probability of (4), and related ex-

pectations of the form E(e−
R

t

0
λ(s) dsF (λt)), for a well-behaved function F :

[0,∞) → R. The algorithm allows for a generalization of the log-normal in-
tensity model to a model that is, in logarithms, autoregressive with a mixture-
of-normals innovation, allowing for fat tails and skewness. Matlab code is
downloadable at the web site www.stanford.edu/∼/manso/numerical/.

Inputs: Parameters (k, m1, v1, p, m2, v2, m) and initial log-intensity x ∈
[a, b].

Output: Let y(j) = λ(tj), for equally spaced times t0, t1, . . . , tm. The
output is

S(0, x) = E

[
exp

(
−

m∑

j=1

y(j)

)
F (y(m))

]
,

where

log y(j) = −k log y(j − 1) + W (j) + Z(j),

log y(0) = x,

and W (j) is normal, mean m1, variance v1, Z(j) is, with probability p, equal
to 0 (no jump) and with probability 1 − p, normal with mean m2, variance
v2. All W (j) and Z(j) are independent.

Step 1 Compute K ≥ N + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2K
π

)
, k = 1, . . . , K.

Step 2 Adjust the nodes to the [a, b] interval:

xk = (zk + 1)

(
b − a

2

)
+ a, k = 1, . . . , K.
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Step 3 Evaluate Chebyshev polynomials:

Tn(zk) = cos(n cos−1 zk), k = 1, . . . , K and n = 1, . . . , N.

Step 4 Recursive Integration:

• Boundary condition: S(m, x) = F (exp(x)), for x ∈ [a, b].

• For j = m : −1 : 0,

1. Numerical Integration:

S(j, xk) = π− 1

2

I∑

i=1

ωi [pq(j + 1, ua(i, xk)) + (1 − p)q(j + 1, ub(i, xk))] ,

where

q(j, u) = S(j + 1, u) exp(− exp(u)),

ua(i, x) =
√

2v1φi + (m1 − kx),

ub(i, x) =
√

2(v1 + v2)φi + (m1 + m2 − kx),

and (ωi, φi), i = 1, . . . , I, are I-point Gauss-Hermite quadrature
weights and nodes.11

2. Compute the Chebyshev coefficients:

cn =

∑K

k=1 S(j, xk)Tn(zk)∑K

k=1 Tn(zk)2
for n = 0, . . . , N,

to arrive at the approximation for S(j, x), x ∈ [a, b]:

Ŝ(j, x) =
N∑

n=0

cnTn

(
2
x − a

b − a
− 1

)
.

11See Judd (1998), page 262, for a table with (ωi, φi).
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C Additional Background Statistics

This appendix contains additional background statistics regarding the firms
studied. Section 2 contains the data regarding firms from the broadcasting-
and-entertainment industry. This appendix includes information regarding
the firms studied from the healthcare and the oil-and-gas industries.

Table 8: Healthcare firms

Firm Name Median EDF Median Rating No. Quotes
Abbott Laboratories 3 Aa1 235
AmerisourceBergen 200 N/A 311

Amgen 2 A2 776
Baxter International 13 A3 741
Beverly Enterprises 432 B1 256

Boston Scientific 84 Baa3 443
Bristol-Myers Squibb 3 Aaa 504

Cardinal Health 25 A2 323
Chiron 16 Baa1 429

Community Health Systems 173 B2 328
Eli Lilly 5 Aa3 403

Genzyme Corp-Genl Division 14 N/A 242
HCA 46 Ba2 540

Healthsouth 257 Ba1 349
Humana 165 Baa3 393

Medtronic 2 N/A 610
Tenet Healthcare 41 Ba1 1129

Triad Hospitals 183 B1 349
Wellpoint Health Networks 47 Baa2 294

Wyeth 17 A2 698
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Table 9: Oil and gas firms

Firm Name Median EDF Median Rating No. Quotes
Amerada Hess 26 Baa1 866

Anadarko Petroleum 19 Baa1 1215
Apache 38 Baa1 688

Baker Hughes 45 A2 738
BJ Services 32 Baa2 245

Burlington Resources 35 A3 590
Chesapeake Energy 279 B3 778

ChevronTexaco 3 N/A 491
Conoco 32 A3 532

ConocoPhillips 15 N/A 1334
Consolidated Natural Gas 9 A2 443

Devon Energy 40 Baa1 1463
Diamond Offshore 46 A3 830

EL Paso 42 Baa2 1307
Enron 12 Baa1 678

Forest Oil 196 B1 397
Halliburton 36 Aa3 430

Kerr-McGee 38 Baa1 596
Kinder Morgan Energy Partners 18 Baa1 632

Kinder Morgan 11 Baa2 505
Marathon Oil 62 Baa2 447

Nabors Industries 27 A3 1224
Occidental Petroleum 67 Baa3 1027

Parker Drilling 323 B1 307
Pride International 145 Ba3 870

Talisman Energy 55 Baa1 226
Tesoro Petroleum 171 Ba3 243

Transocean 32 N/A 1038
Valero Energy 85 Baa3 1131

Vintage Petroleum 118 Ba1 449
Weatherford International 140 Baa1 879

Williams Cos 55 Baa2 749
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Table 10: CDS-EDF regression results

Results for Daily Median CDS Data

Levels Standard Log-Log Standard
Model Error Model Error

Number of CDS Samples 18259 18259
Intercept -28.877 7.846 0.912 0.029
Slope 1.541 0.007 0.828 0.004
Broadcasting Dummy 104.985 3.187 0.389 0.010
Healthcare Dummy 21.439 3.053 0.196 0.010
Dec-00 Dummy 2.605 29.525 0.545 0.094
Jan-01 Dummy 31.516 22.927 0.554 0.073
Feb-01 Dummy 42.600 21.568 0.594 0.069
Mar-01 Dummy 63.467 21.050 0.704 0.067
Apr-01 Dummy 45.407 18.248 0.556 0.058
May-01 Dummy 35.145 20.701 0.416 0.066
Jun-01 Dummy 22.945 21.569 0.215 0.069
Jul-01 Dummy 18.772 19.937 0.117 0.064
Aug-01 Dummy -8.447 15.164 0.049 0.048
Sep-01 Dummy 2.341 23.433 0.180 0.075
Oct-01 Dummy 20.670 17.013 0.264 0.054
Nov-01 Dummy 20.341 22.436 0.322 0.072
Dec-01 Dummy -8.964 69.162 0.194 0.221
Jan-02 Dummy 33.728 12.343 0.385 0.039
Feb-02 Dummy 51.169 11.568 0.504 0.037
Mar-02 Dummy 48.130 9.778 0.460 0.031
Apr-02 Dummy 43.675 9.485 0.459 0.030
May-02 Dummy 63.273 9.417 0.544 0.030
Jun-02 Dummy 55.498 9.631 0.489 0.031
Jul-02 Dummy 130.020 9.265 0.571 0.030
Aug-02 Dummy 152.160 9.375 0.635 0.030
Sep-02 Dummy 101.648 9.617 0.488 0.031
Oct-02 Dummy 124.762 9.230 0.544 0.030
Nov-02 Dummy 105.308 9.413 0.471 0.030
Dec-02 Dummy 74.419 9.884 0.428 0.032
Jan-03 Dummy 52.690 9.594 0.351 0.031
Feb-03 Dummy 43.064 9.892 0.313 0.032
Mar-03 Dummy 19.895 9.626 0.239 0.031
Apr-03 Dummy 15.600 9.618 0.187 0.031
May-03 Dummy 23.330 9.671 0.183 0.031
Jun-03 Dummy 27.770 9.605 0.219 0.031
Jul-03 Dummy 11.421 9.646 0.113 0.031
Aug-03 Dummy 4.165 10.808 0.085 0.034
Sum of Squared Residuals 517328076 5270
Total Sum of Squares 2064101382 20300
R2 0.749 0.740

40



Table 11: CDS-EDF regression results

Results for Intraday CDS Data

Levels Standard Log-Log Standard
Model Error Model Error

Number of CDS Samples 40844 40844
Intercept -35.010 5.167 1.026 0.023
Slope 1.583 0.005 0.785 0.003
Broadcasting Dummy 58.204 1.552 0.322 0.006
Healthcare Dummy 30.340 1.928 0.229 0.007
Dec-00 Dummy 38.421 23.172 0.618 0.088
Jan-01 Dummy 62.357 17.417 0.655 0.066
Feb-01 Dummy 57.496 16.120 0.633 0.061
Mar-01 Dummy 79.335 15.178 0.789 0.058
Apr-01 Dummy 68.074 12.643 0.631 0.048
May-01 Dummy 51.590 14.461 0.443 0.055
Jun-01 Dummy 37.881 15.176 0.263 0.058
Jul-01 Dummy 25.792 13.116 0.194 0.050
Aug-01 Dummy 5.740 10.373 0.125 0.040
Sep-01 Dummy 5.060 16.124 0.207 0.061
Oct-01 Dummy 35.723 11.398 0.313 0.043
Nov-01 Dummy 36.374 15.471 0.391 0.059
Dec-01 Dummy 18.565 57.107 0.278 0.218
Jan-02 Dummy 45.780 7.755 0.484 0.030
Feb-02 Dummy 59.139 7.147 0.592 0.027
Mar-02 Dummy 49.396 6.082 0.531 0.023
Apr-02 Dummy 33.833 5.833 0.456 0.022
May-02 Dummy 61.333 5.873 0.575 0.022
Jun-02 Dummy 43.272 5.883 0.509 0.022
Jul-02 Dummy 112.068 5.708 0.622 0.022
Aug-02 Dummy 128.001 5.781 0.674 0.022
Sep-02 Dummy 91.658 5.854 0.534 0.022
Oct-02 Dummy 101.796 5.674 0.558 0.022
Nov-02 Dummy 89.819 5.775 0.499 0.022
Dec-02 Dummy 63.924 6.096 0.442 0.023
Jan-03 Dummy 42.351 6.127 0.355 0.023
Feb-03 Dummy 36.320 6.168 0.341 0.024
Mar-03 Dummy 21.240 6.078 0.276 0.023
Apr-03 Dummy 20.482 6.109 0.250 0.023
May-03 Dummy 21.402 6.093 0.221 0.023
Jun-03 Dummy 25.479 5.989 0.239 0.023
Jul-03 Dummy 9.514 6.196 0.117 0.024
Aug-03 Dummy 8.619 6.823 0.103 0.026
Sum of Squared Residuals 792797345 11500
Total Sum of Squares 2952660064 35702
R2 0.731 0.678
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Table 12: Fitted parameters of default intensity models

Ticker â κ̂ σ̂ Ticker â κ̂ σ̂

ABT † † † MGLH 1.09 0.16 1.09
ADELQ 1.17 0.18 1.40 MRO 1.20 0.45 0.95
AGN 0.83 0.48 1.01 NBR 3.18 1.06 1.62
AHC 1.28 0.58 1.14 NEV 1.34 0.26 0.97
AMGN † † † OCR 0.69 0.24 1.32
AOL 0.90 0.20 1.10 OEI 1.38 0.33 1.23
APA 4.13 1.38 1.53 OXY 1.94 0.71 0.92
APC 0.93 0.32 0.89 PDE 3.98 0.89 1.70
BAX 1.56 0.64 1.19 PKD 0.79 0.11 1.22
BEV 1.11 0.17 1.14 PXD 1.87 0.46 1.38
BHI 1.24 0.44 0.88 THC 1.43 0.45 1.01
BJS 2.14 0.70 1.35 TLM 0.94 0.38 1.28
BMY † † † TSO 2.26 0.53 1.33
BR 0.89 0.42 1.04 VIA 1.41 0.64 1.52
BSX 1.12 0.57 1.75 VLO 0.89 0.28 1.04
CAH 1.04 0.49 1.19 VPI 3.20 0.76 1.67
CCU 0.97 0.38 1.57 WFT 0.77 0.24 1.20
CHIR 2.31 0.85 1.24 WLP 1.93 0.68 1.47
CMCSA 2.04 0.56 1.03 WMB ‡ ‡ ‡
CNG † † † WYE † † †
COP † † † CHK 3.42 0.67 1.75
CVX † † † HUM 1.73 0.37 1.45
CYH 3.89 0.90 1.61 RCL 0.95 0.26 1.14
DIS † † † RIG 0.81 0.28 1.43
DVN 0.92 0.34 1.46 DYN ‖ ‖ ‖
ENRNQ ‡ ‡ ‡ YBTVA 3.66 0.67 1.44
EP ‡ ‡ ‡ COX 1.79 0.67 1.51
F 0.79 0.23 1.01 ABC 8.17 1.99 2.75
FST 4.79 1.05 1.53 CAM 3.22 0.94 1.32
GENZ 1.87 0.79 1.52 SBGI 3.27 0.61 1.54
GM 3.56 1.09 1.29 PRM 4.69 1.29 2.47
HAL 1.23 0.41 1.53 DO 0.75 0.31 1.54
HCA 2.07 0.87 2.56 L 0.54 0.05 0.95
HRC 0.70 0.14 1.26 DCX 2.22 0.49 1.32
JNJ † † † COC 4.81 1.78 1.79
KMG 0.46 0.13 0.86 TRI 8.20 1.66 1.22
KMI 3.28 2.20 3.57 ICCI 5.36 0.96 2.14
KMP 1.01 0.37 1.09 CHTR ‡ ‡ ‡
LLY † † † MCCC 9.02 1.62 2.30
MDT † † †

† No estimates provided; the sample mean of the 1-year EDF is less than 10 basis points.

‡ No estimates within admissible parameter region; the estimate for the mean-reversion parameter κ is
negative.

‖ Firm removed from data set.
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Table 13: Fitted parameters of default intensity models

Ticker â Ticker â Ticker â Ticker â

ABC 2.8120 CHK 2.2229 HRC 2.3440 PKD 2.0882
ABT † CHTR 5.0986 HUM 2.6410 PRM 2.9253
ADELQ 3.4884 CMCSA 2.7299 ICCI 4.1459 PXD 1.8506
AGN 1.3468 CNG † JNJ † RCL 2.4718
AHC 1.1826 COC 1.4114 KMG 1.4174 RIG 1.1622
AMGN † COP † KMI 0.8738 SBGI 3.7737
AOL 2.4591 COX 2.0626 KMP 1.2905 THC 2.2631
APA 1.4619 CVX † L 1.4229 TLM 1.2036
APC 1.3539 CYH 2.9018 LLY † TRI 3.3708
BAX 1.5443 DIS † MCCC 4.4058 TSO 2.0046
BEV 3.2271 DO 1.0159 MDT † VIA 1.7943
BHI 1.4137 DVN 1.2629 MGLH 3.7885 VLO 1.5457
BJS 1.4458 DYN ‡ MRO 1.3825 VPI 1.9995
BMY † ENRNQ 1.2787 NBR 1.4524 WFT 1.6014
BR 1.2160 EP 2.0104 NEV 2.3467 WLP 1.9974
BSX 1.2483 FST 2.1402 OCR 1.8883 WMB 1.4543
CAH 1.6181 GENZ 1.5829 OEI 1.8829 WYE †
CCU 1.5381 HAL 1.2546 OXY 1.3733 YBTVA 3.9456
CHIR 2.0109 HCA 1.0847 PDE 2.1021

† No estimates provided, mean EDF is less than 10 basis points.

‡ Firm removed from data set.
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Table 14: Fitted parameters of risk-neutral default intensity models

Oil and Gas Healthcare Broadcasting and
Entertainment

Ticker γ̂0 Ticker γ̂0 Ticker γ̂0

AHC 0.2853 ABC 0.7332 ADELQ 1.6181
APA 0.6787 BAX 0.3906 AOL 1.1280
APC 0.5199 BEV 0.6026 CCU 0.5715
BHI 0.6298 BSX 0.1852 CHTR 2.4714
BJS 0.4423 CAH 0.5710 CMCSA 1.2592
BR 0.3957 CHIR 0.7550 COX 0.8936
CHK 0.6863 CYH 0.6022 ICCI 1.9274
COP 0.5617 GENZ -0.2647 L 0.4696
DO 0.2172 HCA -0.3030 MCCC 2.1241
DVN 0.2591 HRC 0.1678 PRM 1.2443
ENRNQ 0.1907 HUM 0.8434 RCL 1.0038
EP 0.3221 THC 0.4496 VIA 0.8981
FST 0.6808 TRI 1.0802
HAL -0.0905 WLP 0.6793
KMG 0.4686
KMI -0.0102
KMP 0.3446
MRO 0.4744
NBR 0.5577
OXY 0.4792
PDE 0.5742
PKD 0.5145
RIG 0.2383
TLM 0.3290
TSO 0.4562
VLO 0.3695
VPI 0.4796
WFT 0.6459
WMB -0.0289
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