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The systemic importance of financial institutions1 

Prudential tools that target financial stability need to be calibrated at the level of the 
financial system but implemented at the level of each regulated institution. They require 
a methodology for the allocation of system-wide risk to the individual institution in line 
with its systemic importance. This article proposes a general and flexible allocation 
methodology and uses it to identify and quantify the drivers of systemic importance. It 
then illustrates how the methodology could be employed in practice, based on a sample 
of large internationally active institutions. 

JEL Classification: C15, C71, G20, G28. 

On 16 September 2008 the US authorities announced that they would take the 
unprecedented step of offering emergency financial support to AIG, a large 
insurance conglomerate. The decision was rooted in concerns about the 
repercussions of the failure of this institution on the economy at large, ie about 
its systemic importance.2  Similar far-reaching and urgent decisions were taken 
by authorities in other jurisdictions. By contrast, in 1995, the Bank of England 
had allowed merchant bank Barings to fail because it considered this would 
have no material impact on other banks (which was subsequently confirmed). 

More generally, the events of the past two years serve as a stark reminder 
that systemic financial disruptions can have large macroeconomic effects. As a 
result, the objective of strengthening the macroprudential orientation of 
financial stability frameworks has risen to the top of the international 
agenda.3  The main distinction between the macro- and microprudential 
perspectives is that the former focuses on the financial system as a whole, 
whereas the latter focuses on individual institutions.4 

                                                      
1  The authors thank Marek Hlavacek for excellent research assistance, and Stephen Cecchetti, 

Robert McCauley and Christian Upper for helpful comments. The views expressed in this 
article are those of the authors and not necessarily those of the BIS. 

2  The press release from the Federal Reserve explained: “The Board determined that, in current 
circumstances, the disorderly failure of AIG could add to already significant levels of financial 
market fragility and lead to substantially higher borrowing costs, reduced household wealth, 
and materially weaker economic performance.” 

3  See G20 (2009) and de Larosiere (2009) for reports on this international consensus. 

4  See Crockett (2000), Knight (2006) and Borio (2009) for an elaboration of the macroprudential 
approach and progress in its implementation. 
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By necessity, however, the tools of financial sector supervision and key 
policy interventions are applied to individual institutions, even when decisions 
are motivated by systemic considerations. Thus, policymakers need analytical 
tools to help them assess the systemic importance of individual institutions. In 
times of crisis, these tools can help to gauge the likely impact of distress at a 
given financial firm on the stability of the overall financial system. In periods of 
calm, they can help to calibrate prudential instruments, such as capital 
requirements and insurance premiums, according to the relative contribution of 
different institutions to systemic risk. 

This article presents a methodology that takes as inputs measures of 
system-wide risk and allocates them to individual institutions. The methodology 
is derived directly from a game-theoretic concept, the Shapley value, which 
describes a way of allocating the collective benefit created by a group to the 
individual contributors. The Shapley value approach satisfies a number of 
intuitive criteria and is quite general, being applicable to a wide spectrum of 
measures of system-wide risk. 

The methodology makes it straightforward to quantify the impact of the 
various drivers of an institution’s systemic importance. These include their 
riskiness on a standalone basis, their exposure to common risk factors and the 
degree of size concentration in the system. A key result is that the contribution 
of an institution to system-wide risk generally increases more than 
proportionately with its size.  

We apply the methodology to real-world data on a sample of 20 large 
internationally active financial institutions. The results highlight the interaction 
among the various drivers of systemic importance. In our sample, none of 
them, taken in isolation, is a fully satisfactory proxy for systemic importance. 

The article is organised in four sections. The first section describes the 
allocation procedure and its properties. The second section applies the 
procedure to a specific measure of systemic risk in hypothetical and highly 
stylised financial systems in order to analyse the impact of different drivers of 
systemic importance. The third section discusses how the methodology could 
be used in practice as a tool to mitigate systemic risk and applies it to real-
world data. The last section concludes. 

The allocation procedure: measuring systemic importance 

The problem of allocating system-wide risk to individual institutions is 
analogous to that of a risk controller in an investment firm seeking to attribute 
the use of the firm’s risk capital to individual desk traders. The fact that the 
sum of the risks incurred by each desk in isolation does not equal the total risk 
for the firm complicates the controller’s problem. Simple summation ignores 
that the interactions among individual positions could reduce or compound 
overall risk. They would reduce it when positions across desks partially cancel 
each other out; they would compound it when losses in one side of the 
business are incurred simultaneously with, or trigger, losses in another. 

Game theorists have tackled similar problems in the context of 
cooperative games. These are general settings where a group of players 
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engage in a collective effort in order to generate a shared benefit5  (called 
“value”) for the group. The theoretical problem of allocating this value among 
individual players in a way that satisfies certain fundamental criteria is 
conceptually identical to that of risk attribution described above.  

Lloyd Shapley proposed a methodology that distributes the overall value 
among players on the basis of their individual contributions (Shapley (1953)). 
The idea behind the allocation methodology is quite simple. Adding up what 
individual players can achieve by themselves (the equivalent of summing up 
the standalone risk of each trading desk in the investment firm) is unlikely to 
reflect their contributions to the productivity of others. Similarly, calculating the 
marginal contribution of a single player as the difference between what the 
entire group can achieve with and without the specific individual gives only a 
partial picture of the individual’s contribution to the work of others. The reason 
is that this method also ignores the complexities of bilateral relationships. By 
contrast, the Shapley methodology accounts fully for the degree to which such 
relationships affect the overall outcome. It accomplishes this by ascribing to 
individual players the average marginal contribution each makes to each 

                                                      
5  This is a very general concept that could be thought of as wealth, or collective output. 

Box 1: Shapley value allocation methodology: a specific example 

This box illustrates the Shapley value allocation methodology by reference to a specific numerical 
example where three parties (A, B and C) can cooperate to generate a measurable outcome. If nobody 
participates nothing is produced, and each participant alone can produce 4 units. The output of each 
possible grouping of the three participants is detailed in the left-hand column of the table below.  
Subgroup Subgroup output Marginal 

contribution of A 
Marginal 

contribution of B 
Marginal 

contribution of C  

A 4 4 . . 

B 4 . 4 . 

C 4 . . 4 

A, B 9 5 5 . 

A, C 10 6 . 6 

B, C 11 . 7 7 

A, B, C 15 4 5 6 

Shapley value . 4.5 5 5.5 

  Table A 

The marginal contribution of a player to a subgroup is calculated as the output of the subgroup minus the 
output of the same subgroup excluding the individual participant. For instance, the marginal contribution 
of A to the output of the overall group (A, B, C) is equal to the difference between 15, which is the overall 
group’s output, and 11, which is the output of B and C together.  

The Shapley value of each player is the average of its marginal contributions across all 
differently sized subgroups. For example, the value of B is equal to 5 (see bottom row). It is 
calculated as the average of 4, which is its individual output, 6, which is the mean contribution it 
makes to subgroups of size two, and 5, which is its marginal contribution to the overall group. The 
calculation can also be motivated as the expected marginal contribution of an individual participant 
in groups that are formed randomly by sequentially selecting players (see Mas-Colell et al (1995)). 
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possible subgroup in which they participate (see Box 1 on the previous page 
for a detailed exposition of the methodology and a numerical example). 

In addition to its simplicity, the Shapley value has a number of intuitively 
appealing features.6  It ensures that the gains from cooperation between any 
two players are divided equally between them; in other words, it is “fair” in the 
sense that it does not lead to biased outcomes that favour or penalise 
particular players. It distributes exactly the total benefit to all players, without 
resulting in any surplus or deficit. It is symmetric, in the sense that two players 
with the same characteristics receive the same share of the overall value. And 
it assigns no payoff to a player who makes no contribution to any subgroup. 

An application of the Shapley value methodology to the measurement of 
institutions’ systemic importance simply transposes the problem of distributing 
a collective value among individual players to that of attributing overall risk to 
individual institutions. It requires as an input a quantitative measure of risk for 
all groupings of institutions. These range from the largest group comprising all 
institutions to the smallest, which consist of single institutions. The 
methodology then attributes the overall (system-wide) risk to each institution on 
the basis of its average contribution to the risk of all the groups in which it 
participates. The degree of systemic importance of institutions is therefore 
captured by the share of systemic risk that is attributed to each of them. 
Institutions with higher systemic importance will have a higher Shapley value 
than others. 

A major strength of the Shapley value methodology is its generality. It 
accommodates any systemic risk measure that treats the system as a portfolio 
of institutions and identifies risk with the uncertainty about the returns (losses) 
on this portfolio. In addition, existing allocation procedures are specific 
applications of the Shapley value methodology. This is the case, for instance, 
of the procedure recently proposed by Acharya and Richardson (2009) for the 
calibration of institution-specific premiums for insurance against systemic 
distress. Tarashev et al (2009) discuss these points at some length. 

Another strength of the Shapley value methodology is that it allows 
measures of systemic importance to account for model and parameter 
uncertainty. Such uncertainty may make it natural to measure systemic risk 
under alternative models and parameter estimates. This would lead to 
alternative measures of systemic importance for each institution. Being linear, 
the Shapley value implies that the weighted average of alternative measures (a 
linear combination) can be used as a single robust measure of systemic 
importance. 

                                                      
6  For a fuller discussion of the technical properties of the Shapley value, see Mas-Colell et 

al (1995). Tarashev et al (2009) provide a more detailed description of how to implement a 
Shapley value decomposition in the context of the attribution of system-wide risk to individual 
institutions. 
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Drivers of systemic importance: stylised examples 

In this section we study three drivers of systemic risk and, hence, of the 
systemic importance of individual institutions. One is the riskiness of individual 
firms, as captured by their probabilities of default (PDs).7  Another is the 
degree of size concentration, or “lumpiness”, of the system, which increases as 
the number of institutions decreases or as their relative sizes become more 
disparate. The final driver is the institutions’ exposure to common (or 
systematic) risk factors, which arises either because financial institutions are 
similar to each other (eg lend to the same sectors) or because they are 
interconnected. Importantly, while the probability of default (or insolvency) can 
be constructed on the basis of institution-specific characteristics alone, the 
other two drivers relate to characteristics of the system as a whole. 

As a concrete measure of systemic risk, we use expected shortfall, which 
equals the expected (average) size of losses in a systemic event (see the 
appendix on page 86 for detail). In general, a systemic event is defined as one 
that generates losses deemed large enough to cause disruptions to the 
functioning of the system. In this article, a systemic event is defined as the 
occurrence of extreme aggregate losses that materialise with a given small 
probability, ie losses that exceed a certain threshold.8 

The impact of the three drivers on systemic risk is quite intuitive. Keeping 
everything else constant, an increase in institutions’ PDs leads to a higher level 
of systemic risk. Even if the PDs remain unchanged, greater lumpiness of the 
system reduces diversification benefits, raising the likelihood of extreme losses 
and, with it, expected shortfall. Similarly, greater exposure to common risk 
factors increases the likelihood of joint failures and hence also the likelihood of 
extreme losses in the system. 

To explore the impact of the same three drivers on the systemic 
importance of individual institutions, we resort to numerical exercises. For 
these exercises, we allocate system-wide expected shortfall to individual 
institutions (“banks”) on the basis of the Shapley value methodology. The 
results, based on highly stylised hypothetical systems, yield four key 
messages. 

First, a rise in an institution’s exposure to a common risk factor increases 
its systemic importance. This is illustrated in Table 1, which compares a 
number of banking systems, each comprising 20 banks. In every system there 
are two homogeneous groups, A and B, which differ only with respect to banks’ 
exposures to the common factor. Keeping the strength of exposures to the 
common factor in group B constant but increasing it for group A (across 
columns to the right, in each panel) results in an increase in these banks’ share 
in systemic risk. In the specific example of a strongly capitalised system, the 

                                                      
7  Strictly speaking, an institution’s standalone risk depends both on its PD and on its loss-given-

default (LGD). This article abstracts from LGD by assuming that it is constant and equal for all 
financial institutions. Relaxing this assumption in order to account for certain empirical 
properties of LGD would not alter any of the qualitative conclusions derived below. 

8  A similar setting has been used in the context of financial stability by Kuritzkes et al (2005), 
who measure the expected loss to the deposit insurance fund using similar concepts. 
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combined contribution of group A banks rises from 44% to roughly 60%. The 
result is similar for a weakly capitalised system. 

The reason for this result is that higher exposures to the common factor 
result in a higher probability of joint failures in the system. In turn, a higher 
probability of joint failures translates into higher average losses in the systemic 
event, which leads to a higher level of systemic risk, as measured by expected 
shortfall. Quite intuitively, the rise in the level of systemic risk is attributed 
mainly to the banks that contribute most to this rise, ie those that experience 
an increase in their exposure to the common factor (group A banks in Table 1). 

Second, the interaction between different drivers may reinforce their 
impact on systemic importance. A concrete example is provided by   
Graph 1 (left-hand panel) on the basis of a system in which banks differ only in 
terms of size. As the strength of exposures to the common factor increases 
uniformly across all banks in this system, the portion of the expected shortfall 

Common exposures, systemic risk and systemic importance 
 Strongly capitalised system  

(all PDs = 0.1%) 
Weakly capitalised system  

(all PDs = 0.3%) 

 Exposure to the systematic risk factor 

(banks in group A) 

Exposure to the systematic risk factor 

(banks in group A) 

 
ρ = 0.30 ρ = 0.40 ρ = 0.50 ρ = 0.60 ρ = 0.70 ρ = 0.30 ρ = 0.40 ρ = 0.50 ρ = 0.60 ρ = 0.70

Group A (share) 44.0% 46.2% 50.0% 54.4% 60.4% 41.7% 45.4% 50.0% 56.2% 63.2% 

Group B (share) 56.0% 53.8% 50.0% 45.6% 39.6% 58.3% 54.6% 50.0% 43.8% 36.8% 

Total ES 4.0 4.4 5.0 5.8 6.8 6.6 7.2 8.2 9.8 11.5 

Total expected shortfall (ES) equals the expected loss in the 0.2% right-hand tail of the distribution of portfolio losses; per unit of 
overall system size, in percentage points. The first two rows report the share of the two groups (each comprising 10 banks) in total ES. 
The exposure of each of the 10 banks in group A to the systematic risk factor is as given in the row headings. The exposure of each of 
the 10 banks in group B to the systematic risk factor corresponds to ρ = 0.50. See the technical appendix for a definition of ρ. The 
probability of defaut (PD) of each bank is as specified in the panel heading. Loss-given-default is set to 55%. All banks are of equal 
size, each one accounting for 5% of the overall size of the system.  Table 1 

Systemic risk: interaction of different drivers1 

When banks differ in size2 When banks differ in PD3 

5

10

15

10 20 30 40 50 60 70
Exposure to the systematic factor4

Total systemic risk
5 big banks
10 small banks

 

3.8

7.6

11.4

10 20 30 40 50 60 70
Exposure to the systematic factor4

Total systemic risk
8 high-risk banks
8 low-risk banks

1  All numbers are in percentage points. Total systemic risk equals the expected loss in the 0.2% right-hand 
tail of the distribution of portfolio losses; per unit of overall system size. The contributions of the two groups 
of banks to the total are plotted as shaded areas. Each group accounts for half of the overall system size. 
Loss-given-default is assumed to be 55%.    2  Each bank’s probability of default (PD) equals 0.3%.    3  The 
PD of a high-risk bank is 0.3% and that of a low-risk bank is 0.1%.    4  See the technical appendix for a 
definition. Graph 1 
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attributable to larger banks increases by a greater amount than that attributable 
to smaller banks. In other words, bank size reinforces the impact of common 
factor exposures on systemic importance. The right-hand panel of Graph 1 
illustrates a similar point in the context of a system comprising banks that differ 
only with respect to their individual PDs. If all of these banks experience the 
same rise in their exposures to the common factor, the increase in the 
contributions to systemic risk is greater for riskier banks. Here, individual 
riskiness reinforces the impact of common factor exposures on systemic 
importance. 

Third, changing the lumpiness of a system affects the systemic 
contributions of banks of different sizes differently. This is reported in Table 2, 
which considers hypothetical banking systems where all banks feature the 
same PDs and exposures to the common factor but differ in size. There are 
three big banks of equal size, together accounting for 40% of the overall 
system, and a group of small banks, making up the rest. As the number (but 
not the share) of small banks increases (across columns to the right, in each 
panel), diversification benefits reduce overall systemic risk.9  This reduction is 
associated with a decline in the systemic importance of small banks and a rise 
in that of large banks (the first two rows in each panel). Moreover, the rise in 
big banks’ systemic importance reflects not only a rise in the share but also in 
the amount of systemic risk that these banks account for. Considering the 
example of a strongly capitalised system (left-hand panel), a rise in the number 
of small banks from five to 25 results in a drop of systemic risk from 9.8 to 
9.3 cents on the dollar. At the same time, the amount of this risk that big banks 
account for rises from 4.3 (or 42.8% of 9.8) to 6.3 (or 68.1% of 9.3) cents on 
the dollar.10 

                                                      
9  The decline in systemic risk is rather subdued because the assumed high exposure of banks 

to the common risk factor restricts the diversification benefits obtained from increasing their 
number. This general result is studied in detail in Tarashev (2009). 

10  The effect is even stronger in the case of a weakly capitalised system (right-hand panel). 

System lumpiness, systemic risk and systemic importance 
 Strongly capitalised system  

(all PDs = 0.1%) 
Weakly capitalised system  

(all PDs = 0.3%) 

 Number of small banks Number of small banks 
 ns = 5 ns = 10 ns = 15 ns = 20 ns = 25 ns = 5 ns = 10 ns = 15 ns = 20 ns = 25

Three big banks (share) 42.8% 56.8% 62.6% 66.0% 68.1% 41.6% 52.3% 56.5% 59.3% 60.7% 

ns small banks (share) 57.2% 43.2% 37.4% 34.0% 31.9% 58.4% 47.7% 43.5% 40.7% 39.3% 

Total ES 9.8 9.4 9.3 9.25 9.23 16.7 15.0 14.7 14.4 14.3 

Total expected shortfall (ES) equals the expected loss in the 0.2% right-hand tail of the distribution of portfolio losses; per unit of overall 
system size, in percentage points. The first two rows report the share of the two groups of banks in total ES. The group of big banks 
accounts for 40% of the overall size of the system and the group of small banks accounts for 60%. The probability of default (PD) of 
each bank is as specified in the panel heading. Loss-given-default is set to 55%. All banks are assumed to have the same sensitivity to 
common risk factors, implying a common asset return correlation of 42%.  Table 2 
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Finally, and quite generally, systemic importance increases more than 
proportionately with (relative) size. This relationship is a consequence of the 
fact that larger institutions play a disproportionate role in systemic events. The 
first column of Table 2, for example, relates to a system in which a big bank is 
roughly 10% larger than a small one but is assigned a 25% greater share in 
systemic risk.11  This effect increases as banks’ sizes become more disparate. 
For example, the fifth column of the table, which relates to a system where the 
sizes of big and small banks are roughly 5:1, reports that the respective shares 
in systemic risk are roughly 18:1. 

Graph 2 presents further evidence of this non-linear relationship between 
size and systemic importance. It plots the contributions to system-wide risk of 
institutions that are all identical except for their size. In the particular example, 
the largest institution is about 5 times as large as the smallest one, but its 
relative systemic importance is nearly 10 times as high.  

Even though the above examples have been cast in stylised settings, they 
illustrate robust results and point to concrete policy lessons. In particular, all 
else equal, they suggest that any “systemic capital charge” applied to individual 
institutions should increase more than proportionately with relative size. In 
other words, there is a clear rationale for having tighter prudential standards for 
larger institutions. In addition, the charge should increase with the degree to 
which an institution is exposed to sources of systematic risk. This means that 
higher capital charges would be applied to institutions that are more similar to 
the typical (or “average”) institution: if they fail, they are more likely to fail in a 
systemic event. 

The above examples also touch, albeit indirectly, on the notion of 
diversification from a systemic viewpoint. There is a potential trade-off between 
diversification in the portfolio of an individual institution and diversification for 

                                                      
11 More precisely, the ratio of small and big bank sizes equals (0.4/3)/(0.6/5) = 1.11. The 

corresponding ratio of systemic importance measures is (42.8%/3)/(57.2%/5) = 1.25. 

Size and systemic importance1 
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1  All numbers are in percentage points. The system comprises 10 institutions, each represented by a dot. 
Systemic importance is measured as the share of each institution in the expected shortfall of the system, 
defined as the expected loss in the 0.2% right-hand tail of the distribution of system-wide losses. Size is 
measured as a share in the aggregate size of all institutions in the system. Each bank’s loss-given-default 
and probability of default equal 55% and 0.1% respectively. The loadings on the common factor (see the 
technical appendix) are constant across banks and equal 0.6. Graph 2 
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the system as a whole. This is because, by diversifying their own investment 
portfolios, institutions affect systemic risk in two ways. First, greater 
diversification of each portfolio is likely to reduce the riskiness of individual 
institutions. Second, it is also likely to result in more similar portfolios and, 
thus, in institutions being more exposed to common risk factors. The net 
outcome depends on how the first effect, which lowers systemic risk, compares 
to the second, which raises it. 

Implementing the tool: beyond stylised examples 

The previous analysis provides a structured framework for examining what 
factors are relevant in assessing the systemic importance of institutions. But 
what steps are needed to apply the Shapley value methodology in practice? 
What choices do policymakers have to make? 

In making this general approach operational, a number of issues need to 
be addressed. Beyond choosing a specific measure of systemic risk, these 
include: the definition of the relevant “system”; the definition of the “size” of 
institutions; the choice of inputs; the uncertainty about the correct specification 
of the risk model and the true parameter values; and computational burden. 
Except for the last, all of these issues are related to the measure of systemic 
risk, rather than to the Shapley value methodology as such. Box 2 provides a 
discussion of the trade-offs and pitfalls involved and outlines the considerations 
that might guide policymakers’ choices. 

Once these choices are made, the application is straightforward. To 
illustrate how the methodology can be applied to real-world data, consider the 
following example. The chosen measure of system-wide risk is expected 
shortfall, as in the stylised examples of the previous section. We define the 
relevant “system” as comprising 20 large internationally active financial 
institutions and assume that a loss is incurred when one or more of them fail. 
We measure an institution’s size as the book value of its liabilities, divided by 

A system of large internationally active institutions1 
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1  All numbers are in percentage points. Systemic importance is measured as the share of each institution in the expected shortfall of 
the system, which is defined as the expected loss in the 0.2% right-hand tail of the distribution of portfolio losses. The size of an 
institution equals the book value of its liabilities, expressed as a share in the sum of the liabilities of all institutions in the system. The 
probability of default is the one-year EDF provided by Moody’s KMV for end-2007. Exposures to the common factor are derived on the 
basis of Moody’s KMV GCorr estimates of institutions’ asset-return correlations for end-2007. 

Sources: Moody’s KMV.  Graph 3 
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Box 2: Applying the method in a policy context: choices and trade-offs 
This box addresses the policy choices and practical issues that have to be confronted when implementing 
the methodology as an element in a macroprudential approach to regulation and supervision. 

The definition of the appropriate “system”, as a precondition for calibration, is not 
straightforward. This is less of an issue in current regulatory arrangements which focus on 
individual institutions but becomes critical when the prudential framework focuses on systemic risk. 
At least two aspects need to be addressed. The first relates to the institutional coverage of 
regulation – its so-called “perimeter”. A systemic approach would need to take account of the risks 
generated by all financial institutions that are capable, on their own and as a group, of causing 
material system-wide damage. This is so regardless of their legal form. The second aspect relates 
to the geographical coverage of regulation. Should the approach be applied at a domestic level or 
at a more global level, say to internationally active institutions? And if the answer is to both, how 
would the adjustments be reconciled? Clearly, a large dose of pragmatism is necessary. And the 
precise answers will also depend on the extent of cooperation across regulatory jurisdictions. 

The definition of the size of the institutions also merits attention, and partly overlaps with that 
of the system. One question is whether to include only domestic exposures or both domestic and 
international ones. Another question is whether the appropriate measure refers to the assets 
(presumably including off-balance sheet items) or to the liabilities (excluding equity) of the 
institutions. Total assets better reflect the potential overall losses incurred by all the claimants on 
the institution; liabilities are a better measure of the direct losses linked to its failure. 

Having defined the system and the size of the institutions, the next practical question is how to 
estimate the additional parameters, notably the probabilities of default and the factor loadings on 
the systematic risk factors. The sources of information range from market inputs, at one end, to 
supervisory inputs, at the other. Combinations of the two are also possible. 

Market inputs have a number of attractive features but also limitations. On the plus side: they 
summarise the considered opinion of market participants based on the information at their disposal; 
they should reflect market participants’ views of all potential sources of risk, regardless of their 
origin (eg poor asset quality, bank runs, counterparty linkages); and they are easily available on a 
timely basis. On the minus side: they may not be available for all institutions (eg equity prices for 
savings banks); they require the use of “models” to either filter out extraneous information (eg risk 
premia, expectations of bailouts) or complete the information they contain (eg to derive probabilities 
of default from equity prices), giving rise to “model” uncertainty; and they may contain systematic 
biases: for example, it is well known that market prices tend to be especially buoyant as financial 
vulnerabilities build up during booms (Borio and Drehmann (2009)). 

Supervisory estimates have their own strengths and weaknesses. On the plus side, they can 
be based on more granular and private information, to which market participants do not have 
access; on the minus side, they may simply not be available, or may be hard to construct for certain 
inputs. For example, supervisors have a long tradition in producing measures of the soundness of 
individual financial institutions, such as rating systems. However, they have as yet not developed 
tools to derive measures of exposures to systematic risk factors and correlations across institutions 
based on balance sheet data. The available techniques are in their early stages of development. 

All this suggests that, in practice, it might be helpful to rely on a combination of sources and to 
minimise their individual limitations. For example, currently market prices appear to be especially 
suited for the estimation of exposures to common factors. And long-term averages of such prices 
would help to address the biases in the time dimension. This would be especially appropriate if the 
tool is used to calculate relative contributions of institutions to systemic risk and to avoid 
procyclicality (Borio (2009)). 

These difficulties highlight the need to deal with the margin of error that will inevitably surround 
the estimates of systemic risk and hence, by implication, of institutions’ contributions to it 
(Tarashev (2009)). Fortunately, as noted above, the linearity property of the allocation procedure 
makes it possible to address this issue in a formal, simple and transparent way. This property 
allows one to combine alternative estimates, weighting them by the degree of confidence that one 
attaches to them (Tarashev et al (2009)). In addition, it may be advisable for policymakers not to 
rely too heavily on the resulting point estimates. One possibility would be to allocate institutions into 
a few buckets, each of them comprising an interval of point estimates – akin to a rating system. This 
grouping has the added advantage of reducing the computational burden of assessing risk at the 
level of subgroups of institutions. 
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the sum of the liabilities of all institutions in the system. In addition, we 
measure an institution’s standalone riskiness as the Moody’s KMV estimate of 
its one-year probability of default and assume that loss-given-default is 
constant at 55%. We also impose a single-common-factor structure on the 
Moody’s KMV estimate of the 20 institutions’ asset-return correlations in order 
to derive the strength of exposures to systematic risk. Both sets of estimates 
are based on market prices of equity and relate to end-2007. Finally, we 
abstract (for simplicity) from model and estimation uncertainty. Given these 
assumptions, we then derive the expected shortfall of the system and each 
institution’s contribution to it. The results are shown in Graph 3, which plots 
each institution’s contribution to system-wide risk against three of its drivers, 
namely the institution’s size, probability of default and exposure to the common 
factor.  

The results indicate quite clearly that the interaction of the various factors 
plays a key role. None of them, in isolation, provides a fully satisfactory proxy 
for systemic importance. For example, the largest institution in the system 
illustrated in Graph 3 is also the one with the biggest contribution (red dot). 
However, owing to its comparatively high probability of default, the institution 
with the fourth largest contribution is also one of the smallest and the least 
exposed to the common risk factor (blue dot). This highlights an important 
strength of the Shapley value methodology, namely that it allows for a 
straightforward quantification of the interactions of the various drivers. 

Conclusion 

This paper has presented a very general methodology to quantify the 
contribution of individual institutions to systemic risk. For a given measure of 
systemic risk, this is equivalent to calculating their systemic importance. The 
methodology can be applied to a wide variety of measures of systemic risk, and 
is very intuitive and flexible. As shown elsewhere, it subsumes other much 
more restrictive procedures as special cases (Tarashev et al (2009)). The 
methodology is very helpful in structuring an analysis of the drivers of systemic 
importance and in quantifying their relative impact.  

In practice, any measure of individual institutions’ systemic importance will 
necessarily be based on a specific measure (or measures) of systemic risk. 
The construction of such measures faces a number of tough challenges. These 
largely reflect the need to define what the relevant system is and to estimate 
the appropriate parameters. In the specific setting used here, these parameters 
include the probability of default and loss-given-default of individual institutions, 
exposures to common risk factors and the size distribution of the system. We 
have discussed how some of these challenges can be met and illustrated this 
with a concrete but simplified example using real-world data. In future, tools 
such as this one will inevitably be part of the arsenal of weapons needed to 
implement a financial policy framework with a macroprudential orientation, as 
called for by the international policy community. 

 
 

... illustrates that 
there is no single 
proxy for systemic 
importance 



 
 

 

 

86 BIS Quarterly Review, September 2009
 

Technical appendix: expected shortfall 

Expected shortfall, also known as expected tail loss, is the measure of 
systemic risk we use in all numerical examples. It is defined as the expectation 
of default-related losses in the system, conditional on a systemic event. This 
event occurs when system-wide losses equal or exceed some (in this article, 
the 98th) percentile of their probability distribution. 

We specify this probability distribution as follows. System-wide losses 
equal ∑ ⋅⋅

=

N

i
iii ILGDs

1
, where is  is the size of the liabilities of institution i, iLGD  

(loss-given-default) is the share of is  that is lost if that institution defaults, and 

iI  is an indicator variable that equals 1 if institution i defaults and 0 otherwise. 
Without loss of generality, the overall size of the system is set to unity, 1

1
=∑

=

N

i
is , 

and, for simplicity, it is assumed that %55=iLGD  for all institutions. Finally, in 
line with structural credit risk models, institution i is assumed to default when 
its assets iV  fall below a particular threshold. Specifically, this happens when 

( )iiiii PDZMV 121 −Φ<−+⋅= ρρ , where the value of assets is driven by one risk 
factor that is common to all institutions, M , and another risk factor that is 
specific to institution i, iZ , and both factors are standard normal variables. In 
addition, iPD  denotes the unconditional probability of default of institution i and 

1−Φ  is the inverse of the standard normal CDF. Finally, the loadings on the 
common (or systematic) factor, [ ]1,0∈ρi  for { }Ni ,,1L∈ , determine the 
correlation of defaults within the system. 

We quantify expected shortfall using Monte Carlo simulations that take as 
inputs the following parameters for each institution i: iiii PDLGDs ρ,,, . 
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