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Structural models of default: lessons from firm-level 
data1 

Structural credit risk models account for the average level of default rates within rating 
categories only when calibrated on a firm by firm basis. Nevertheless, firm-specific 
information matters little when one is interested in forecasting the path of default rates 
over time. This is because economic factors common to all firms strongly influence the 
evolution of default predictions. 

JEL classification: C520, G100, G300. 

Financial industry practitioners as well as regulators are constantly searching 
for reliable measures of default (or credit) risk, ie the risk of a borrower not 
fulfilling its debt contract. Such measures are of fundamental importance for 
the sound management of lender institutions and for the supervisory 
assessment of their vulnerability. The family of “structural” credit risk models 
developed in the academic literature evaluates the likelihood of default on the 
basis of borrower characteristics. This special feature examines the 
performance of three representative models from that family by comparing the 
probabilities of default (PDs) they deliver with realised default rates. 

While a number of related studies focus exclusively on the 
“representative” borrower endowed with average characteristics, the analysis 
here calibrates the models to individual firms. The new approach extracts 
theoretical predictions that account for the average level of default rates and 
stand in contrast to the PD of the representative borrower, which is biased 
downwards. However, the difference in the calibration approaches is largely 
inconsequential if one is interested only in explaining changes in default rates 
over time. In this respect, the explanatory power of the models is mixed under 
either approach. 

The reason for this seemingly puzzling contrast in the relevance of data 
disaggregation is rather straightforward. Under a calibration at the firm level, 
the estimate of a default rate increases in the dispersion of borrower 
characteristics because of the non-linear structure of the models. If one 
focuses instead on the representative borrower, and thus on aggregate data, 

                                                      
1 The views expressed in this article are those of the author and do not necessarily reflect those 

of the BIS. 
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one ignores any dispersion of characteristics across borrowers and hence 
underpredicts credit risk. By contrast, when tracking default rates over time, the 
models rely on the evolution of borrower characteristics, which are influenced 
by common economic factors, related to stock market developments and the 
cost of borrowing. Since the PD of the representative borrower reflects these 
common factors, the use of aggregate data does not impair the capacity of the 
models to forecast changes in credit risk. 

The next two sections introduce the three structural credit risk models 
used in the empirical analysis and sketch their calibration. The subsequent 
sections evaluate in turn the ability of the models to (i) predict average default 
rates, (ii) identify future defaulters, and (iii) explain the time path of default 
rates. 

Three representative structural credit risk models 

We use three structural credit risk models developed in Leland and Toft (1996; 
henceforth, LT), Anderson, Sundaresan and Tychon (1996; AST) and Huang 
and Huang (2003; HH), respectively. All of these models extend the contingent 
claims framework of Merton (1974), in which a default occurs when the value of 
the borrower’s assets falls below a particular threshold. 

The determination of the threshold (default trigger) value of assets is what 
differentiates the three models from each other. In this respect, the HH model 
is closest to Merton’s in adopting an exogenous default trigger, which does not 
incorporate the incentives of the borrower but is set to be consistent with an 
estimate of loss-given-default (LGD).2, 3  In the AST and LT models the default 
trigger is endogenous, ie determined strategically by the borrower. The LT 
model, in which a defaulting firm is surrendered to its lenders, derives a trigger 
that maximises the equity value of the firm for any asset value. For its part, the 
AST model allows the borrower to restructure the debt contract and thus 
adopts a definition of default that comes closer to the one used by credit rating 
agencies. In such a setting, the borrower may default at a higher asset value 
than in the LT model in order to renegotiate its contract. 

Theory-implied PDs are quite sensitive to the default trigger value of 
assets, which are set differently across models. The calibration of the HH 
model relies heavily on an estimate of the average LGD in each cross section 
in the sample. This limits the dispersion of exogenous default triggers across 
firms. In addition to matching the same estimates of average LGDs, the 
endogenous default thresholds in the LT and AST models depend on an array 
of borrower-specific characteristics, such as leverage, coupon rate and asset 
volatility, and, consequently, vary considerably more in each cross section. 

                                                      
2 LGD is the amount of assets lost at default, as a fraction of the face value of debt. 

3 Tarashev (2005) finds that the PDs implied by the HH model are extremely similar to those 
obtained by Longstaff and Schwartz (1995), who also assume an exogenous default trigger. 

... in the implied 
default triggers 

Three structural 
models differ ... 
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Data 

To compare model-implied PDs to realised default rates, this special feature 
relies on a data set covering corporate borrowers domiciled in the United 
States. The data set provides quarterly series of default rates and allows for 
the construction of a parallel series of firm-specific model-implied PDs, from 
the first quarter of 1990 to the second quarter of 2003. The horizon of default 
rates and PDs is one year. For the calculation of default rates, we follow 
standard practice and group potential defaulters according to their credit rating: 
BBB, BB or B.4 

Calibrating the models at the firm level requires the use of several data 
sources.5  The overlap of the alternative sources is not perfect, which restricts 
the size of the cross sections of theoretical PDs. The size increases 
continuously over time, with the average cross section consisting of 77 BBB-, 
77 BB- and 59 B-rated firms. Non-financial firms comprise more than 90% of 
the sample. 

Model-implied PDs and realised default rates 

If a correct model is applied to a random selection of firms in a given credit 
rating class, the average one-year PD in the cross section is an unbiased 
estimate of the default rate realised in the same rating class over the following 
year. This estimate requires firm-level data, whereas an alternative estimate, 
the PD of the representative (average) borrower, necessitates only aggregate 
data for the rating class. To examine whether a model is unbiased and whether 
its bias depends on how disaggregated the data are, we average one-year 
default rates and their alternative estimates over time (Table 1). 

                                                      
4 This data set is described in detail in Tarashev (2005). The paper also derives that the overall 

performance of the models changes little when the horizon is expanded to five years. 
However, for horizons longer than one year, the time span of the available data severely limits 
studies of the intertemporal changes in theoretical predictions. 

5 The data sources used here are Moody’s KMV, Bloomberg and Datastream. For further 
information on the calibration of the structural models, see the box on page 102 and the 
sources cited therein. 

Bias in alternative estimators of default rates1 
LT model3 AST model3 HH model3 

Rating Default rate2 
Average of 

firm-
specific 

PDs 

PD of 
represen-
tative firm 

Average of 
firm-

specific 
PDs 

PD of 
represen-
tative firm 

Average of 
firm-

specific 
PDs 

PD of 
represen-
tative firm 

B 6.30 6.50 0.90 4.50 0.40 3.80 1.40 

BB 1.20 1.40 0.05 1.20 0.01 0.90 0.20 

BBB 0.20 0.20 2*10–4 0.20 5*10–4 0.09 3*10–4 
1  In percentage points. The sample period is 1990 Q1–2003 Q2.    2  Fraction of firms that default within one year, by rating 
class; averages over time.    3  Theoretical one-year PDs; by rating class; averages across firms (when applicable) and time.   
  Table 1 

The models match 
average default 
rates ... 
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The results reveal that the bias of a model does depend on the level of 
data disaggregation. Under all the models considered, the theoretical PDs of 
the representative firms severely underpredict realised default rates in all the 
rating classes. This underprediction was first observed by Leland (2004). In 
contrast, when calibrated at the firm level, the two “endogenous default” 
models exhibit virtually no bias,6  whereas the bias of the “exogenous default” 
HH model is reduced substantially but not eliminated. 

The non-linear structure of the models explains the different bias across 
estimators. A deterioration in a borrower’s characteristics has a substantially 
larger (positive) impact on the theoretical PD than a commensurate 
improvement in these characteristics (which lowers the PD). As a result, the 
average of firm-level PDs is raised by any dispersion of borrower 
characteristics, while the PD of the representative firm abstracts from such 
dispersion. Likewise, the sustained negative bias of the HH model can be 
traced to the limited dispersion of the exogenous default trigger across 
borrowers (see above), which depresses the average PD in each cross section. 

Does any single borrower characteristic drive the models’ capacity to 
match the general level of default rates? We calculate borrower-specific PDs 
using firm-level values for only one parameter at a time (leverage – ie the ratio 

                                                      
6 The only exception to this general conclusion is the AST model’s underprediction of the 

average default rate in the B rating class. 

Calibration of structural credit risk models 

This box sketches the calibration of the parameters that play important roles in the models. The 
procedure is described more fully in Tarashev (2005) and closely follows Leland (2004) and Huang 
and Huang (2003). 

Most of the borrower and debt characteristics can be set at the firm level. Specifically, the 
coupon rate and time to maturity of outstanding debt are obtained directly from the data and reflect 
averages across the debt instruments of the firm. Leverage is measured by the ratio of book value 
of total debt to the sum of book value of total debt and market capitalisation. The payout ratio, ie the 
fraction of assets paid out to debt and equity holders, is set equal to a weighted average of the 
coupon and dividend rates, with the weights determined by leverage. The asset risk premium and 
volatility are calibrated to be consistent with the equity risk premium and volatility of the 
corresponding firm. Except for the coupon rate and time to maturity, which change yearly, the other 
firm-level parameters are set quarterly. 

The default trigger value of assets is different across models. In the “endogenous default” LT 
and AST models, the value is pinned down on the basis of firm-level characteristics (eg debt 
principal, coupon rate, leverage, asset payout rate and volatility) and an estimate of LGD, which is 
assumed constant within each cross section of firms but is allowed to vary from year to year. In the 
HH model, the exogenous default trigger is set to account for the same estimate of LGD and a 
value of the debt principal. Calibrated in this way, the LT, AST and HH default triggers change both 
quarterly and across firms but the variation across firms is considerably smaller for the HH trigger. 

Finally, the theoretical PDs analysed here are based on a time-invariant estimate of the risk-
free rate of return: namely, the average one-year Treasury rate over the entire sample. Tarashev 
(2005) finds that, if the risk-free rate is allowed to fluctuate through time, the general level of model-
implied PDs changes little and their ability to explain the evolution of default rates worsens slightly. 
Since the risk-free rate is a macroeconomic variable, common to all firms, its calibration does not 
influence the models’ capacity to differentiate borrowers according to their credit risk. 

... only when 
calibrated at the 
firm level ... 
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of debt to assets – equity volatility, or the coupon rate) and setting the 
remaining borrower characteristics equal to their averages in each 
quarter/rating class pair. The averages of these PDs for different specifications 
are reported in Table 2. A comparison across parameters indicates that the 
dispersion of leverage ratios does the most to raise the average firm-specific 
PDs implied by the AST and LT models. By contrast, no single borrower 
characteristic dominates the predictions of the HH model. 

Model-implied PDs of actual defaulters 

As argued above, structural credit risk models account for sample averages of 
default rates only when calibrated on a firm by firm basis. This prompts the 
question of whether the models can also identify specific future defaulters. The 
available sample contains too few defaults and, as a result, does not allow one 
to reach a definitive answer. Nonetheless, some noteworthy empirical 
regularities stand out. 

To evaluate the models’ success in flagging future defaulters, we calculate 
quarterly cross sections of firm-specific PDs. For a given quarter, we identify 
the defaulters in all subsequent periods and record what fraction of these firms 
are being assigned PDs higher than the median model-based PD in the current 
cross section.7  The average of these fractions over time represents the 
“success” ratio of a given model and is reported in Table 3. 

                                                      
7 We consider defaults occurring up to December 2004 but derive theoretical PDs up to the 

second quarter of 2003. Thus, potential defaulters are tracked for at least 18 months. 

Impact of three borrower-level characteristics on theoretical PDs1 

LT model3 AST model3 HH model3 

Rating Default 
rate2 Leverage Equity 

volatility 
Coupon 

rate Leverage Equity 
volatility 

Coupon 
rate Leverage Equity 

volatility 
Coupon 

rate 

B 6.30 5.00 0.80 1.11 3.10 1.10 0.60 2.30 2.40 1.50 

BB 1.20 0.90 0.08 0.07 0.40 0.07 0.05 0.50 0.50 0.20 

BBB 0.20 0.20 3*10–3 3.7*10–4 0.10 7*10–3 2*10–3 0.02 0.04 4*10–4 
1  In percentage points. The sample period is 1990 Q1–2003 Q2.    2  Fraction of firms that default within one year, by rating 
class; averages over time.    3  Theoretical one-year PDs, under the assumption that only the parameter identified in the 
column heading varies across firms; by rating class; averages across firms and time.  Table 2 

Ability of models to flag future defaulters1 

Averages over time 
Number of future defaulters2 9.6 

 LT model  AST model HH model  

Success ratio3 0.75 0.69 0.76 
1  The sample period is January 1990–December 2004 for defaults and 1990 Q1–2003 Q4 for 
model calibration.    2  Number of borrowers that are observed in a particular quarter, from 
1990 Q1–2003 Q4, and default in any one of the subsequent quarters.    3  Fraction of future 
defaulters flagged by the model. Table 3 

... and can identify 
future defaulters 
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Based on this rather crude criterion, the models perform reasonably well: 
on average, they flag up to three out of four future defaulters. “Misses” are due 
to low leverage ratios, which is in line with the strong impact of this borrower 
characteristic on the level of theoretical PDs. All of the defaulters missed by the 
LT and AST models feature a leverage ratio that is smaller than the median 
leverage in the corresponding cross section. Similarly, the leverage ratio is low 
for 90% of the firms that are not flagged by the HH model but default later. 

Model-implied PDs and the time path of default rates 

Policymakers are interested not only in the average level of default rates but 
also in their time profile. In this section, we consider the correlation between 
predicted and realised default rates in a time series context. More specifically, 
we regress the default rate realised over a particular year on its one-year lag 
and on a default prediction delivered by a particular model at the end of the 
previous year. If a model provides useful information for explaining changes in 
default rates over time, the PDs it implies should enter the regressions with 
statistically significant coefficients. Furthermore, the PDs of a truly successful 
model would incorporate all currently available information that is useful for 
forecasting default rates. Thus, if a model is truly successful, past default rates 
should not be statistically significant in the regressions. 

The predictive power of average firm-specific PDs1 
Dependent variable: realised default rate 

 B-rated firms BB-rated firms BBB-rated firms 

Constant 0.02 
(0.12) 

0.03 
(0.00) 

0.02 
(0.23) 

0.004
(0.01) 

0.003
(0.21) 

0.007
(0.00) 

–0.002 
(0.11) 

–0.001
(0.44) 

–0.001
(0.34) 

One-year lag of realised 
default rate 

0.37 
(0.06) 

0.45 
(0.04) 

0.46 
(0.01) 

. 0.40 
(0.08) 

. 0.66 
(0.02) 

0.63 
(0.03) 

0.62 
(0.03) 

LT PD2 0.13 
(0.61) 

. . 0.42 
(0.01) 

. . 0.62 
(0.08) 

. . 

AST PD2 . –0.26 
(0.21) 

. . 0.26 
(0.23) 

. . –0.39 
(0.47) 

. 

HH PD2 . . 0.13 
(0.69) 

. . 0.62 
(0.00) 

. . –0.14 
(0.87) 

Adjusted R-squared 0.27 0.29 0.26 0.31 0.24 0.23 0.13 0.07 0.07 

Note: The regressions in Tables 4–7 are weighted, with the weight increasing with the size of the cross section in the 
corresponding quarter/rating class pair. In Tables 4 and 5 the lagged dependent variable is included only when its coefficient 
is statistically significant at the 10% level. In Tables 6 and 7 the lagged dependent variable is included if and only if it 
appears in the corresponding regression in Table 5. The p-values are based on Newey-West robust covariance matrices (for 
the regressions pertaining to BB- and B-rated firms) or on Huber-White robust covariance matrices (for the regressions 
pertaining to BBB-rated firms). In the BBB rating class, 22 of the 54 realised default rates equal zero. To account for this, the 
BBB regressions are based on the Tobit model and the default rates are assumed to be “censored” at a low positive value (ie 
0.03%). The adjusted R-squared of the BBB regressions reflects the goodness of fit vis-à-vis an estimated uncensored 
version of the dependent variable, which is a linear function of the regressors. 
1  Regressions based on one-year theoretical PDs and default rates. Fifty-four observations from 1990 Q1–2003 Q2. 
P-values are in parentheses. Entries in bold indicate coefficients that are statistically significant at the 10% level.    2  Cross-
sectional averages of firm-specific PDs.  Table 4 

When one predicts 
the time profile of 
default rates ... 
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We first consider the explanatory power of the models on the basis of 
disaggregated information. Hence, as a predictor of default rates, we use the 
average of the firm-specific PDs in each quarter/rating class pair. For a given 
rating class, we report three regressions in Table 4: one for each of the three 
structural models. 

The estimates of these regressions reveal that none of the models 
delivers fully successful forecasts. The information in lagged default rates 
tends to be clearly superior to that contained in theoretical predictors. More 
concretely, in all but three cases lagged default rates enter the regressions 
with statistically significant coefficients while the coefficients of average model-
implied PDs are insignificant. Two of the three exceptions are due to the LT 
model, which contributes to the forecasts of BBB default rates and even 
renders the lagged dependent variable insignificant within the BB rating class. 
The third exception is due to the HH model, which exhibits strong explanatory 
power for BB default rates.8 

Next, we examine whether calibrating the models to the representative 
borrower would affect their capacity to explain the time path of default rates. To 
this effect, Table 5 reports the same regressions as above with representative 
borrower PDs substituting for average PDs across borrowers. This substitution 
does not affect the goodness-of-fit measures in any systematic way and, in 
several cases, leads to improved significance of theoretical forecasts.9 

                                                      
8 Tarashev (2005) finds that one model may contain information about default rates that 

complements the information in another model. As a result, using PDs from different models in 
the same regression of default rates may substantially improve the goodness-of-fit measure. 

9 The magnitude of the regression coefficients increases substantially when one uses 
representative borrower PDs instead of average firm-specific PDs. This is so because, as 
reported in Table 1, the former estimate is orders of magnitude smaller than the latter one. 

The predictive power of representative firm PDs1 
Dependent variable: realised default rate 

 B-rated firms BB-rated firms BBB-rated firms 

Constant 0.02 
(0.01) 

0.03 
(0.01) 

0.01 
(0.31) 

0.008
(0.00) 

0.008
(0.00) 

0.009
(0.00) 

–0.003 
(0.10) 

–0.001 
(0.41) 

–0.002
(0.28) 

One-year lag of realised 
default rate 

0.34 
(0.07) 

0.43 
(0.03) 

0.51 
(0.00) 

. . . 0.73 
(0.01) 

0.60 
(0.03) 

0.64 
(0.03) 

LT PD 0.73 
(0.15) 

. . 4.20 
(0.03) 

. . 435.00 
(0.03) 

. . 

AST PD . –0.62 
(0.57) 

. . 45.40 
(0.00) 

. . –202.40 
(0.18) 

. 

HH PD . . 1.02 
(0.07) 

. . 1.73 
(0.00) 

. . 52.60 
(0.75) 

Adjusted R-squared 0.29 0.26 0.36 0.11 0.41 0.31 0.16 0.10 0.07 

Note: See note in Table 4. 
1  Regressions based on one-year theoretical PDs and default rates. Fifty-four observations from 1990 Q1–2003 Q2. 
P-values are in parentheses. Entries in bold indicate coefficients that are statistically significant at the 10% level. Table 5 

... firm-level data 
have limited value 
added ... 
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How do we reconcile the similar forecasting power of average borrower-
specific PDs and representative borrower PDs with the earlier finding that only 
predictors of the former type account for the average level of default rates? 
One possibility is the existence of market factors that induce individual 
borrower characteristics to change in the same direction over time (which 
makes the two alternative theoretical forecasts move in tandem) but affect 
these characteristics differently at each point in time (which helps to 
differentiate across firms, with an impact only on average borrower-specific 
PDs).10  As candidates, we consider two sets of common factors. One is 
associated with stock market developments, as reflected in leverage, equity 
risk premiums and volatility; the other is related to the cost of borrowing, as 
reflected in coupon rates.11 

To examine the role of the stock market and cost of borrowing factors, 
respectively, we fix the corresponding parameters at their sample averages 
and use these for calculating modified PDs of the representative firm (Tables 6 
and 7). If a particular factor drives model-implied predictions, then suppressing 
its time variability would lead to weak explanatory power of the modified PDs 
for realised default rates. 

                                                      
10 Tarashev (2005) relates the performance of the models to a variety of directly observable 

macroeconomic indicators: the Treasury term spread and the deviations from trend of the 
credit/GDP ratio, an asset price index and real GDP. The paper reaches the conclusion that 
these variables cannot fully account for the explanatory power of the models. 

11 Admittedly, leverage ratios could respond to credit market conditions as well. The calculation 
of these ratios, however, uses book value of debt, which is typically stable over time, and 
market capitalisation, which is a volatile variable. 

The effect of calibrating constant stock market variables1 
Dependent variable: realised default rate 

 B-rated firms BB-rated firms BBB-rated firms 

Constant 0.03 
(0.03) 

0.03 
(0.06) 

0.03 
(0.11) 

0.004 
(0.06) 

0.006 
(0.00) 

0.006 
(0.07) 

–0.004 
(0.03) 

–0.001
(0.51) 

0.001 
(0.35) 

One-year lag of realised 
default rate 

0.49 
(0.00) 

0.44 
(0.01) 

0.37 
(0.08) 

. . . 0.60 
(0.02) 

0.60 
(0.03) 

0.30 
(0.27) 

LT PD2 –0.59 
(0.57) 

. . 20.15 
(0.00) 

. . 9,540.60 
(0.01) 

. . 

AST PD2 . –1.17 
(0.82) 

. . 182.40
(0.05) 

. . –7,968.10
(0.07) 

. 

HH PD2 .  –0.11 
(0.69) 

. . 5.90 
(0.18) 

. . –2,611.20
(0.00) 

Adjusted R-squared 0.27 0.26 0.26 0.11 0.15 0.17 0.25 0.14 0.29 

Note: See note in Table 4. 
1  Regressions based on one-year theoretical PDs and default rates. Fifty-four observations from 1990 Q1–2003 Q2. P-values 
are in parentheses. Entries in bold indicate coefficients that are statistically significant at the 10% level. Italicised entries 
mark statistically significant coefficients that are of the “wrong” sign.    2  Theoretical PDs of the representative firm when 
stock market variables (ie leverage, equity premium and volatility) are held constant over time. Table 6 

... because of the 
importance of 
common factors 
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Taken together, the findings reported in Tables 5–7 reveal that market-
wide factors do indeed contain useful information about future default rates. 
When measures of borrower features linked to stock market developments are 
assumed to be constant, all three models effectively cease to explain the time 
path of default rates in the B and BB rating classes. Namely, the associated 
slope coefficients become statistically insignificant or negative and the 
goodness-of-fit measures often plummet. The picture is similar for BBB-rated 
firms, where the LT PDs provide the only exception. In general, holding the 
coupon rate constant through time affects the performance of the models only 
slightly. It worsens materially, however, the goodness of fit of the regressions 
that rely on the “endogenous default” models for predicting default rates of BB-
rated firms. 

Conclusion 

This special feature has analysed the capacity of three structural credit risk 
models to predict default rates. To account for average default rates, these 
models need to be calibrated at the firm level. However, common factors, 
reflected in aggregated data, influence strongly the evolution of individual 
borrower characteristics over time. As a result, the use of firm-level data does 
not improve the (limited) explanatory power of the models for the time profile of 
default rates. 

The above results are an encouraging step towards understanding the 
empirical performance of structural credit risk models. The results, however, 
should be considered with caution because they are based on a small sample 
of borrowing firms that covers a short time period. Longer data series, 
incorporating several credit cycles, would put the analysis on firmer 
foundations and help one to better assess the extent to which the models 

The effect of calibrating a constant coupon rate1 
Dependent variable: realised default rate 

 B-rated firms BB-rated firms BBB-rated firms 

Constant 0.02 
(0.01) 

0.03 
(0.00) 

0.01 
(0.40) 

0.008 
(0.00) 

0.008 
(0.00) 

0.008 
(0.00) 

–0.003 
(0.09) 

–0.001 
(0.41) 

–0.002
(0.23) 

One-year lag of 
realised default rate 

0.36 
(0.05) 

0.44 
(0.04) 

0.55 
(0.00) 

. . . 0.75 
(0.01) 

0.65 
(0.03) 

0.66 
(0.03) 

LT PD2 0.74 
(0.30) 

. . 3.38 
(0.02) 

. . 281.10 
(0.02) 

. . 

AST PD2 . –1.80 
(0.25) 

. . 59.20 
(0.02) 

. . –1,139.20 
(0.53) 

. 

HH PD2 . . 1.65 
(0.03) 

. . 3.25 
(0.00) 

. . 110.20
(0.49) 

Adjusted R-squared 0.28 0.30 0.38 0.00 0.01 0.28 0.18 0.07 0.08 

Note: See note in Table 4. 
1  Regressions based on one-year theoretical PDs and default rates. Fifty-four observations from 1990 Q1–2003 Q2. P-values 
are in parentheses. Entries in bold indicate coefficients that are statistically significant at the 10% level.    2  Theoretical PDs 
of the representative firm when the coupon rate is held constant over time.  Table 7 
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account for upturns and downturns in economy-wide credit risk. Similarly, 
larger cross sections would significantly increase confidence in the forecasts of 
individual defaults and of default rates at different points in time. 
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