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Abstract

In this paper, I study a number of statistical issues that arise in the formulation of stress

scenarios for market risk in financial instruments. The possibility of reducing the number of scenarios

through the use of data-based, statistical dimension reduction methods is explored. Using data on

returns to spot exchange, stock market and interest rate products for a number of countries, I show

that principal components analysis may be used to reduce the effective dimensionality of the scenario

specification problem in several cases. Given the data dimensionality uncovered by PCA for the

datasets considered, various methods for specifying stress scenarios are discussed.

                                                  
* Views expressed in this paper need not reflect the views of the Board of Governors of the Federal Reserve System or

of other members of its staff or of the Eurocurrency Standing Committee. Any errors are my own.



1. Introduction and general issues in market risk scenario specification

Market risk is commonly defined as the susceptibility of portfolio values to changes in asset

prices, volatilities of prices, and related functions of asset prices.  Measuring market risk may seem to

require specifying a very large number of perturbations of prices and volatilities. However, in

empirical practice, many asset price and volatility movements are highly correlated

contemporaneously. The "effective dimensionality" of market risk is therefore often considerably less

than the number of assets held in a typical portfolio. "Risk factors" are often defined and used to

summarise observed changes in market prices and volatilities. This paper discusses some of the

statistical issues that arise in the search for market risk factors and scenarios that describe stressful

market risk events.

The remainder of this section discusses some general methodological considerations. The

need for applying statistical methods for scenario specification is reviewed. Principal Components

Analysis (PCA) is proposed as a tractable and easy-to-implement method for extracting market risk

factors from observed data. Section 2 presents the returns series analysed in this paper, and tests

whether the data are in fact amenable to PCA methods. Section 3 performs PCA on several groupings

of these series. I find that the stock market and the exchange rate returns series are more highly

correlated than, say, short term interest rates. This suggests that dimensionality reduction may apply

for certain groups of series, but not for others. On the basis of the PCA results, I provide suggestions

for stress scenarios for stock market and spot exchange rate shocks.  Section 4 concludes and

mentions several shortcomings of PCA not dealt with elsewhere in the paper. An appendix discusses

some of the mathematical aspects of nonparametric density estimation and of PCA.

It is important to note that the dimensionality of the market risk scenario problem is, to a

considerable extent, a choice variable for the researcher. Increasing the number of market risk factors

tends to enhance descriptive accuracy or the amount of data variability captured by the scenarios, but

also risks increasing the methodological complexity and unwieldiness of the study. An optimal cut-off

for specifying additional risk factors will depend, in general, on the purposes for which the risk factors

are being constructed.

When the number of series is small, say one or two, it is usually possible to simply "eyeball"

scatter plots of the data and to decide heuristically what a relevant stress scenario might be.

Unfortunately, "eyeball methods" become infeasible when the data are high-dimensional. To specify

stress scenarios in such cases, it is necessary to resort to formal statistical methods. The statistical

methods should provide answers to issues such as the effective dimensionality of the data and nature

of data-coherent stress scenarios. Formulating market risk factors and extracting their distributions

from the data is an intermediate step between assembling the data and specifying scenarios.
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One may distinguish between model-driven and data-driven statistical methods for

generating risk factors.1 Model-driven methods rely heavily on hypothesised relationships between

asset prices, returns, and volatilities (which are then estimated from the data). Examples of model-

driven methods are the capital asset pricing model (CAPM) for returns and "GARCH" models for

volatilities. Data-driven methods, on the other hand, impose less structure on the data. When a

researcher is unwilling to impose a lot of structure on the data and would rather extract risk factors

directly, data-driven methods are preferable. One method which is in widespread use among statistical

practitioners is "Principal Components Analysis" (PCA). This method, whose technical details are

described in the appendix to this paper, is frequently employed when one needs to reduce the data

dimensionality to a tractable threshold without being willing to commit to strong hypotheses about the

nature of the data generating process.

2. Data and preliminary data analysis

The data series I study in this paper are daily-frequency observations on spot exchange rates,

stock market indexes, and long-term and short-term interest rates, and were obtained from the Federal

Reserve Board's internal economic database. I consider data for nine countries: Belgium, Canada,

France, Germany, Japan, the Netherlands, Switzerland, the United Kingdom, and the United States.

The exchange rate series consist of the bilateral spot exchange rates of the first eight countries vis-a-

vis the United States.2 For each of the nine countries, a leading stock market index was chosen to

represent movements in equity prices. Both short-term (3-month) and long-term (10-year) interest

rates were collected for each of the nine countries. In addition, a nine-point term structure series for

the US Treasury returns and four separate stock market indexes for the United States (S&P 500, Dow

Jones Industrials-30 Average, Nasdaq Composite, and Wilshire 5000) were studied. The observations

run from 2 January 1990 to 8 October 1996, or slightly less than 1,700 observations. Cross-sectional

missing values, caused chiefly by differing national market holiday conventions, were deleted prior to

further analysis. I first took natural logarithms of the exchange rate and stock market index series, and

then first-differenced all series to induce stationarity.

Prior to applying PCA to these returns series, it is important to determine whether PCA is in

fact a meaningful procedure given the distributional properties of the data. The main distributional

requirement is "axis symmetry," i.e., that the joint distribution of the data be symmetric about its

                                                  
1 In practice, of course, one finds that successful model-driven methods are congruent with the data, and successful

data-driven methods can be interpreted to conform to certain statistical models.

2 The spot exchange rates are measured in units of foreign currency per US$ except for Sterling, where the inverse
convention was applied.
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axes.3 Unfortunately, formal statistical techniques for testing axis symmetry are not well developed.

To test the proposition of axis symmetry, I chose the following informal "eyeball method:" I

computed the joint density of various pairs of series and graphed their contour plots. Significant

deviations from axis symmetry are then readily apparent to the eye. Appendix B contains a brief

discussion of the nonparametric density estimation methods that I employed to obtain the contour

plots.

Contours of six (randomly chosen) bivariate densities are plotted in Figures 1 through 6. The

returns data are standardised for this exercise.  Density estimates are provided for a -5 to +5 standard

deviations range from the joint mean of the data.  The heights of the displayed contours are 0.40, 0.30,

0.20, 0.10, 0.04, 0.01, and 0.001.4 The height of the outermost lines is only 1/400th of the height of

the innermost "ring." For a practical assessment of axis symmetry, though, it is more practical to

consider the shapes of the lines with heights between 0.01 and 0.40. The first three figures depict

bivariate data sets that are not highly correlated; the second group of three figures depicts series that

are highly correlated. In no case does failure of axis symmetry appear to be a prominent problem.

Since axis symmetry cannot be rejected, at least not on the basis of the informal tests conducted, I

conclude that we may indeed apply PCA methods to the data at hand.

3. Principal components analysis and effective dimensionality of the data

3.1 Fraction of variance explained by principal components

For a collection of returns series, the number of principal components (PCs) to be retained

for further analysis is determined by the correlation structure of the data. If the data are all highly

mutually correlated, one or two PCs will suffice to explain a large fraction of total data variation. On

the other hand, if the data are either uncorrelated or only correlated across subgroups, more PCs need

to be retained. By studying the fraction of the variance that is explained by successive PCs, one may

obtain an estimate of the effective dimensionality of the data.

Since PCA is sensitive to the units of measurement of the data, we report our results both for

the "raw" and for "standardised" (zero mean and unit variance) series. Standardisation is found to have

little qualitative effect except when groups of series with differing group variances, such as exchange

rates and interest rates, are analysed.

In Table 1, I list the fractions of the total variance explained by successive principal

components. Numbers that exceed 1/N (where N is the number of series under consideration) are

                                                  
3 Intuitively, axis symmetry can be thought of as an absence of non-linear dependence among the series. Multivariate

normality is sufficient but not necessary for axis symmetry. Other well-known distributions, such as the multivariate
Student-t, are also elliptic and hence axis-symmetric.

4 The height of 0.001 was chosen deliberately so that even a single data point would "show up" in the contour plots.
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italicised, and numbers that exceed 2/N are underlined. I start with several more narrowly defined

groups of series, and then go on to study larger data groups. For the eight groupings considered, I

find:

(A) Short Term Interest Rates, 9 Countries. In the sample period, correlations among the nine

short term interest rates were quite low. This is reflected in Panel (A) of Table 1: Whether

standardised or raw interest rate changes are considered, the first two PCs barely explain

50% of total variance.

(B) Long Term Interest Rates, 9 Countries. In this case, the first PC alone explains ca. 50% of

total data variability, and first three jointly explain about 75% of the variance.

(C) 9-Point US Term Structure Series. Here, the first PC explains more than 80% of total

variation, and the second explains about 10%. None of the other seven PCs explains more

than about 3% of total variation.

(D) Spot Exchange Rates, 8 Countries. All of the series are very highly correlated, and the first

PC explains more than 70% of the total variance. No other PC explains more than 15% of

the variance.

(E) Stock Market Indexes, 9 Countries. The first PC explains about 40% of the variance, and the

next two each contribute more than 10%.

(F) 4 US Stock Market Indexes. All series are well known to be very highly correlated at daily

frequencies; this is borne out in the PCA, where the first (of four) PCs explains close to 90%

of total variance.

(G) Combination of Stock Market Indexes and Exchange Rates, 17 Series. For the raw data, only

the first four PCs each explain more than a 1/N fraction of total variance, but none of these

four is particularly dominant. A similar results applies for the standardised returns series.

(H) Combination of Stock Market Indexes, Exchange Rates, and Long Term Interest Rates,

26 Series. For the unstandardised series, the first PC explains 50% of the variance, and two

more PCs explain more then a 2/N fraction of the variance. However, upon standardisation

the influence of the first PC is diminished to 26%, and the second PC has roughly equal

weight (21%).

From these numbers, it would appear that there is considerable scope for dimension

reduction among the equity returns series and exchange rate series, as well as within the US term

structure of interest rates. However, the two broad asset classes (G) and (H) are less mutually

correlated, leading to a lower contribution to the total variance provided by the first few leading

principal components.
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3.2 Correlations of estimated principal components with observed time series

In the preceding subsection we found that, in several cases, one or two PCs suffice to

explain most of the variability present in the data. This suggests that the effective dimensionality of

the data groups is smaller than the number of series in the groups. However, this finding alone does

not let us attribute an economic interpretation to the PCs, since it does not tell us whether the PCs are

correlated with all of the series in the respective group, or only with a subset of the series

Since PCs are linear functions of the data, it is useful to study their correlations with the

observed returns series to uncover their economic interpretation (if one exists). In Table 2, we list

correlations for the first four PCs (computed from the raw as well as the standardised returns series)

with the corresponding observed series. The discussion below focuses, to the most part, on the

correlations between the observed series and the PCs obtained after first standardising the data. We

find:

(A) Short Term Interest Rates, 9 countries. In keeping with the finding reported above that none

of the PCs explains a large fraction of the total variance in the data, we find that each of the

first four PCs is highly correlated with only one or at most two of the individual 3-month

interest rate series. This finding precludes the use of PCA to reduce the dimensionality of

the multivariate short-rate process.

(B) Long Term Government Bond Interest Rates, 9 countries. In contrast to the short rate case,

the long rates (especially the six European series) are highly correlated with each other and

with the first PC.  The Canadian and US series are highly correlated with P2, and the

Japanese long rate is highly correlated with P3. This suggests that for purposes of scenario

specification, the nine series can be reduced to three "meta series:" one "European"

dimension, one "North American" dimension, and one "East Asia" dimension.

(C) 9-Point US Term Structure Series. For this group of time series, the first PC is highly

correlated with all nine series, and the correlations are of the same sign. The second PC is

negatively correlated with the short-maturity series and positively correlated with the long-

maturity series. The third PC is positively correlated with the short- and long-maturity

series, and negatively correlated with the intermediate-maturity series. This finding lets us

interpret the first principal component as a factor that shifts the whole term structure, the

second PC as a factor that tilts or rotates the yield curve, and the third as a factor that affects

curvature. In many cases, it will be quite satisfactory to concentrate

(D) Spot Exchange Rates, 8 Countries. Here, all series except the Can$/US$ are highly

correlated with the first PC. The Can$/US$ series is highly correlated with P2, and Yen/US$

series is highly correlated with P3 (as well as with P1). This means that these data show one

dominant risk factor at work, viz. the joint comovements of all exchange rates (except the

Canadian series) against the US$; the fluctuations of the Canadian currency vis-a-vis the

US$ are governed by a separate risk factor, given by P2.
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(E)  Stock Market Indexes, 9 Countries. Concentrating on the standardised-PC correlations with

the observed series, it is obvious that all but one of the series (the French stock market index

returns) are highly correlated with the first PC. In addition, the Canadian and US series are

also highly correlated with P2. Given these findings, one can easily conclude that there is

one dominant global risk factor as well as a separate "North American" risk factor.

(F) 4 US Stock Market Indexes. All four series are highly correlated with P1; in addition, the

Nasdaq Composite returns series is also somewhat correlated with P2. It seems, though, that

it would suffice for many purposes to specify a single risk factor that governs the daily-

frequency returns of all four indexes.

(G) Combination of Stock Market Indexes and Exchange Rates, 17 Series. (Here, it is definitely

preferable to concentrate on the second part of panel (G) of Table 2, since the two types of

series have differing levels of variance.) From the correlation numbers, P1 may be

interpreted as an "exchange rate shock" and P2 as a "stock market shock." However, these

first two principal components explain only 56% of the total data variability (cf. Table 1).

Hence, a simple two-factor model may not be satisfactory for capturing a sufficiently large

fraction of the variance in the data.

(H) Combination of Stock Market Indexes, Exchange Rates, and Long Term Interest Rates,

26 Series. Attributing economic significance to the PCs computed from the joint behaviour

of all 26 series is even more difficult than in the previous case. P1 is negatively correlated

with most stock market returns series; the exchange rate returns are negatively correlated

with P1 but positively with P2; finally, the long term interest rates are positively correlated

with both P1 and P2. These findings strongly suggest that it is not fruitful to study all 26

series jointly if the objective is reducing the dimensionality of the data.

To sum up, PCA applied to the various groupings of the data reveals that it is feasible to

reduce the dimensionality of the scenario specification problem for certain groups of assets, especially

for exchange rates and stock market index fluctuations. On the other hand, we also found groups of

series—most notably the set of short-term interest rates—where there appears to be little scope for

dimension reduction. Both the "positive" and the "negative" results are useful since they point out the

types of groupings of the data for which dimension reduction is appropriate, as well as the ones for

which it is not.

3.3 Stress scenarios based on principal components analysis

The preceding analysis suggests that several groupings of the data are well characterised as

possessing only one or at most two "meta-dimensions." How does one specify scenarios that make use

of this information? Consider first the case where a single principal component suffices to capture

most of the variance of the data. Since the first PC is a one-to-one transformation of the observed

data, it is possible to "reverse" the calculations and to compute the values of each of the series that
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correspond to given values of the first PC. Next, since the PC is a random variable we may pick tail-

event quantiles of the empirical distribution of the PC to generate corresponding tail events of the

observable series.

When more than one PC is required to describe a sufficient amount of the total variance in

the data, one may proceed by specifying separate "shocks" in each of the directions given by the

retained PCs, in analogy to the case of a single relevant PC. Alternatively, one may choose to form

arbitrary linear combinations of the estimated PCs to generate "combined" shocks. Or, if the PCs are

highly correlated with one of the observable series, one could simply sort the data by that series, and

associate stress scenarios with particularly large realisations of that series.

Frye (1996) and Jamshidian and Zhu (1996) explain in detail how trading firms may use

PCA as a basis for their risk management process. Once the "relevant dimensions" of market risk are

established via PCA, scenarios are generated by taking various linear combinations of the first two or

three PCs of the data.

In the remainder of this section, we report the results of specifying shock scenarios for the

following four groupings of the data: spot exchange rates (8 series), the US T-Bond term structure (9

series), long-term government bond returns (9 series), and stock market indexes (9 series). For each of

these datasets, four separate types of scenarios were generated. The first three are based on

fluctuations in the direction specified by each of the first three PCs of the data; the fourth scenario is

created by taking the direct sum of the first three scenarios.  To indicate how the potential

computational burden might be reduced for firms that would calculate their exposure to each of these

shocks, "fluctuations" that do not exceed at least 0.5% per day or 1 basis point per day are set to zero.

For each of these four types of scenarios, the following quantiles of the resulting

distributions are reported: 0.5%, 1%, 5%, 10%, 90% 95%, 99%, and 99.5%. By measuring the

exposure to shocks of increasing severity-from 10% to 0.5%, and from 90% to 99.5%-it may be

possible to determine if there is "curvature" in the exposure, i.e., if there is gamma risk that could lead

to systemic breakdowns if these exposures are hedged by dynamic trading strategies. Note that the

quantiles of the shock distributions should not be interpreted as meaning that any of these particular

scenarios will occur with the specified probabilities; "real world" shocks are combinations of the

shocks in the directions of the various PC-shocks. The results are listed in Table 3.

Turning first to the scenarios for the eight exchange rates (Panel A), we note that the shocks

generated by fluctuations along the first PC affect mainly the European series; the second shock

affects mostly the Can$/US$ exchange rate, and the third induces fluctuations in the Yen/US$ rate.

The fourth shock, which is a weighted sum of the first three shocks, leads to fluctuations in all series

except the Can$/US$ series

The scenarios for shocks to the US term structure, tabulated in Panel B of Table 3, show that

shocks in the direction of the first PC-which was identified above as a "shift" factor-indeed lead to a

shift in all rates, with the changes being largest for the longer-term bonds. The second scenario is a
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"tilt" of the yield curve, and the third serves to increase or decrease curvature. The numerical

magnitude of the shocks, measured in basis points, may seem somewhat small. However, it should be

remembered that they are "pure factor shocks," and that "actual" shocks are combinations of the

"pure" shocks. To wit, the fourth scenario, which is a simple combination of the first three, does lead

to fluctuations that exceed 20 basis points at either end of the distribution.

In Panel C of Table 3, various scenarios for fluctuation in long term bond rates across nine

countries are presented. The first PC-shock leads to sizeable changes in all long rates except for Japan

and the US; these two series are affected by PCs 2 and 3, respectively. Interestingly, a simultaneous

shock to all three PCs leads to a scenario in which the Canadian and US long rates fluctuate strongly

while the other series do not show much action.

Stock market shock scenarios are given in Panel D of Table 3. Here, the first PC induces

shocks for all European series except France. The second shock affects US stock returns strongly, but

has a smaller impact on the stock returns of Belgium, Canada, France and Germany as well. The third

PC leads to large fluctuations in the series for France, and affects Japanese stock market returns as

well. A combination of these three scenarios affects all stock markets except the ones for Canada and

the United States.

We close this section by observing that the numerical values given in all of the scenarios

confirm the qualitative interpretation of the nature of the PCs derived earlier in this paper. The

numerical values presented here serve mainly to give a "flavour" of the severity of market risk

scenarios that can be generated by PCA.

4. Conclusions

In this note, I have set out to discuss some of the technical issues that need to be addressed

in the process of specifying scenarios that are based on data driven methods such as principal

components analysis. The methodological points were illustrated empirically with a dataset that

consists of daily-frequency observations on long- and short-term interest rates, stock market indexes,

and exchange rates for nine industrialised countries. I find that the effective dimensionality of several

subgroups of these time series is considerably smaller than the number of series included. These

results would allow us to reduce the number of market risk scenarios to groups. Several methods for

generating scenarios in terms of observables on the basis of the PCA-based results were discussed,

and numerical values of several simple scenarios were presented.

We close by discussing some shortcomings of PCA that have not been mentioned up to this

point. First, and most importantly, PCA is strongly affected by the choice of units of the series. An

important consequence of this fact is that PCA will not detect risk factors that do not contribute

significantly to the total variability of the data. This shortcoming could be remedied, at least in
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principle, by multiplying the series with appropriate portfolio weights. However, this requires

knowledge of the actual asset holdings of participants in the reporting exercise.

A second shortcoming, less serious than the first, is that PCA is suitable for detecting risk

factors that are linear functions of the data. Volatility factors, which are of interest for the valuation of

options and of products with embedded-option characteristics, are more difficult to derive by PCA. To

obtain volatility factors, it appears to be preferable to use a more model-driven approach to data

analysis, say by specifying and estimating a multi-factor GARCH process. Third, by construction, the

factors derived from PCA are mutually orthogonal. If the true market risk factors (assuming that there

is such a thing as a "true" risk factor!) are not orthogonal, then the PCA-based factors will be linear

combinations of the true factors, and it will be harder to give economic interpretations to the

PCA-derived factors.
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Appendix A

Technical exposition of principal components analysis

Consider a collection of T observations of N asset returns. Let X denote the resulting T × N

data matrix, and assume without loss of generality that X has full column rank. (Otherwise, one or

more of the returns series are redundant and may be omitted.) Our goal is to find a linear combination

of the observed asset returns that "explains" as much as possible of the observed variability of the

data. We will demonstrate that principal components analysis, PCA for short, achieves this objective.

The following discussion is based on Theil (1971, pp. 46–56). Let P denote the T × N

matrix of the eigenvectors of XX' that correspond to the N non-zero eigenvalues (sorted in descending

order) of XX'. (Since XX' is positive semi-definite, exactly N of its eigenvalues are positive and the

remaining T-N are zero.) One can show that the first column of P, i.e., the first "principal component"

(PC) of X, maximises the explained variance ("R2") of the multivariate regression of X on any linear

combination of the columns of X. Thus, the first PC solves the objective set out above. Similarly, the

second column of P, i.e., the second PC, maximizes the explained variability in the data, given the

explanation already provided by the first PC. Since the eigenvectors are mutually orthogonal, all of

the principal components are uncorrelated with each other. Note that principal components are not

unique up to sign, i.e., multiplying a PC by -1 has no effect on the explanatory power of the PC.

One may write X = P A, where A is the N × N matrix of "loadings" of the data on each of

the principal components. This representation shows that PCA is a special form of the general

statistical method of "factor analysis." In PCA, the "factors" are not directly observed, but are

constructed by taking linear combinations of the data. Since each of the PCs is (in principle) a

function of all N data vectors, PCA is a function of the joint distribution of all data points. This

distinguishes it from regression analysis, which is concerned with the conditional distribution of the

"dependent" variable(s) given observations on the "independent" variables. In PCA, one does not

distinguish between dependent and independent variables.

The fraction of the data variance explained by each of the successive PCs is given by

λ λi i/ ,∑d i  where λ i  is the i'th (sorted) eigenvalue of XX', i = 1,…,N.  The cumulative fraction of

the data variance explained by the first j PCs is given by λ λ λ1 + + ∑... /j id i d i.

In empirical practice, when the data are correlated, the first few PCs tend to capture most of

the variability. The leading PCs, then, can be used to represent the "meta-dimensions" in which the

data fall. One could also say that the number of leading PCs, say, those that capture between 50% and

90% of the total variance, represents the effective dimensionality of the data, which will be well less

than  in general.



34

Appendix B

Nonparametric density estimation

Technical references to the field of nonparametric density estimation are Silverman (1986),

Green and Silverman (1994) and Wand and Jones (1995) and the references contained in these works.

The pieces cited explain both the intuition that underlies nonparametric density estimation methods as

well as many of the mathematical subtleties and computational considerations that arise in this field in

practice.

The key idea in nonparametric density estimation—as in other areas of nonparametric

statistics—is to apply "local smoothing" techniques to obtain estimates of the probability density of

the data. Local smoothing means that the estimate of the density at a point is influenced mostly by the

number of observations close to that point, whereas it is little affected by the properties of the data far

away from the point of interest. Generally, the local smoothing estimators are so-called "kernel

methods." In all kernel methods, the crucial parameter is the "bandwidth." The bandwidth parameter

determines the size of the region (around the point of interest) which is used to perform the smoothing

operation.

The bivariate density estimates reported in the paper were computed using a

two-dimensional Gaussian kernel and a (scalar) bandwidth chosen as σN −0 2. , where σ  is the average

standard deviation of both series. The estimation routines were coded in the "Gauss" programming

language by the author.
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Table 1

Fractions of variance explained by successive principal components

Note: There are two lines for each group of series. Line 1 applies to the raw returns series,

the second for the standardised returns series. Numbers greater than 1/N are italicised, numbers

greater than 2/N are underlined, where N is the number of series included in the group.

(A) Short Term Interest Rates (9 countries)

0.355 0.232 0.154 0.090 0.069 0.046 0.032 0.014 0.008

0.202 0.179 0.112 0.102 0.097 0.093 0.080 0.074 0.060

(B) Long Term Government Bond Interest Rates (9 countries)

0.494 0.159 0.094 0.084 0.069 0.033 0.029 0.026 0.011

0.480 0.122 0.100 0.087 0.063 0.061 0.037 0.034 0.016

(C) 9-Point US Term Structure

0.843 0.093 0.028 0.011 0.007 0.007 0.005 0.004 0.003

0.810 0.121 0.031 0.013 0.009 0.006 0.004 0.003 0.003

(D) Spot Exchange Rates (8 countries)

0.812 0.084 0.043 0.022 0.022 0.010 0.007 0.001

0.716 0.130 0.079 0.042 0.017 0.008 0.006 0.001

(E) Stock Market Indexes (9 countries)

0.395 0.192 0.164 0.076 0.052 0.043 0.037 0.023 0.019

0.409 0.130 0.113 0.090 0.071 0.060 0.050 0.043 0.033

(F) US Stock Market Indexes (4 series)

0.868 0.107 0.018 0.007

0.883 0.090 0.019 0.008

(G) 9 Stock Market Indexes & 8 Exchange Rates

0.298 0.233 0.129 0.113 0.053 0.035 0.030 0.026 0.024

0.358 0.202 0.069 0.064 0.057 0.047 0.038 0.035 0.031

(H) 9 Stock Market Indexes, 8 Exchange Rates, & 9 Long Term Rates

0.500 0.147 0.087 0.076 0.064 0.032 0.027 0.025 0.010 0.009

0.257 0.213 0.075 0.056 0.044 0.039 0.034 0.032 0.028 0.027
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Table 2

Correlations of the data series with the first four principal
 components, for various data groupings

Note: Two sets of correlations are reported for each group of returns, (i) between the data

and the "raw-data PCs" and (ii) between the data and "standardised-data PCs." Correlations greater

than 0.45 in absolute value are underlined.

(A) Short Term Interest Rates (9 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE -0.580 0.813 -0.008 0.031

CA -0.184 -0.081 0.978 -0.001

FR -0.899 -0.426 -0.099 0.039

GE -0.218 0.070 0.043 -0.193

JA 0.021 0.021 0.042 -0.047

NE -0.174 0.109 0.102 -0.182

SZ -0.079 0.039 0.033 -0.278

UK -0.130 -0.007 -0.044 -0.958

US 0.005 0.047 0.036 -0.080

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.433 0.403 -0.163 -0.077

CA 0.224 0.220 -0.274 0.742

FR 0.390 0.624 -0.143 0.024

GE 0.728 -0.077 0.227 -0.058

JA 0.114 -0.488 -0.332 0.319

NE 0.709 -0.193 0.164 0.077

SZ 0.537 -0.431 0.114 -0.065

UK 0.269 0.059 -0.394 -0.576

US 0.014 -0.228 -0.766 -0.107
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Table 2 (cont.)

(B) Long Term Government Bond Interest Rates (9 Countries)

Correlation between data and raw-data PCs

Index P1 P2 P3 P4

BE 0.777 -0.247 0.290 -0.015

CA 0.695 0.655 0.006 0.293

FR 0.814 -0.218 0.279 -0.053

GE 0.829 -0.215 0.285 -0.060

JA 0.315 -0.031 0.185 -0.309

NE 0.811 -0.227 0.289 -0.038

SZ 0.407 -0.100 0.184 0.015

UK 0.777 -0.325 -0.532 0.065

US 0.416 0.503 -0.190 -0.708

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.830 -0.180 -0.035 0.097

CA 0.579 0.525 -0.158 -0.094

FR 0.849 -0.110 -0.009 0.125

GE 0.894 -0.135 -0.055 0.094

JA 0.349 0.156 0.923 -0.011

NE 0.879 -0.163 -0.055 0.080

SZ 0.503 -0.239 -0.017 -0.819

UK 0.704 -0.036 -0.067 0.235

US 0.365 0.804 -0.113 -0.099
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Table 2 (cont.)

(C) 9-Point US Term Structure

Correlation between data and raw-data PCs

Maturity P1 P2 P3 P4

m03 0.624 -0.676 0.334 0.164

m06 0.807 -0.518 0.117 -0.119

y01 0.911 -0.294 -0.146 -0.198

y02 0.956 -0.109 -0.208 0.046

y03 0.975 0.005 -0.143 0.074

y05 0.979 0.120 -0.042 0.067

y07 0.960 0.223 0.070 0.041

y10 0.942 0.276 0.128 -0.004

y30 0.875 0.359 0.243 -0.134

Correlation between data and standardised-data PCs

Maturity P1 P2 P3 P4

m03 0.664 -0.677 0.269 0.159

m06 0.836 -0.482 0.025 -0.208

y01 0.922 -0.224 -0.212 -0.109

y02 0.954 -0.039 -0.225 0.075

y03 0.968 0.067 -0.154 0.086

y05 0.969 0.170 -0.048 0.075

y07 0.949 0.261 0.067 0.042

y10 0.931 0.308 0.129 0.003

y30 0.865 0.385 0.258 -0.117
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Table 2 (cont.)

(D) Spot Exchange Rates (8 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE -0.956 0.074 -0.106 0.174

CA 0.009 0.188 0.191 -0.028

FR -0.969 0.085 -0.054 0.100

GE -0.985 0.062 -0.080 0.037

JA -0.608 -0.790 0.070 0.017

NE -0.981 0.065 -0.086 0.051

SZ -0.947 0.038 -0.087 -0.301

UK 0.822 -0.148 -0.547 0.003

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE -0.955 0.023 0.080 0.126

CA 0.011 0.971 -0.232 0.050

FR -0.969 0.030 0.091 0.075

GE -0.983 0.006 0.076 0.094

JA -0.617 -0.278 -0.735 -0.047

NE -0.979 0.009 0.077 0.101

SZ -0.941 0.008 0.046 0.091

UK 0.829 -0.130 -0.111 0.532
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Table 2 (cont.)

(E) Stock Market Indexes (9 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE 0.587 0.229 -0.087 0.151

CA 0.436 0.129 -0.110 -0.569

FR -0.012 -0.654 -0.758 0.012

GE 0.718 0.387 -0.316 0.338

JA 0.806 -0.479 0.346 0.017

NE 0.688 0.368 -0.228 -0.015

SZ 0.667 0.354 -0.241 0.053

UK 0.613 0.269 -0.232 -0.313

US 0.400 0.164 -0.155 -0.734

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.661 -0.303 0.017 0.189

CA 0.577 0.636 -0.139 0.070

FR -0.060 0.241 0.930 -0.242

GE 0.766 -0.285 0.068 -0.138

JA 0.496 -0.020 0.313 0.763

NE 0.824 -0.201 -0.016 -0.188

SZ 0.759 -0.179 0.002 -0.162

UK 0.729 0.017 0.021 -0.224

US 0.538 0.680 -0.159 -0.023
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Table 2 (cont.)

(F) US Stock Market Indexes (4 series)

Correlation between data and raw-data PCs

Index P1 P2 P3 P4

djia30 0.925 0.329 0.191 0.017

nasdaqc 0.890 -0.454 0.033 0.025

sp500 0.954 0.225 -0.179 0.086

wilt5000 0.982 0.065 -0.080 -0.161

Correlation between data and standardised-data PCs

Index P1 P2 P3 P4

djia30 0.939 0.280 0.198 0.018

nasdaqc 0.862 -0.502 0.053 0.041

sp500 0.966 0.170 -0.167 0.098

wilt5000 0.986 0.006 -0.072 -0.149
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Table 2 (cont.)

(G) 9 Stock Market Indexes & 8 Exchange Rates

Correlations between data and raw-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.520 -0.260 -0.236 0.112

CA -0.372 -0.219 -0.137 0.123

FR 0.068 -0.118 0.693 0.709

GE -0.628 -0.327 -0.386 0.352

JA -0.609 -0.574 0.404 -0.368

NE -0.713 -0.133 -0.308 0.239

SZ -0.632 -0.224 -0.330 0.262

UK -0.598 -0.180 -0.233 0.239

US -0.325 -0.232 -0.183 0.174

Exchange Rate

BE -0.594 0.741 0.144 -0.024

CA 0.054 0.013 -0.011 -0.071

FR -0.598 0.744 0.157 -0.056

GE -0.617 0.753 0.146 -0.048

JA -0.353 0.503 0.130 -0.006

NE -0.614 0.750 0.148 -0.051

SZ -0.650 0.685 0.113 -0.021

UK 0.485 -0.660 -0.103 0.036
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Table 2 (cont.)

Correlations between data and standardised-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.241 -0.616 0.326 0.047

CA -0.168 -0.563 -0.604 -0.213

FR 0.080 0.026 -0.289 0.553

GE -0.262 -0.718 0.285 0.139

JA -0.123 -0.491 0.046 0.130

NE -0.466 -0.690 0.176 0.052

SZ -0.336 -0.679 0.176 0.030

UK -0.348 -0.640 -0.018 -0.026

US -0.117 -0.545 -0.626 -0.266

Exchange Rate

BE -0.931 0.230 -0.015 -0.013

CA 0.043 0.074 0.254 -0.737

FR -0.938 0.242 -0.023 -0.025

GE -0.956 0.233 -0.014 -0.004

JA -0.601 0.205 -0.098 0.240

NE -0.952 0.234 -0.017 -0.008

SZ -0.935 0.146 -0.014 -0.006

UK 0.800 -0.233 -0.009 0.126
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Table 2 (cont.)

(H) 9 Stock Market Indexes, 8 Exchange Rates, & 9 Long Term Rates

Correlations between data and raw-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.380 0.071 -0.130 -0.023

CA -0.306 -0.149 0.016 0.129

FR 0.044 -0.012 -0.025 0.026

GE -0.477 0.140 -0.159 -0.047

JA -0.185 0.006 -0.022 0.016

NE -0.436 0.066 -0.030 -0.023

SZ 0.345 0.011 -0.052 0.002

UK -0.411 0.076 0.086 0.047

US -0.264 -0.166 0.055 0.309

Exchange Rate

BE -0.031 0.105 0.035 -0.100

CA 0.132 0.140 -0.008 0.106

FR 0.002 0.102 0.047 -0.100

GE -0.029 0.107 0.043 -0.100

JA 0.026 0.023 0.055 -0.122

NE -0.027 0.106 0.048 -0.101

SZ -0.048 0.090 0.049 -0.094

UK -0.016 -0.101 0.036 0.044

Long Term Rate

BE 0.783 -0.248 0.292 0.027

CA 0.710 -0.642 -0.000 0.276

FR 0.828 -0.242 0.244 -0.018

GE 0.833 -0.244 0.272 -0.000

JA 0.349 -0.016 0.182 -0.414

NE 0.821 -0.250 0.277 0.017

SZ 0.450 -0.116 0.161 0.047

UK 0.787 -0.283 -0.546 0.015

US 0.464 0.492 -0.090 -0.669
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Table 2 (cont.)

Correlations between data and standardised-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.512 -0.275 0.230 0.336

CA -0.385 -0.259 0.475 -0.386

FR 0.082 -0.027 0.027 -0.066

GE -0.602 -0.351 0.223 0.363

JA -0.287 -0.197 0.387 0.217

NE -0.707 -0.164 0.344 0.240

SZ -0.560 -0.206 0.420 0.252

UK -0.591 -0.208 0.356 0.098

US -0.326 -0.266 0.522 -0.464

Exchange Rate

BE -0.615 0.730 -0.070 -0.048

CA 0.110 0.059 0.036 0.245

FR -0.602 0.756 -0.050 -0.050

GE -0.630 0.750 -0.066 -0.051

JA -0.357 0.524 -0.043 -0.101

NE -0.627 0.749 -0.064 -0.053

SZ -0.643 0.693 0.004 -0.030

UK 0.508 -0.654 0.075 0.029

Long Term Rate

BE 0.606 0.473 0.341 -0.053

CA 0.407 0.412 0.091 0.378

FR 0.637 0.478 0.333 -0.043

GE 0.622 0.514 0.408 -0.020

JA 0.178 0.345 0.079 0.070

NE 0.611 0.508 0.418 -0.027

SZ 0.358 0.291 0.315 0.040

UK 0.539 0.391 0.254 0.079

US 0.265 0.349 -0.134 0.643
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Table 3

Market risk scenarios generated by PC shocks

A. Exchange Rate "Shock Scenarios"
(measured in percent per day; values less than 0.5% are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% -2.25 - -2.12 -2.28 -1.34 -2.28 -2.43 1.76

1% -1.92 - -1.80 -1.94 -1.15 -1.94 -2.07 1.50

5% -1.09 - -1.03 -1.11 -0.66 -1.10 -1.18 0.85

10% -0.79 - -0.74 -0.80 - -0.80 -0.85 0.61

90% 0.79 - 0.74 0.80 - 0.80 0.84 -0.63

95% 1.10 - 1.03 1.11 0.64 1.11 1.18 -0.87

99% 1.87 - 1.76 1.90 1.10 1.89 2.01 -1.48

99.5% 2.17 - 2.04 2.20 1.27 2.19 2.32 -1.71

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% - -0.76 - - - - - -

1% - -0.70 - - - - - -

5% - - - - - - - -

10% - - - - - - - -

90% - - - - - - - -

95% - - - - - - - -

99% - 0.82 - - -0.55 - - -

99.5% - 0.93 - - -0.63 - - -
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% - - - - 1.30 - - -

1% - - - - 1.17 - - -

5% - - - - 0.76 - - -

10% - - - - 0.54 - - -

90% - - - - -0.58 - - -

95% - - - - -0.79 - - -

99% - - - - -1.44 - - -

99.5% - - - - -1.67 - - -

Simultaneous positive shock to first three PCs:
(sorted by value of GE column)

Quantile BE CA FR GE JA NE SZ UK

0.5% -2.18 - -2.05 -2.22 -1.65 -2.21 -2.37 1.68

1% -1.90 0.57 -1.80 -1.93 - -1.93 -1.99 1.48

5% -1.12 - -1.06 -1.13 -0.69 -1.13 -1.21 0.92

10% -0.80 - -0.76 -0.80 - -0.80 -0.84 0.65

90% 0.79 - 0.75 0.82 - 0.81 0.84 -0.57

95% 1.09 - 1.03 1.11 - 1.10 1.13 -0.87

99% 1.88 - 1.76 1.90 1.58 1.89 2.04 -1.55

99.5% 2.18 - 2.05 2.22 1.67 2.21 2.36 -1.71
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Table 3 (cont.)

B. US Term Structure "Shock Scenarios"
(measured in basis points; values less than 1 bp are suppressed)

Shock in direction of first PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -11 -14 -18 -21 -22 -22 -21 -20 -16

1% -8 -11 -14 -16 -17 -17 -16 -15 -12

5% -5 -6 -8 -9 -9 -9 -9 -8 -7

10% -4 -5 -6 -7 -7 -7 -7 -6 -5

90% 3 4 6 7 7 7 7 6 5

95% 5 6 8 9 10 10 9 9 7

99% 8 11 14 16 17 17 16 15 12

99.5% 10 13 17 20 21 21 20 18 15

Shock in direction of second PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -11 -9 -5 - 1 4 6 7 7

1% -9 -7 -4 - 1 3 4 5 6

5% -5 -4 -2 - - 2 2 3 3

10% -4 -3 -1 - - 1 2 2 2

90% 3 2 1 - - -1 -2 -2 -2

95% 5 3 2 - - -2 -3 -3 -3

99% 8 6 3 - -1 -3 -4 -5 -5

99.5% 10 7 4 - -1 -4 -5 -6 -6
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Table 3 (cont.)

Shock in direction of third PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -4 - 3 4 3 - -1 -2 -4

1% -3 - 3 3 2 - -1 -2 -3

5% -2 - 2 2 2 - - -1 -2

10% -2 - 1 2 1 - - -1 -2

90% 1 - -2 -2 -1 - - - 2

95% 2 - -2 -2 -2 - - 1 2

99% 3 - -3 -4 -3 - - 2 3

99.5% 4 - -4 -4 -3 -1 1 2 4

Simultaneous positive shock to first three PCs:
(sorted by value of 30yr column)

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -15 -17 -19 -21 -21 -21 -20 -19 -15

1% -8 -11 -14 -17 -18 -18 -18 -17 -14

5% -4 -5 -6 -8 -9 -9 -10 -9 -8

10% -3 -4 -5 -6 -6 -7 -7 -7 -6

90% 1 4 6 8 9 9 8 8 6

95% 2 3 3 5 6 8 8 9 8

99% 8 12 17 20 20 20 18 17 14

99.5% 11 17 25 29 29 27 25 22 17



50

Table 3 (cont.)

C. Long Term Interest Rate "Shock Scenarios"
(measured in basis points; values less than 1 bp are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -13 -14 -15 -13 -5 -13 -5 -17 -6

1% -12 -13 -14 -12 -5 -12 -4 -15 -6

5% -7 -8 -8 -7 -3 -7 -3 -9 -4

10% -5 -5 -6 -5 -2 -5 -2 -6 -3

90% 5 5 5 5 2 5 2 6 2

95% 7 7 8 7 3 7 2 9 3

99% 13 14 15 13 5 13 5 16 6

99.5% 20 21 22 19 7 19 7 25 10

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -4 15 -3 -3 3 -3 -3 -1 17

1% -3 12 -2 -2 2 -2 -2 - 13

5% -2 7 -1 -1 1 -2 -1 - 8

10% -1 5 -1 - - -1 -1 - 6

90% - -5 - - -1 - - - -6

95% 1 -7 - 1 -1 1 1 - -8

99% 2 -11 1 2 -2 2 2 - -13

99.5% 3 -12 2 2 -2 2 2 - -14
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% - -5 - -1 16 -1 - -2 -2

1% - -4 - - 13 - - -2 -2

5% - -2 - - 7 - - -1 -1

10% - -2 - - 5 - - - -

90% - 1 - - -6 - - - -

95% - 2 - - -8 - - - 1

99% - 3 - - -13 - - 1 2

99.5% - 4 - - -15 - - 1 2

Simultaneous positive shock to first three PCs:
(sorted by value of US column)

Quantile BE CA FR GE JA NE SZ UK US

0.5% 3 -16 2 2 -3 3 3 - -17

1% -6 -17 -7 -6 -3 -6 -1 -9 -14

5% - -10 -1 -1 5 - - -3 -9

10% -1 -8 -2 -2 3 -2 - -3 -6

90% 4 8 5 4 7 4 1 6 6

95% - 8 - - 7 - - 1 9

99% 3 16 5 4 13 4 - 6 15

99.5% 17 27 21 17 20 17 5 23 18
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Table 3 (cont.)

D. Stock Market Shocks
(measured in percent per day; values less than 0.5% are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -1.82 -1.33 - -3.37 -3.10 -2.32 -2.64 -2.43 -1.59

1% -1.34 -0.98 - -2.50 -2.31 -1.71 -1.94 -1.79 -1.17

5% -0.75 -0.55 - -1.41 -1.33 -0.95 -1.08 -1.01 -0.64

10% -0.52 - - -0.97 -0.94 -0.65 -0.73 -0.69 -

90% 0.56 - - 1.00 0.83 0.73 0.83 0.74 0.52

95% 0.75 0.55 - 1.35 1.15 0.97 1.11 1.00 0.69

99% 1.32 0.97 - 2.41 2.10 1.71 1.95 1.76 1.20

99.5% 1.53 1.13 - 2.81 2.45 1.98 2.26 2.05 1.39

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -0.66 1.23 0.99 -0.99 - - - - 1.72

1% -0.58 1.09 0.88 -0.87 - - - - 1.52

5% - 0.67 0.55 -0.52 - - - - 0.94

10% - 0.51 - - - - - - 0.72

90% - - - - - - - - -0.62

95% - -0.62 - 0.57 - - - - -0.85

99% 0.57 -0.94 -0.71 0.84 - - - - -1.29

99.5% 0.63 -1.05 -0.80 0.93 - - 0.51 - -1.43
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% - - -4.11 - -1.81 - - - -

1% - - -3.01 - -1.34 - - - -

5% - - -1.78 - -0.82 - - - -

10% - - -1.35 - -0.64 - - - -

90% - - 1.45 - 0.56 - - - -

95% - - 1.95 - 0.77 - - - -

99% - - 3.16 - 1.28 - - - -

99.5% - - 3.61 - 1.47 - - - -

Simultaneous positive shock to first three PCs:
(sorted by value of GE column)

Quantile BE CA FR GE JA NE SZ UK US

0.5% -1.83 -1.19 -2.00 -3.51 -4.08 -2.28 -2.63 -2.46 -1.37

1% -1.62 - 1.27 -2.82 -1.87 -1.77 -2.00 -1.46 -

5% -0.87 - 0.88 -1.52 -1.00 -0.96 -1.08 -0.81 -

10% -0.53 - - -1.01 -1.12 -0.65 -0.75 -0.71 -

90% 0.59 - 0.66 1.05 1.01 0.65 0.75 0.56 -

95% 0.93 -0.51 -2.61 1.42 - 0.93 1.03 - -0.72

99% 1.28 1.16 2.03 2.48 3.07 1.70 1.97 1.92 1.44

99.5% 1.85 - -2.28 3.13 1.57 2.08 2.34 1.66 -
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