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The dynamics of international asset price linkages and
their effects on German stock and bond markets

Dietrich Domanski and Manfred Kremer1

1. Introduction

The financial market turbulences in 1998, as other crises previously, produced strong price movements
in the securities markets worldwide. This reflected, first, a general reassessment of credit risk, and,
second, a drying-up of liquidity even in some of the largest mature securities markets.2  As a result,
cross-market return correlations temporarily underwent dramatic changes, challenging portfolio
allocation and risk management strategies which rely on constant historical comovements of asset
prices. Against this background, the immediate question arises of how asset price linkages can be
properly measured when they are subject to periodic changes as observed in times of market stress.
The main purpose of the present paper is to address this question more thoroughly.

In order to measure the dynamics of international asset price linkages, we first employ bivariate
GARCH models to analyse the comovements between weekly stock and bond market returns across
the G3 countries. GARCH models take account of the specific time-series properties of short-term
asset returns, which is needed to obtain reliable estimates of the cross-country linkages. Next,
switching-regime ARCH or “SWARCH” models are applied which can identify different volatility
regimes for short-term asset prices endogenously. We use this methodology to address two issues:
first, “Are international short-term return linkages state-dependent?”, and second, “Do volatility
spillovers affect individual segments of the domestic bond or stock market differently (i.e. are they
market-segment-dependent)?” The first question may also be referred to as the “contagion
hypothesis”. This states that contagion leads to a significant increase in the cross-market correlation
during states of financial market turmoil. Hence, contagion differs from mere “interdependence” in
that it demands a stronger-than-normal market linkage during periods of stress.3

The paper is organised as follows: Section 2 presents some stylised facts on short-term asset returns
derived from summary statistics and simple cross-market correlations. In the third section, we outline
the ARCH and SWARCH techniques employed to assess the comovements of weekly returns on
various bond and stock price indices. In Section 4, the hypothesis of state-dependent international
volatility spillovers between the United States, Japan and Germany is tested. The fifth section
examines the question of market-segment-dependent contagion within the German financial system.
Section 6 concludes by addressing some possible implications of the results.

2. Measuring international asset price linkages: some stylised facts

The asset universe considered in this paper comprises G3 bond and stock markets, the former
represented by the prices of 10-year benchmark government bonds, the latter by broad-market price
indices of Datastream (DS country indices).4 Additionally, the following segments of German
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The views expressed in this paper are those of the authors and do not necessarily reflect the opinion of the Deutsche
Bundesbank.
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See International Monetary Fund (1998), p. 38.

3
See Forbes and Rigobon (1999), p. 1, and Baig and Goldfajn (1999), p. 169.

4
A detailed description of the data is given in the Appendix.
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financial markets are analysed: in the bond market, different maturities for benchmark government
bonds (besides the 10-year maturity, also two, five and seven years), as well as the price index for 10-
year Pfandbriefe (“PEX”) are considered. The stock market is broken down into the blue chips
contained in the DAX, and a segment for medium-sized and small stocks, respectively (MDAX and
SMAX).5  Asset price movements are measured as weekly returns, based on Thursday figures for
Germany and Japan. For the United States, Wednesday figures are used, taking into account the
asynchrony between these markets with the US market performing a lead function for the others.6  The
stock market data cover the period from January 1980 (MDAX and SMAX: October 1988) until
September 1999. The bond market sample ranges from January 1984 (PEX: January 1988) to
September 1999.

Table A1 in the Appendix shows some univariate summary statistics for all time series of weekly asset
returns analysed in this paper. Over the entire sample period, stock markets generate higher, less
autocorrelated and more volatile returns than bond markets do. Despite these marked differences, both
asset classes share many other features typical of higher-frequency asset prices. First, returns exhibit
substantial non-normality (as can be seen from the Jarque-Bera statistic) which mainly stems from
excess kurtosis. That is, the distributions of short-term returns are characterised more by fat tails than
by asymmetry (skewness). Moreover, autocorrelation is generally low and often insignificant. Finally,
ARCH tests reveal strong volatility clustering in bond and stock returns. These properties suggest
using a time-series framework for modelling short-term asset returns which captures serial correlation
in the conditional means and variances, and which generates unconditionally leptokurtic, but not
necessarily skewed returns.

Table 1
Cross-correlation matrix of weekly returns on different stock and bond markets

Stock market (below diagonal: 1988/10/6 to 1999/9/16; above diagonal: 1980/1/10 to 1999/9/16)

DS US DS JP DS DE DAX MDAX SMAX

DS United States – 0.38 0.49 n. c. n. a. n. a.

DS Japan 0.34 – 0.32 n. c. n. a. n. a.

DS Germany 0.55 0.33 – n. c. n. a. n. a.

DAX 0.54 0.32 0.99 – n. a. n. a.

MDAX 0.47 0.31 0.88 0.82 – n. a.

SMAX 0.42 0.29 0.69 0.63 0.77 –

Bond market (below diagonal: 1988/1/7 to 1999/9/16; above diagonal: 1984/1/12 to 1999/9/16)

10-yr US 10-yr JP 10-yr DE 7-yr DE 5-yr DE 2-yr DE 10-yr PEX

10-yr United States – 0.22 0.47 n. c. n. c. n. c. n. a.

10-yr Japan 0.23 – 0.28 n. c. n. c. n. c. n. a.

10-yr Germany 0.48 0.22 – n. c. n. c. n. c. n. a.

7-yr Germany 0.45 0.22 0.94 – n. c. n. c. n. a.

5-yr Germany 0.37 0.19 0.86 0.92 – n. c. n. a.

2-yr Germany 0.24 0.17 0.65 0.76 0.82 – n. a.

10-yr PEX 0.43 0.18 0.88 0.91 0.85 0.70 –

Note:  The sample for the correlation coefficients in the lower triangular parts is restricted by the start date of the shortest
stock market and bond market price index, respectively. The cross correlations above the diagonal are only calculated for
the representative price indices of each country. – n. c.: not calculated; n. a.: not available.
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Some information about the structure of these market segments is provided in Section 5.

6
This lead property of the US bond and equity market is confirmed by the lead and lag structure of correlations between
daily price changes with other markets. Returns in both the German and the Japanese markets exhibit the highest
correlation for a one-day lead of the US market; contemporaneous correlations are only about half as high as this lead.
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Longer-term cross-market linkages are usually measured by the simple correlation coefficient between
asset returns over a certain sample period. Table 1 displays cross-correlation coefficients for the stock
and bond markets under study. The average stock and bond market linkages measured in this way are
much stronger between the United States and Germany than they are between Japan and either the
United States or Germany. Furthermore, international linkages seem to be somewhat closer across
stock markets than across bond markets. Regarding German market segments, the almost identical
correlation structure of the DAX and the German DS index proves that the latter – being a broad
value-weighted index – is, in fact, dominated by the prices of blue chip titles. The correlation of the
DS index then decreases with the aggregate size of the stocks included in the MDAX and the SMAX,
respectively. The correlation pattern between German government bond segments suggests that the
“substitutability” of bonds decreases as the maturity difference becomes larger.

To assess possible time-variation or structural breaks, the correlation is often calculated over either
non-overlapping sub-periods or a moving window.7  As an example, moving 52-week correlations
between German and US returns on bonds and stocks, respectively, are shown in Figure 1. It
demonstrates how strongly moving correlations can change over time. However, the marked ups and
downs may only reflect the strong influence of single large price shocks on such “short-memory”
correlations. This sensitivity renders a structural interpretation of this measure of international asset
price linkages rather doubtful.
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See, for example, Deutsche Bundesbank (1997), p. 30 f.

Figure 1:  Moving cross-country return correlation on stock and bond markets
Germany vs the United States; moving 52-week window
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3. The methodological framework: ARCH and SWARCH models

In order to measure and model international asset price linkages more reliably, an econometric
modelling technique should be applied which takes into account the specific time-series properties of
short-run asset returns (and which should be less sensitive to single price shocks). Most importantly,
the strong volatility clustering in weekly stock and bond market returns as well as their unconditional
non-normality have to be modeled. For this purpose, ARCH-type models (AutoRegressive Conditional
Heteroskedasticity) have become a widely applied tool.8  They can be specified very flexibly
according to the specific data needs, which has led to the development of a wide variety of types.9  We
shall begin with a bivariate AR(1)-GARCH(1,1) specification for each pair of either stock or bond
returns. In most cases such a parsimonious specification suffices. First, the near-unpredictability of
short-run asset returns allows us to restrict the forecast equations for the conditional means to simple
AR(1) processes.10  Second, while the volatility of returns contains substantial predictability, most of
its dynamics can usually be captured by a low-order GARCH system.

The AR(1) part describes the conditional means as:

(1) [ ] yxjrrEr tjjjttjttjtjtjtj asset,assetforwith 1,1,,,,, =β+α=Ω=µε+µ= −−

where rj,t denotes the weekly return of asset j, µj,t for the expected return conditional on information
Ωt-1 (in a linear projection), and εj,t a random error. The error vector εt is assumed to follow a bivariate
normal distribution, with zero mean and a time-varying covariance matrix Ht:

(2) ),0(1 ttt HN∼Ωε −

The system is completed by three equations which describe the dynamics of the distinct elements of
Ht. Because of the symmetry of Ht , this subsystem can be summarised with the “vech representation”
of our bivariate GARCH(1,1) model:11

(3)
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with hj,t the conditional error variance of the return of asset j, and hxy,t the conditional covariance. In
this unrestricted system, international “volatility transmission” can occur through a variety of
mechanisms. For example, the variance hx,t depends – via the parameters a12, a13, b12and b13 – directly
on the lagged residuals and lagged variance of asset y. Moreover, there is also a mutual
contemporaneous dependency which comes through the covariance function hxy,t. In effect, this
function determines the expected comovement between asset returns, although the causal direction of
this interrelationship is not identified a priori.12 We can estimate the degree of comovement
dimension-free by the time-varying (conditional) correlation coefficient:
                                                     
8

For a review of the theory and broad empirical evidence, see Bollerslev et al. (1992).

9
See Bollerslev et al. (1992) or Bera and Higgins (1993).

10
See Cochrane (1999), p. 37. The same does not generally hold for long-run returns, which is often partially predictable.
For a discussion of this issue and some recent evidence, see, for example, Campbell et al. (1998), Chapter 2, and
Domanski and Kremer (1998, 1999).

11
The general form of the vech representation is:
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The vech operator stacks all elements on and below the main diagonal of an n×n symmetric matrix column by column
into an n(n+1)/2-dimensional vector. The coefficient matrices A and B are accordingly of dimension n(n+1)/2×n(n+1)/2).

12
To determine causality, one would have to impose identifying restrictions on the variance covariance matrix which would
make the residuals orthogonal as in many structural VAR representations.
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(4) ρt = hxy,t/(hx,t hy,t)
0.5

This measure should be superior to the simple correlations as used in Section 2 since it is estimated
within a consistent econometric framework. Nevertheless, estimating the full vech representation faces
two serious drawbacks. First, positive definiteness of the variance covariance matrix is not guaranteed.
Second, the system is heavily overparameterised (bivariate GARCH(1,1) models require 21
coefficients to be estimated for the variance covariance process alone). To mitigate these problems,
two restricted representations are applied: first, we impose zero-restrictions on all elements below and
above the main diagonal of the coefficient matrices A and B. This “diagonal representation” suggested
by Bollerslev et al. (1988) reduces the estimating burden to nine parameters. The conditional variance
processes equal those of univariate GARCH models since neither squared lagged residuals nor the
lagged variance of one variable appear in the variance equation of the other. Hence, the international
volatility transmission can now occur only through the conditional covariance process. The diagonal
representation of the bivariate base model (with some convenient changes in notation) looks as
follows:

(5)
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Second, the model can be further simplified by assuming a constant correlation coefficient ρt = ρ as
proposed by Bollerslev (1990). In this case, the conditional covariance function degenerates to the
identity:

(6) hxy,t = ρ (hx,t hy,t)
0.5

Together with the two unchanged conditional variance processes, it forms the “constant correlation
representation” which leaves seven parameters to be estimated.13  Positive definiteness of the variance
covariance matrix can now be guaranteed. Despite its restrictive nature (it does not permit any lagged
international volatility spillovers), the constant correlation representation renders it quite useful. First,
it provides a simple summary measure of international asset price linkages, immediately challenging
the simple return correlation. Second, it offers an easy way of directly testing specific hypotheses
about possible determinants and the structural stability of the correlation coefficient. Concerning its
presumed dependence on volatility regimes, the parsimony of the constant correlation representation
makes it a natural candidate for multivariate switching-regime ARCH (SWARCH) models which
multiply the number of parameters to be estimated.14

However, since multivariate SWARCH models soon become intractable when more than two or three
endogenous variables are involved, the present paper confines itself to univariate SWARCH models
which are used to identify volatility regimes in certain asset returns. SWARCH models date back to
the independent work of Cai (1994) and Hamilton and Susmel (1994). This model class allows
conditional volatility to be both time- and state-variant while the volatility regimes are identified and
estimated endogenously. The appropriate number of states remains an empirical question and can be
tested statistically. We further the hypothesis of two states, i.e. periods of high and low volatility. In
the univariate case, the variance equation when allowing for two different states St = 1 or 2 is given
by:15

                                                     
13

The BEKK representation, as another variant of multivariate GARCH models, works without (a priori) imposing zero-
restrictions upon the off-diagonal elements of the matrices A and B. Instead, it uses non-linear cross-equation restrictions
to reduce the estimating burden. A recent application to bond rates for the G3 countries is Herwartz and Reimers (1999).

14
Ramchand and Susmel (1998) successfully applied univariate and bivariate SWARCH models to assess regime-
dependent cross correlations between weekly stock returns of a broad set of countries.

15
To save degrees of freedom, the AR(1) model for the mean return equation 1 remains state-independent as is the case in
related work. This assumption is not very restrictive due to the near-unpredictability of weekly returns.
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(7) 1
2

1, −− +ε+= tStSStS hbach
tttt

       for St = 1, 2

This specification follows the “generalised regime switching” (GRS) model of Gray (1996) and differs
from the models of Cai and Hamilton and Susmel. The original SWARCH models were restricted to
low-order ARCH processes because they assumed that regime-switching GARCH models would be
“intractable and impossible to estimate due to the dependence of the conditional variance on the entire
past history of the data in a GARCH model”.16  Gray (1996) solved the problem of path dependence
by recognising that the conditional density of the endogenous variable is essentially a mixture of
distributions with time-varying mixing parameters. If conditional normality is assumed within each
regime, the variance at time t can be calculated, in our case very simply, as:
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where [ ]1,1 1Prob −Ω== ttt Sp  denotes the conditional probability at time t of being in state 1 given

information at time t-1.17  Now ht, which is not path-dependent, can be used as the lagged conditional
variance in constructing h1,t+1 and h2,t+1 as described in equation 7. However, the main feature of
Markov switching models is the parameterisation of the probability law that causes the unobserved
(latent) regime indicator St to switch among regimes.18, 19  In this study, we focus on the simplest case
of a two-state, first-order Markov process (where St only depends on the state of the previous period)
with constant “transition probabilities”:

(9) [ ] [ ] jittttt piSjSiSjS ====Ω== −−− 111 Prob,Prob     for i = 1, 2 and j = 1, 2

The probability pi j gives the probability that state i will be followed by state j. However, since the
restriction:

(10) 121 =+ ii pp     for i = 1, 2

applies, only two of these four probabilities can be determined independently. We focus on the regime
probabilities p11 and p22 and substitute out the switching probabilities p12 and p21 by using (10). Since
the conditional probability p1,t only depends on the regime the process is in at time t-1, it can be
expressed as:
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incoming information rt-1 (since Ωt-1 = {rt-1, Ωt-2} in our case) according to Bayes’ Rule:
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Gray (1996), p. 34.

17
See equation 8 in Gray (1996), p. 34.

18
Markov switching models owe their name to the assumption that St depends upon St-1, St-2, ..., St-r, in which case the
stochastic process of St is named as an r-th order (in general K-state) Markov chain.

19
If the whole path of St is known a priori, the estimation problem would be reduced to that of a simple GARCH model
with shift and interactive dummy variables that take account of the different regimes (Kim and Nelson (1999), p. 60).
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where:
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is the density of the conditionally normally distributed returns variable rt-1 conditional on a given state
i. Combining (11) and (12) provides a relatively simple non-linear recursive scheme for the “filtered
probability” of regime 1:20
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The log-likelihood function log L can then be written as:

(15) [ ]∑
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=−+==
T

t
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,1,1 )2()1()1(loglog

Hence, it also possesses a recursive structure similar to the log likelihood of conventional GARCH
models. The function can be maximised with respect to p11, p22, α, β, c1, c2, a1, a2, b1, b2 after choosing
appropriate starting values.21

All GARCH and SWARCH models in this paper were estimated by maximising the respective log-
likelihood functions numerically using the RATS instruction MAXIMIZE with the BFGS algorithm.
We always maintained the assumption of normally distributed errors, although in many cases the
standardised residuals, while otherwise quite well-behaved, still showed a substantial degree of excess
kurtosis. Even under this condition, maximisation of the log-likelihood function should still yield
reasonable parameter estimates. This procedure is described as pseudo or quasi-Maximum Likelihood
(QML).22  But since the standard errors are likely to be severely biased, we computed them from the
heteroskedasticity-consistent variance covariance matrix as proposed by White (1982).

4. International correlation of asset price movements: does market
turbulence matter?

The empirical analysis starts with an estimation of the constant correlation representation of bivariate
AR(1)-GARCH(1,1) models as the most restricted specification. Following this “base model”, we
estimate the diagonal representation, which delivers a time-varying correlation coefficient as described
in equation 4. This allows us to obtain a first visual impression about the dynamics of international
asset price linkages. However, to test hypotheses about the driving factors behind these dynamics, the
constant correlation representation is more often used in the literature because of its ease and
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The literature makes a distinction between “filtered probabilities” and “smoothed probabilities”. The smoothed
probabilities use all information available for the entire sample t = 1,...,T to make inferences about the state prevailing at
each date t. They are thus more ex post in character. The filtered probabilities, by contrast, use only information up to the
respective forecast origin and are therefore more ex ante-oriented. See Kim and Nelson (1999), chapter 4, for details.

21
In fact, to ensure that the estimated transition probabilities p11 and p22 lie in the interval (0, 1), they are constrained by the
transformation pii = exp{π ii}/(1+ exp{π ii}). The numerical optimisation is then applied with respect to the unconstrained
π ii.

22
See, for example, Hamilton (1994), p. 145.
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tractability. Within the present context, it allows the correlation coefficient to be modelled as a
function of different economic states.23  For example, Longin and Solnik (1995) test whether the
correlation changes with a priori defined variance regimes (smooth versus turbulent periods) which
enter the model as shift dummies in the correlation function. As a methodology that does not rely on a
priori defined regimes, we apply parsimonious SWARCH models to identify different volatility states
endogenously and to see whether simple return correlations change with the regimes.

4.1 Correlation across major stock markets

Table 2 reports the results of the bivariate GARCH models for each pair of the US, German and
Japanese weekly stock returns. There are some general results which hold for each pair of countries
irrespective of the model’s representation. As is to be expected, stock returns are materially
unpredictable on the basis of the past week’s returns as indicated by the β coefficients, with the result
that the constants α in the conditional mean equations roughly equal the respective sample means as
shown in Table 1.24  The variance equations all look reasonable and are in line with results generally
found in the literature using higher-frequency financial data. The conditional variances are highly
persistent as judged by the sum of the autoregressive coefficients (aj + bj), which in all cases never
reaches, but still comes close to, one.25  Most of the persistence derives from the lagged variance rather
than the lagged squared residuals, which tends to smooth out the conditional variance process
somewhat. The last three lines of Table 2 show the unconditional moments of the variance covariance
matrix. The unconditional variances also appear reasonable except for two of the three Japanese
equations. In these two cases, the implied steady-state volatilities (with 8.89 and 9.13) seem to be
biased upwards when compared with the ordinary sample variance (5.86).26

The correlation coefficients are very precisely estimated with the constant correlation representation.
Furthermore, they do not differ much from the unconditional sample moments except in the German-
Japanese case, where they are considerably lower. This result changes somewhat under the diagonal
representation. The implied unconditional correlation is much higher in the US-German case but lower
for both the US-Japanese and the German-Japanese case. However, these results may be overstated
since the constants in the three conditional covariance equations – and thus the unconditional
moments, too – are rather imprecisely estimated and may therefore contain a substantial bias.

We now turn to the dynamics as implied by the time-varying correlation coefficient from the diagonal
GARCH representation as defined in equation 4. Figure 2 shows the time series of this correlation for
the US-German case and the US-Japanese case respectively (solid line). The dashed line marks the
correlation as estimated by the constant correlation representation. For one thing, the US-Japanese
correlation is more variable than the US-German correlation. For another, the first seems to revert
rather quickly to its “mean” value over the entire sample, while the latter remains for quite a long time
either below or above its supposed attractor level. Furthermore, the visual inspection might suggest
that the US-German correlation has been following a moderate upward trend at least since 1993 (or
even since 1988). However, we were unable to confirm this hypothesis statistically.27
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Alternatively, the correlation could also be modelled as a function of deterministic time trends or of any information
variable. Recent related studies which have applied this framework are Longin and Solnik (1995) and Bodart and Reding
(1999).

24
This picture does not change when estimating first-order VAR(1)-GARCH(1,1) models that add the other country’s
lagged return to the explanatory variables.

25
The approximate unit root in the autoregressive polynomial questions the stationarity of the conditional variance process
and has led to the development of so-called IGARCH models (integrated in variance). See Bollerslev et al. (1992), p. 14f.

26
The unconditional variance, for example, can be calculated as cj/(1 – aj – bj ) by applying the law of iterated expectations.
See Bera and Higgins (1993), p. 314.

27
We tried deterministic trend variables – beginning in either 1988 or 1993 – as an explanatory variable in a linear function
for the correlation coefficient in the constant correlation representation. However, the estimated coefficients were highly
insignificant in both cases. We also tested for secular trends in correlation over the whole sample, but this test also failed.
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Table 2
Bivariate AR(1)-GARCH(1,1) models for major stock markets
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Constant correlation representation Diagonal representation
US vs DE US vs JP DE vs JP US vs DE US vs JP DE vs JP

α x 0.267 (0.057)2 0.297 (0.055)2 0.263 (0.062)2 0.286 (0.058)2 0.303 (0.051)2 0.274 (0.065)2

β x –0.035 (0.031) –0.042 (0.034) 0.044 (0.035) –0.046 (0.032) –0.039 (0.029) 0.049 (0.036)

α y 0.249 (0.057)2 0.249 (0.053)2 0.235 (0.051)2 0.244 (0.047)2 0.245 (0.055)2 0.249 (0.059)2

β y 0.030 (0.030) 0.039 (0.031) 0.043 (0.034) 0.037 (0.028) 0.048 (0.030) 0.031 (0.032)

cx 0.245 (0.153) 0.250 (0.229) 0.351 (0.133)2 0.232 (0.135) 0.208 (0.106)1 0.387 (0.165)1

cy 0.367 (0.115)2 0.143 (0.062)1 0.130 (0.070) 0.351 (0.156)1 0.155 (0.070)2 0.175 (0.069)1

cxy – – – – – – 0.126 (0.076) 0.104 (0.054) 0.209 (0.123)

ax 0.099 (0.041)1 0.098 (0.056) 0.170 (0.046)2 0.088 (0.036)1 0.087 (0.029)2 0.165 (0.051)2

ay 0.161 (0.038)2 0.141 (0.030)2 0.136 (0.029)2 0.148 (0.047)1 0.154 (0.028)2 0.133 (0.024)2

axy – – – – – – 0.087 (0.037)1 0.115 (0.026)2 0.129 (0.051)1

bx 0.845 (0.064)2 0.845 (0.098)2 0.758 (0.057)2 0.858 (0.053)2 0.865 (0.042)2 0.752 (0.069)2

by 0.761 (0.045)2 0.842 (0.033)2 0.849 (0.032)2 0.776 (0.066)2 0.829 (0.032)2 0.842 (0.028)2

bxy – – – – – – 0.846 (0.065)2 0.813 (0.061)2 0.679 (0.148)2

ρ 0.457 (0.019)2 0.352 (0.028)2 0.273 (0.033)2 – – – – – –

hx* 4.395 – 4.374 – 4.878 – 4.280 – 4.392 – 4.680 –

hy* 4.692 – 8.575 – 8.890 – 4.597 – 9.126 – 6.798 –

ρ* – – – – – – 0.578 – 0.227 – 0.194 –

Note:  The table gives the estimated coefficients calculated by Maximum Likelihood using the BFGS algorithm.
Heteroskedasticity-consistent standard errors in parentheses. Effective sample: 24 January 1980 to 16 September 1999
(1,026 usable observations). 1 (2) indicates significance at the 5% (1%) level. hj* is the unconditional variance of country j’s
unexpected return, and ρ* is the unconditional correlation coefficient, both calculated as the steady-state solutions to the
variance and covariance equations 5a and 5b and using the definition of the correlation coefficient.

It is often argued that international stock market correlations increase in periods of stress with high
conditional return volatilities. Figure A1 in the Appendix gives a visual impression of why this
hypothesis is raised so often. The conditional variance series for both the United States and Germany
are shown in the lower part, while the corresponding correlation coefficient appears in the upper part.
Obviously, the correlation jumps upwards when both markets are hit by large shocks, as in October
1987 and August 1990. Empirical evidence in favour of this hypothesis is provided, for instance, by
Koch and Koch (1991), and Longin and Solnik (1995). However, these studies did not find a
statistically fully convincing solution to the problem of separating volatility regimes. Lacking a proper
methodology, they had to define the sub-periods of high versus low volatilities exogenously in an ad
hoc fashion. SWARCH models now provide a technology for doing this job endogenously. They were
first applied in this context by Ramchand and Susmel (1998), who find strong evidence for state-
dependent correlations across weekly stock returns for a large set of countries.

                                                                                                                                                                     

This result does not necessarily contradict the findings in Longin and Solnik (1995), who used a much larger sample
(1960 to 1990) with monthly stock returns for their bivariate GARCH models.
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Table 3 presents our results of univariate SWARCH specifications. The model produces similar
estimates for all of the stock returns. Most noticeable are the clear-cut and highly significant
differences in the two identified, country-specific variance regimes.28  The unconditional variances of
the high volatility state are three to five times larger than those of the low volatility state. Moreover,
the use of the generalised regime-switching model specification of Gray (1996) proves to be
advantageous since it allows the persistence parameter aSt to differ between regimes in contrast to the
original SWARCH specifications. Within the low volatility state, the variances remain virtually
constant due to the negligible (and insignificant) autoregression coefficients a1. In the high volatility
state, however, lagged squared residuals do have a significant and materially important influence on
current conditional variances via parameters a2. This makes large initial shocks, as typically observed
in market crashes, persist for some time.

Furthermore, each regime itself is highly persistent as evidenced by the large (and, in general, highly
significant) constant regime probabilities p11 and p22, respectively.29  This result is consistent with
applications of Markov switching in many other contexts. Accordingly, the time series for the
conditional regime probabilities look quite reasonable. As an example, Figure 3 presents the
conditional probability of German stock returns being in state 1 (p1,t), the low variance regime. This

                                                     
28

We have to admit that individual standard errors of the parameters of the state-dependent variance equations do only
provide an informal test of the two-state model against a simple one-state specification, since under the null hypothesis of
no-regime switching the parameters of the second state’s variance equation are not identified. However, we regard the
evidence in favour of the two-state model as so strong that we dispensed with a proper non-standard test such as that
developed by Hansen (1992).

29
Table 3 does not show standard errors for the “constrained” transition probabilities since standard errors were only
obtained for the unconstrained probability parameters which are not directly interpretable and thus not shown in the table.

Figure 2:  International stock return correlations from bivariate GARCH models
Constant correlation representation (dashed) and diagonal representation (solid)
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probability is (i) either near one or close to zero, and this (ii) for extended periods of time. The second
quality reflects the high regime (or low transition) probabilities. The first property indicates the good
performance of the conditional probability in classifying volatility regimes since, being close to its
boundaries, it provides a clear signal as to whether a given observation belongs to a certain regime or
not. This quality can be measured statistically by the Regime Classification Measure (RCM) proposed
by Ang and Bekaert (1998). The RCMs for the SWARCH models of German, Japanese and US
returns lie between 35 and 55 (see Table 3). Being so low, the RCMs prove our visual impression that
the regime inference of the SWARCH models is generally strong and, hence, quite reliable.30

Table 3
Univariate SWARCH(2,1) models for major stock markets
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United States Germany Japan

Parameter Estimate Std. Error Estimate Std. error Estimate Std. error

α 0.304 (0.061)2 0.244 (0.097) 1 0.169 (0.060)2

β –0.037 (0.034) 0.021 (0.038) 0.063 (0.038)

c1 2.249 (0.281)2 2.301 (0.354)2 2.148 (0.284)2

c2 7.146 (1.747)2 7.326 (2.562)2 9.785 (1.409)2

a1 0.039 (0.058) 0.005 (0.035) 0.032 (0.064)

a2 0.173 (0.158) 0.226 (0.091)1 0.151 (0.060)1

p11 0.973 – 0.991 – 0.982 –

p22 0.939 – 0.985 – 0.972 –

h1* 2.339 – 2.312 – 2.220 –

h2* 8.644 – 9.469 – 11.521 –

ARCH(4) 0.75 (0.55) 1.70 (0.15) 2.27 (0.06)

RCM 55.7 34.9 40.9

Note:  The table gives the estimated coefficients calculated by Maximum Likelihood using the BFGS algorithm.
Heteroskedasticity-consistent standard errors in parentheses. – ARCH(4) is an F-test statistic for the null hypothesis of no
ARCH effects in standardised residuals up to lag 4 with p-values in brackets. – RCM is the regime classification measure
as proposed by Ang and Bekaert (1998) which lies between 0 (perfect classification) and 100 (no information). Effective
sample: 31 January 1980 to 16 September 1999 (1,025 usable observations). 1 (2) indicates significance at the 5% (1%)
level. h1* is the unconditional variance in the low volatility state, and h2* is the unconditional variance in the high volatility

state. They are calculated as the steady-state solutions to each state’s variance equation, i.e.: )1/(*
ttt SSS ach −=  for

St = 1, 2.

Also note that we specified the variance processes without a GARCH term. We can dispense with
lagged conditional variances since they proved to be insignificant in all cases. This fact is consistent
with the presumption that the near-unit root in the conditional variance process of conventional
GARCH models (as mentioned above) does not reflect “true” volatility persistence, but instead results
                                                     

30
Ang and Bekaert (1998), p. 15, define the RCM statistic (here for two states) as: ∑
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perfectly classifying regime-switching model the conditional probability would always be infinitesimally close to 1 or 0,
keeping the RCM at value 0. On the other hand, if the probabilities hover around 0.5, the model would provide no regime
information, boosting the RCM to 100. The fact that the RCM for the German model is indeed rather low can be judged
from the average product of regime probabilities RCM/400 = 0.087. It implies that the dominating regime probability on
average equals 0.903, which is rather high.
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as a bias from the neglect of structural breaks such as different variance regimes.31  The fact that we
can actually take out the GARCH terms without rendering the SWARCH model less powerful may be
seen from Figure 4, which compares the conditional variance process for US stock returns of the
SWARCH model with that of a GARCH model.32  The conditional variance of the SWARCH model is
calculated according to equations 7 and 8, i.e. the variance processes of each state are weighted by
their time-varying conditional regime probability. The degree of overlap between the two time series is
impressive, so that even a parsimonious SWARCH specification is able to generate rich volatility
dynamics stemming from the non-linearities implied by Markov switching variance regimes.

We are now in a position to calculate regime-dependent cross correlations, as is done by Ramchand
and Susmel (1998). The low variance and high variance states in each market were identified using the
classification system of Hamilton (1989), wherein an observation belongs to state 1 or 2 whichever
state’s conditional probability [ ]1, Prob −Ω== ttti iSp  is higher than 0.5.33  Under this assumption,

four possible states have to be considered in a bivariate setting. For instance, if we want to correlate
US and German stock returns, the following four states emerge:34

                                                     
31

Lamoureux and Lastrapes (1990) studied this point in more depth.

32
The GARCH process is taken from the bivariate US-German model in the constant correlation representation as given in
Table 2, but any other estimated GARCH model for US returns produces almost identical results.

33
While Hamilton proposes the smoothed probabilities for defining regimes, we shall use the filtered probabilities instead,
because they are also used for the calculation of the conditional variance process and owing to their ex ante nature.

34
Instead of estimating bivariate four-state SWARCH models, this paper focuses on separately calculated simple
correlation coefficients for each of the four states. First, unrestricted four-state SWARCH models are difficult to estimate.
The transition matrix alone contains 12 transition probabilities to be estimated without further restrictions. Second, the

Figure 3:  Conditional probability of being in the low variance regime
From a SWARCH model of German stock returns
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St = 1: US variance low, German variance low

St = 2: US variance low, German variance high

St = 3: US variance high, German variance low

St = 4: US variance high, German variance high35

The results of the return correlations across these four states are given in Table 4.36  They confirm the
general hypothesis of correlations increasing along with volatility. Hence, “market turbulence matters”
indeed. For example, the US-German correlation increases to 0.63 when both countries experience
high volatilities (state 4) compared with 0.40 in the case of low volatilities (state 1). The same pattern
holds for the remaining country pairs. The intermediate states suggest the following interpretation: the
US market seems to dictate the degree of international stock price synchronisation. If US returns are in
the high volatility state, the correlation with German and Japanese returns is also high, regardless of
whether foreign returns belong to the high or to the low volatility state. Conversely, if US returns are
in the low volatility state, the correlation with foreign returns also diminishes. Furthermore, the
correlation between German and Japanese returns is minor except when both returns become more
                                                                                                                                                                     

two-step, “system-free” procedure provides a tractable way of obtaining state-dependent correlations even when a larger
set of countries or asset classes is considered. However, this entails the disadvantage of not obtaining an independent
estimate of the conditional regime probabilities which could be used for forecasting purposes.

35
Comparing the conditional variance series of different countries suggests that the distinction between four states does
make sense. Figure 3, for example, shows volatility hikes in Germany which occur independently of volatility
movements in the United States, and vice versa. Thus, volatility cycles are generally not fully synchronised, which argues
against the general validity of the contagion hypothesis.

36
We also calculated the correlations between the residuals from the SWARCH models instead of total returns, but the
results were absolutely unchanged to the first and second decimal place.

Figure 4:  Conditional variance from a SWARCH and GARCH model
US stock returns
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volatile at the same time. This may again be the result of a common dependency on US returns. It is
also worth mentioning that each state for each pair of countries occurs sufficiently often to enable a
reasonable estimate of the corresponding correlation coefficient to be obtained, although tranquil
periods are more frequent than turbulent ones.

Table 4
Stock market cross correlation in different volatility regimes

Correlation Observations

United States vs Germany

State 1: US low, Germany low 0.40 601

State 2: US low, Germany high 0.44 185

State 3: US high, Germany low 0.61 88

State 4: US high, Germany high 0.66 151

United States vs Japan

State 1: US low, Japan low 0.30 542

State 2: US low, Japan high 0.27 244

State 3: US high, Japan low 0.44 102

State 4: US high, Japan high 0.59 137

Germany vs Japan

State 1: Germany low, Japan low 0.24 531

State 2: Germany low, Japan high 0.23 158

State 3: Germany high, Japan low 0.21 113

State 4: Germany high, Japan high 0.42 223

Note:  State classification according to the conditional regime probabilities derived from univariate SWARCH(2,1) models
for weekly stock returns. Total sample: 31 January 1980 to 16 September 1999 (1,025 usable observations).

4.2 Correlation across major bond markets

Table 5 presents the estimated coefficients of the bivariate GARCH models for each pair of US,
German and Japanese bond returns. Essentially, the models yield the expected results. First, bond
returns are lower and less volatile than stock returns, which is properly reflected in the estimated
unconditional means and variances. Second, although not economically significant, bond returns
contain some predictable elements, as is evidenced by the statistical significance of seven out of 12
autoregressive coefficients in the mean equations. Third, the conditional variance equations look quite
familiar, like their stock market counterparts. However, this holds only for the constant correlation
representation. The diagonal representation delivers some awkward-looking conditional covariance
equations for the bivariate models of Japanese returns, which makes us less confident in this
specification.37  Instead, the time-varying correlation between US and German returns follows rather
smooth and extended cycles around its steady state (see Figure A2 in the Appendix). Moreover, there
exists no discernible time trend in the coefficient, suggesting a structural break with higher correlation
in the recent past. Overall, the GARCH models prove again that the short-term linkage between
German and US returns is much higher and, at the same time, more stable than the correlation of either
of these countries with Japanese bond returns.

                                                     
37

The structure of these covariance equations implies that the time series of covariances and, hence, the correlation
coefficients regularly jump up and down around their medium-term trend. This behaviour is economically unconvincing
and leads to the rejection of this specification. Technically speaking, it results from the fact that bond prices in Japan
quite frequently do move in the opposite direction to US or German prices, but not for long enough; in turn, this may be
caused economically by asymmetric market conditions such as monetary and fiscal policy shocks.
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Table 5
Bivariate AR(1)-GARCH(1,1) models for major bond markets
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Constant correlation representation Diagonal representation

US vs DE US vs JP DE vs JP US vs DE US vs JP DE vs JP

α x 0.047 (0.038) 0.038 (0.035) 0.051 (0.021)1 0.046 (0.031) 0.042 (0.031) 0.049 (0.022)1

β x –0.038 (0.031) –0.016 (0.038) 0.077 (0.039)1 –0.046 (0.039) –0.019 (0.033) 0.081 (0.027)2

α y 0.047 (0.025) 0.067 (0.031)1 0.073 (0.026)2 0.044 (0.026) 0.068 (0.024)2 0.074 (0.025)2

β y 0.077 (0.034)1 0.086 (0.037)1 0.090 (0.036)1 0.069 (0.039) 0.091 (0.039)1 0.095 (0.044)1

cx 0.087 (0.035)1 0.075 (0.043) 0.019 (0.007)2 0.080 (0.033)1 0.074 (0.035)2 0.022 (0.007)2

cy 0.028 (0.011)1 0.076 (0.023)2 0.075 (0.021)2 0.033 (0.016)1 0.074 (0.020)2 0.080 (0.022)2

cxy – – – – – – 0.018 (0.006)2 0.296 (0.052)2 0.225 (0.051)2

ax 0.078 (0.028)2 0.072 (0.024)2 0.114 (0.027)2 0.079 (0.025)2 0.072 (0.022)2 0.108 (0.022)2

ay 0.116 (0.031)2 0.143 (0.037)2 0.135 (0.036)2 0.105 (0.032)2 0.139 (0.033)2 0.126 (0.034)2

axy – – – – – – 0.053 (0.011)2 –0.026 (0.021)2 –0.034 (0.026)2

bx 0.839 (0.047)2 0.856 (0.054)2 0.855 (0.026)2 0.844 (0.043)2 0.857 (0.045)2 0.853 (0.024)2

by 0.832 (0.040)2 0.756 (0.054)2 0.763 (0.047)2 0.831 (0.055)2 0.762 (0.042)2 0.763 (0.049)2

bxy – – – – – – 0.893 (0.016)2 –0.805 (0.121)2 –0.627 (0.240)2

ρ 0.472 (0.026)2 0.215 (0.036)2 0.267 (0.032)2 – – – – – –

hx* 1.040 – 1.042 – 0.624 – 1.040 – 1.041 – 0.580 –

hy* 0.549 – 0.745 – 0.733 – 0.523 – 0.744 – 0.719 –

ρ* – – – – – – 0.451 – 0.183 – 0.210 –

Note:  The table gives the estimated coefficients calculated by Maximum Likelihood using the BFGS algorithm.
Heteroskedasticity-consistent standard errors in parentheses. Effective sample: 26 January 1984 to 16 September 1999 (817
usable observations). 1 (2) indicates significance at the 5% (1%) level. hj* is the unconditional variance of country j’s
unexpected return, and ρ* is the unconditional correlation coefficient, both calculated as the steady-state solutions to the
variance and covariance equations 5a and 5b and using the definition of the correlation coefficient.

In testing for regime dependency of bond market correlation, our two-state SWARCH model failed to
identify different volatility regimes in the US case.38  We therefore have recourse to the “threshold”
approach, where an exogonenously defined threshold value separates high from low volatility
observations.39  Accordingly, an observation belongs to the high (low) volatility regime when squared
returns are higher (lower) than the threshold value. While in most cases the threshold is set to the
sample standard deviation, we apply different scaling parameters to the unconditional standard
deviation in order to mitigate the problem of ad-hocery. The corresponding regime-dependent cross
correlations are presented in Table 6. Again, the results strongly confirm the positive relation between
market turbulence and international correlation. For example, irrespective of the scaling parameter, the
US-German correlation more than doubles when both countries move together from a low volatility to
a high variance state. In the US-Japanese case, correlation even increases about five times on average,
although it never reaches the absolute values of the US-German linkage. The mixed states 2 and 3 only
matter for the relationship between US and German bond returns. The correlation is higher than in the

                                                     
38

For Germany and Japan, instead, we obtained reasonable results.

39
See Longin and Solnik (1995).
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“low-low state” and almost identical, regardless of whether prices move more in the United States or
in Germany. This pattern suggests that larger price movements in one market, which may result from
pure idiosyncratic shocks (such as monetary policy shocks), do always spill over to the other market to
some degree and thus tighten the measured linkage significantly, without necessarily “exporting” the
underlying market uncertainty. Experience suggests that this typically occurs when a market is said to
“decouple” from the other, with relative interest rates gradually adjusting to asymmetric outlooks for
their fundamental factors while both rates still move synchronously.40

Table 6
Bond market cross correlation in different volatility regimes

η = 0.75 η = 1.00 η = 1.50

Corr. Nobs. Corr. Nobs. Corr. Nobs.

0.25 331 0.28 468 0.33 648

0.35 153 0.47 123 0.65 69

0.37 179 0.49 140 0.60 73

0.71 154 0.79 86 0.83 27

0.10 356 0.10 483 0.12 653

0.09 128 0.10 108 0.38 64

0.13 217 0.25 167 0.24 80

0.44 116 0.54  59 0.62 20

0.12 379 0.10 504 0.17 659

0.11 131 0.42 104 0.44 62

0.12 194 0.28 146 0.22 74

United States vs Germany

   State 1: US low, Germany low

   State 2: US low, Germany high

   State 3: US high, Germany low

   State 4: US high, Germany high

United States vs Japan

   State 1: US low, Japan low

   State 2: US low, Japan high

   State 3: US high, Japan low

   State 4: US high, Japan high

Germany vs Japan

   State 1: Germany low, Japan low

   State 2: Germany low, Japan high

   State 3: Germany high, Japan low

   State 4: Germany high, Japan high 0.53 113 0.55 63 0.71 22

Note:  “Corr.” And “Nobs.” stand for “correlation coefficient” and “number of observations”, respectively. State
classification according to an exogenous threshold based on the unconditional standard deviation σ  of weekly stock returns
rt scaled by the parameter η:
     low volatility state,   if  | rj, t | < η⋅σ j
     high volatility state,  if  | rj, t | ≥ η⋅σ j .

Assuming normally distributed returns, η-values of 0.75, 1.00 and 1.50 predict that approximately 45%, 30% and 13% of
absolute returns lie above the threshold, respectively. Total sample: 26 January 1984 to 16 September 1999 (817 usable
observations).

Before turning to the empirical results for different German market segments, we have to add a few
words of caution, however. As recent studies have demonstrated, even substantial increases in
correlation during market turbulence must not be interpreted per se as conclusive evidence of
contagion opposed to normal interdependence.41  In fact, the sample correlation should always
increase (decrease) relative to its constant population moment when the sampling variance of linearly
dependent return variables exceeds (falls below) its “true” unconditional variance (see equation 1 and
the corresponding theorem in Loretan and English (1999, this volume)). Hence, upward jumps in asset
return correlations in periods of high volatility are to be expected even if the true unconditional
correlation – which measures normal interdependence – remains unchanged. The presumed

                                                     
40

How level linkages (“convergence”) and comovements (“synchronisation”) can be estimated separately within a single
empirical framework is shown by Kremer (1999).

41
See Boyer et al. (1999), Forbes and Rigobon (1999) and Loretan and English (1999, this volume).
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breakdown in measured correlation may therefore result from such normal interdependence rather than
from contagion accompanied by a shift in the unconditional distribution of asset returns.42

How should our results be interpreted in the light of this sampling-bias argument? As a kind of
robustness check, we calculated “theoretical” or “expected” correlations between US and German or
US and Japanese stock returns according to Loretan and English’s equation 1 under the assumptions
that, first, the variance of US returns in the low volatility regime equals the unconditional variance
and, second, that volatility regimes are fully synchronised in all countries so that only two states can
occur. In the US-German case, the increase in the variance of US returns over high volatility periods
justifies an increase in the correlation from 0.41 in tranquil times to 0.58 in turbulent times. The last
value comes very close to the measured correlation in the high volatility regime of 0.60. In the
US-Japanese case, by contrast, the expected correlation only increases from 0.28 to 0.41, which is
substantially lower than the measured correlation of 0.55 in the high volatility state.

This mixed evidence implies some ambiguity in the interpretation of our results, i.e. it remains an open
question whether observable changes in stock or bond market correlations result from contagion or
merely reflect normal but strong international market linkages. Both hypotheses are observationally
equivalent. However, we wish to mention one argument which favours the contagion hypothesis.
Regime-switching models actually try to identify shifts in the underlying asset return distributions
which may result from significant differences in market participants’ behaviour during periods of
stress. Since we have found strong evidence that variance regimes switch over time, it is also plausible
to allow unconditional (“structural”) cross-market correlations to switch with changes in the variance
regimes.

5. Spreading of international volatility spillovers through the national
financial markets: do market segments matter?

Volatility spillovers measured on the basis of benchmark segments, such as the yield of 10-year
government bonds, do not necessarily reflect the situation in the market as a whole. Instead, a certain
decoupling of particular segments of national markets may occur in the wake of international volatility
spillovers. If asset price movements in a very general sense are interpreted as the result of information
processing, several reasons may be put forward for such a market segmentation: first, the information
relevant for price formation may differ between market segments; second, even if the information
basis is the same, the processing of information might differ systematically according to the different
groups of investors which are most active in the respective markets; third, even if information input
and processing are congruent over market segments, the price effect may deviate owing to differing
transaction costs or market liquidity.

In order to test the “market segmentation” hypothesis, we calculate return correlations over different
volatility regimes between each German stock and bond market segment and the corresponding US
benchmark market. The selection of national market segments is based on the presumption that they
differ with respect to the set of price-relevant information, the dominant market participants and
market liquidity from the 10-year government benchmark bond and the value-weighted DS German
equity index, respectively. If the structural differences really matter, they should show up in different
international correlation patterns. Table 7 summarises some structural features of the German market
segments. In the stock market, the blue chip DAX segment is by far the most liquid and presumably
also the most international one. In contrast to this, the medium-sized companies represented in the
MDAX as well as the small SMAX shares are far less actively traded. Additionally, different
information sets might be relevant for each market if one supposes that MDAX and SMAX companies
are less international (in terms of business activity) than those in the DAX.

                                                     
42

Actually, the empirical results presented in Forbes and Rigobon (1999) as well as Loretan and English (1999, this
volume) argue against the contagion hypothesis.
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Table 7
Features of German securities markets

Market segment Market
capitalisation

(euro bn)

Number
of

issues

Average market value
per issue outstanding

(euro bn)

Futures
contracts

traded

Turnover/
market

capitalisation1

Foreign
participation2

Stock market

DS Germany 965.4 no derivative n.a. n.a.

DAX 791.2 30 26.4 1.0883 0.68 n.a.

MDAX 116.7 70 1.7 743 0.24 n.a.

SMAX 19.9 107 0.2 no derivative 0.29 n.a.

Bond market

Bund 10-yr 54.1 4 13.5 99.0934 n.a.

Bund 7-yr 22.5 2 11.3 no derivative n.a.

Bund 5-yr 47.6 7 6.8 32.5094 n.a.

      130%

Bund 2-yr 50.6 8 6.3 10.9784 n.a. 75%

Pfandbriefe 10-yr 177.3 2.94 0.1 no derivative n.a. 30%

Note:  Figures are as of August 1999 or as indicated.
1 Average monthly turnover from September 1998 to August 1999 divided by market capitalisation as of end-August 1999.
2 Cumulated net purchases by foreigners from January 1994 to June 1999 related to total net issues.   3 In billions of euros.
4 Number of contracts traded from January 1999 to August 1999 in thousands.

Sources:  Deutsche Börse; Deutsche Bundesbank; Eurex Germany; own calculations.

For the bond market, the 10-year government bond segment is clearly the most liquid one (as is
indicated by the average size of issues and the availability of one of the most actively traded futures
contracts worldwide as a hedging instrument) and also the most “international” one. (The available
statistics do not allow for a separation of ownership for individual issues. However, anecdotal
evidence suggests that international participation – and particularly short-term position-taking – is
concentrated in this segment.) The five- and two-year maturities can also be assessed as very liquid
and “international”, although less so than the 10-year segment. A stark contrast exists between the
structure of the 10-year bund and bank bond segment. The latter is relatively scattered and
international participation is only a fraction of that of the bund market (the picture would be different
for the liquid Jumbo Pfandbriefe; however, it is not possible to separate them statistically). Compared
with the stock market, the information relevant for bond prices could mainly depend on the maturity of
the instrument (giving domestic monetary policy a particularly strong and more direct impact at the
short end of the yield curve).

5.1 Stock market

The correlation of stock returns between the US market and the different segments of the German
market supports the presumption sketched out above that less liquid and less international market
segments may be less prone to international turbulence (see Table 8). The correlation pattern between
the US market and the DAX is again (see Table 1) very similar to that of the DS index due to the
dominance of the blue chips in the latter. The correlation increases by about 50% if both markets
switch from a low volatility regime to a high volatility regime at the same time. By contrast, the
correlation of MDAX and SMAX shares with the US stock market is significantly lower than that of
the DAX if market conditions are calm in Germany. However, all German markets exhibit a similar
comovement with US stock prices if Germany is in a high volatility regime. But, in both cases,
MDAX and SMAX correlation is broadly unaffected by a switch in the volatility regime in the United
States.
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Table 8
Cross correlation with the US stock market for different market segments

in Germany over different volatility regimes

Correlation with DS United States: German market segment

Volatility regime DS Germany DAX MDAX SMAX

Germany low

  US low (364) 0.46 0.44 0.39 0.28

  US high (13) 0.51 0.54 0.31 0.26

Germany high

  US low (99) 0.58 0.54 0.54 0.53

  US high (94) 0.65 0.65 0.54 0.55

Note:  Volatility regimes identified by univariate SWARCH(2,1) models for US and German total market returns
(DS indices). Effective sample: 21 October 1988 to 16 September 1999.  Number of regime observations in parentheses.

5.2 Bond market

For the bond market, the level of return correlations under different volatility regimes and the impact
of a volatility regime shift in the US bond market on the various German market segments support the
view that market segments matter (see Figure 5). If both the domestic and the US market are in a low
volatility regime, correlation is generally low but increases with longer maturities of German
government bonds. This correlation pattern may simply be explained by the fact that the
substitutability of 10-year US government bonds and German bonds decreases with shorter maturities

of the latter. From the viewpoint of the information contained in bond prices, this may be a reflection
of cyclical differences in domestic factors – namely monetary policies – becoming less important with
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Figure 5:  Volatility regime shifts in the US bond market and
their impact on the correlation with the German bond market*

*Correlation of weekly returns on 10- year US government bonds and the return in the respective
German market segment. Volatility regimes identified by exogenous threshold for unconditional
standard deviation  (UStd) with low variance regime: |r(t)| < 1.0*UStd, and high variance regime:
|r(t) | > 1.0*UStd.

Germany: low volatility Germany: high volatility
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increasing maturities relative to long-term expectations about growth and inflation. The correlation
between the highly liquid 10-year bunds and the less liquid Pfandbriefe, on the one hand, and US
bonds, on the other, differs only slightly. This may be seen as an indication that arbitrage between both
domestic market segments works well during calm periods. A reason for this could be that market
liquidity plays a minor role in calm periods.

This picture changes during episodes of high volatility: if the US market switches to a high volatility
regime (while Germany remains in the low volatility state), correlation between German government
bonds and US Treasuries almost doubles, irrespective of the maturity of the former. The Pfandbrief
segment, in contrast, exhibits only a slightly higher correlation. An explanation for this phenomenon
might be that the German government bond market, as the most liquid and international segment, is
directly affected by the reallocation of international bond portfolios induced by the US market. The
Pfandbrief segment might remain relatively unaffected by these transactions because domestic
portfolios do not need to be reallocated against a background of still-low domestic volatility. This
view changes dramatically if the domestic market switches to a high volatility regime, too. In this
case, the correlation between the Pfandbriefe and US Treasuries jumps to 0.81, about the level of the
bunds’ correlation.

6. Conclusion and outlook

The purpose of this paper is twofold. First, we suggest GARCH techniques to measure international
asset price linkages when higher-frequency data are used. The proposed measure is either a constant or
a time-varying correlation coefficient of (unexpected) weekly asset returns. Second, we investigate
whether correlations between German and US bond and stock returns depend on different volatility
regimes and, moreover, whether they vary across benchmark products and minor market segments in
Germany. The results generally support the view that both the volatility regime and the market
structure are important for the strength of international price linkages. Given these results, two
questions arise: first, “How can the empirical evidence presented in this paper be interpreted and
explained economically?”, and second, “What are the policy implications at the micro and the macro
level?”.

GARCH models are essentially descriptive in nature. As in most applications, the models employed
here were not derived from first economic principles and thus lack a straightforward theoretical
interpretation. Consequently, the theory behind the model has to be superimposed a posteriori.
Furthermore, the forces that drive short-term asset prices are modelled as “latent” and hence
unobservable variables. Both issues leave a wide range of options among competing theories for the
model’s interpretation. Unless the theory imposes a certain structure on the model which leads to
testable restrictions, this choice will always be ad hoc and somewhat arbitrary.

A very general approach to interpretation is to view asset price movements as the result of an
information-processing activity, comprising the arrival of new information, its analysis by market
participants and the interplay of market transactions carried out on the basis of this new information.
In this perspective, ARCH effects in high-frequency data can be seen as a manifestation of serial
correlation or “time dependence” in the amount of information or the quality of information arriving to
the market per period of time, i.e. short-term asset returns are driven by the amount or quality of news
reaching the market in clusters.43  This view can be broadened to include the time it takes market
participants to assess the information fully (information-processing hypothesis) and the price
dynamics created by the responses of market agents to news. For example, traders with heterogeneous

                                                     
43

For different interpretations of ARCH models, see Bera and Higgins (1993), pp. 322-30, and Bollerslev et al. (1992),
p. 40f.
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prior beliefs and private information may need some time for information processing and trading
– after news has come in – to resolve the expectational differences.44

This framework is able to explain volatility clustering, but not necessarily the closer international
comovement of assets prices – i.e. contagion – in turbulent periods. To explain this fact, one has to
make assumptions about the nature of shocks behind asset price movements in each market. For
example, the study by Engle et al. (1990) suggests that the volatility of short-term asset prices derives
mostly from common and hence “international” shocks (“meteor showers”) and less from changes in
country-specific fundamentals (“heat waves”). Adopting this framework, we could argue that, first,
more tranquil periods are dominated by independent country-specific shocks. The independence
assumption implies that international price correlation tends to be lower in such periods. Second,
strong turbulence usually affect markets worldwide like a meteor shower. As a consequence, asset
prices in high volatility periods are mainly driven by a common factor, the international shock, and
hence show a higher degree of comovement.

The meteor shower/heat wave hypothesis provides an explanation for high correlation in turbulent
periods only if international shocks are associated systematically with higher price volatility than
domestic ones. One theoretical argument to support this view might be that a global shock triggers
portfolio reallocation on a much larger scale than a regional one. However, it is not sufficient to
explain why asset prices in various domestic market segments react differently to the same global
shock. This leads to the point that not only the nature of information seems to matter for international
correlation, but also the institutional setting in specific markets – such as their liquidity, the presence
of foreign investors, or the role of institutional investors – and the behaviour of different groups of
market participants (whose reaction to shocks might also be regime-dependent). Taken together, a
better understanding of information processing and the market micro-structure appears necessary and
should be one focal point of future research.

From a policy-oriented point of view, research in this direction also appears important because regime
and market-segment dependence of asset price correlation could have implications for risk
management and portfolio diversification, and, related to that, the measurement of value at risk (VaR).
One obvious implication of the results presented here is that proper stress testing has to play a pivotal
role in risk management. VaRs which are calculated for different volatility scenarios have to take into
account changes in conditional cross correlations which are associated with changes in variance
regimes. With respect to this, it might be further asked in what way changing market structures and
conditions could be integrated into the measurement and management of market risk.

A second point that might be put forward is that certain “domestic” market segments might provide a
shelter against international volatility spillovers. This could eventually challenge traditional
diversification strategies and might provide an argument in favour of a home bias. However, serious
doubts have to be voiced as to whether this conclusion would be justified. First, a lower return
correlation does not necessarily mean that diversifying in other domestic market segments provides an
efficient shelter against foreign asset price shocks. Lower return correlation has a decreasing effect on
portfolio risk only if it is not compensated by higher idiosyncratic market, credit, or liquidity risk
– which all affect the volatility of the returns on these financial instruments. Additionally, the attempt
to exploit a diversification potential within different domestic market segments would probably
change the pattern of return correlation between markets. Again, these arguments support the view that
a better understanding of the micro-structure in individual markets is necessary.

                                                     
44

See Engle et al. (1990), p. 376.



155

Appendix: Data description

All asset price data used in this study are taken from the Datastream database. National stock prices
are represented by the Datastream Global Equity Index for Germany, the United States and Japan
(TOTMKBD, TOTMKUS, TOTMKJP). This price index is a broad-market value-weighted index: it
covers at least 75–80% of the total market capitalisation; local closing prices of individual stocks are
aggregated using their market values as weights.

Bond market prices are represented by Datastream Government Bond Indices for 10-year benchmark
bonds in Germany, the United States and Japan (BMBD10Y, BMUS10Y, BMJP10Y). This
benchmark index is based, in most cases, on a single bond. In general, the benchmark bond is the latest
issue within a given maturity band; however, consideration is also given to liquidity, issue size and
coupon. Furthermore, the index uses clean prices at local closing dates.

Stock and bond market returns are calculated as weekly percentage changes (usually Thursday to
Thursday) in the log of the corresponding price index. Hence, we ignore exchange rate changes when
calculating local returns. This is equivalent to the assumption that international investments are fully
hedged against currency risk, but without cost.

Supplementary tables and figures

Table A1
Univariate summary statistics on weekly returns

Market Mean Min. Max. SD SK K JB AR(1) Q(4) ARCH(4)

Stock market (effective sample: 10 January 1980 to 16 September 1999)

DS US 0.26 –16.01 7.69 2.07 –0.82 4.97 1,170.45 0.00 0.64 25.11

DS JO 0.13 –12.35 13.84 2.42 –0.17 3.58 554.09 –0.00 12.38 28.08

DS DE 0.20 –15.5910.37 2.20 –0.90 5.041,225.37 0.08 16.01 33.49

DAX 0.21 –13.0111.62 2.64 –0.48 2.16 133.24 –0.05 3.35 18.10

MDAX 1 0.17 –13.24 9.86 2.08 –0.92 5.13 709.20 0.06 12.89 20.76

SMAX 1 0.10 –10.22 5.29 1.77 –0.92 4.31 522.37 0.21 49.84 18.01

Bond market (effective sample: 12 January 1984 to 16 September 1999)

10-yr US 0.03 –4.02 5.37 1.01 0.05 1.51 77.75 0.01 6.06 6.55

10-yr JP 0.04 –4.63 3.93 0.88 –0.65 5.11 949.64 0.12 36.50 23.85

10-yr DE 0.02 –3.85 3.99 0.72 –0.49 2.81 301.87 0.09 17.62 13.32

7-yr DE 0.02 –2.37 2.75 0.54 –0.61 2.33 236.07 0.10 22.34 8.63

5-yr DE 0.01 –1.57 1.67 0.40 –0.39 1.42 90.08 0.14 37.71 6.50

2-yr DE 0.01 –1.17 1.63 0.28 –0.19 2.70 254.61 0.18 59.57 2.71

10-yr PEX 2 0.01 –2.78 1.94 0.59 –0.75 2.30 193.12 0.12 21.61 5.39

Note:  SD = standard deviation; SK = skewness; K = excess kurtosis; JB = Jarque-Bera statistic for normality; AR(1) =
first-order autocorrelation coefficient; Q(4) = Ljung-Box statistic for autocorrelation up to order 4; ARCH(4) = ARCH test
with four lags (for squared returns).
1 MDAX and SMAX sample starts on 6 October 1988.   2 PEX sample starts in 7 January 1988.
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US variance
German variance

Correlation

Figure A1:  Conditional variances and correlation between US and German stock returns
Bivariate AR(1)-GARCH(1,1), diagonal representation: variances (left scale), correlation (right scale)
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Figure A2:  US–German bond return correlation from bivariate GARCH models
Constant correlation representation (dashed line) and diagonal representation (solid line)
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