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Including linkers in a sovereign bond portfolio: 
an HJM approach 

Ricardo Selves and Marcin Stamirowski1 

1. Introduction 

An inflation-linked bond (ILB) is a debt security which generates cash-flows linked to the 
evolution of a given price index. The aim of the indexation is to protect the “real” value of the 
investment. Contrary to conventional sovereign2

 fixed or floating rate securities, which offer 
investors certain nominal rates of return, inflation-linked bonds tie part of their economic 
result to the evolution of a price index, assuring in this sense a real rate of return. By so 
doing, the risk/return characteristics of these instruments differ from those of conventional 
bonds, while still offering the same credit exposure. The question naturally arises whether 
there are any advantages, from a risk/return perspective, on including this kind of 
instruments in a bond portfolio made up of conventional fixed/floating rate bonds and money 
market instruments. In other words, do ILBs constitute a different asset class able to 
enhance the efficient frontier if included in an otherwise conventional bond portfolio? 

Inflation-linked securities have a long history, with the State of Massachusetts having issued 
a first bond linked to a basket of commodities as long ago as 1780. The modern 
development of the market is widely regarded to have started in 1981, the year in which the 
index-linked gilts were first issued by the UK Treasury. 

Today, the global (government) market is worth well above EUR 1,000 billion and the main 
global issuers are the US, UK, France and Italy. Euro-denominated inflation-indexed bonds 
are issued mainly by the French Treasury (AFT-Agence France Tresor), and by the Italian 
and German Treasuries as well. The market is dominated by sovereign issuers. However, 
corporate issuance has also seen growth in recent years. It has been facilitated by the rapid 
development of inflation-indexed derivatives (such as inflation swaps), which enable greater 
flexibility in terms of determining the desired cash flows. Mainly due to its relative size versus 
the other euro-denominated markets, the French market for the inflation-linked bonds seems 
the most appropriate for an analysis of the impact of including linkers in a bond portfolio. For 
this reason, all references are made primarily to the (French) HICP-linked bonds. We start by 
a quick review of the main elements characterizing ILBs, then we address the issue of their 
inclusion in a bond portfolio so that we can later develop a model for pricing linkers and 
derivatives. 

2. Inflation-linked bonds (ILBs) 

The fundamental feature of inflation-indexed securities is that they offer investors the 
promise of a certain “real” yield or rate of return  r  on their investments as compared to 

                                                 
1  Disclaimer: the views expressed here are those of the authors and do not necessarily correspond to those of 

the European Commission. 
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2  Our references to sovereign bonds include agency and supranational securities. 
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conventional bonds (either zero-coupon or coupon-paying bonds, fixed or floating) which 
offer investors the promise of a certain “nominal” rate of return  i .3 

The classic Fisher equation suggests that the expected annual rate of inflation over the life of 
the two bonds would on average amount to: 

 rie   

If the actual average annual inflation proves later to be higher, ie  e , with 0 , then 
the ex-post real annual yield (rate of return) on the nominal bond will turn out to be just: 

 ri e  . 
On the other hand, the ILB will still have yielded its promised annual real rate  r . 

Naturally, the ex-post real yield on the nominal bond could end up being higher than that on 

the inflation-linker, should the average inflation rate prove lower than e  per annum. 

The key feature of linkers is that they provide a mean to guarantee ex-ante a certain real rate 
of return, whereas real return on conventional bonds is only known ex-post, depending on 
the actual inflation rate realized over the investment period. 

The actual mechanism inflation linkers use to ensure protection against inflation varies in 
details across the different countries. In general, however, most issuers, including France, 
have chosen a relatively simple framework, first introduced by Canada. Specifically, bonds 
are quoted in real terms, and both principal and coupons are adjusted for changes in the 
relevant consumer price index between issue date and cash-flow payment date, subject to a 
certain indexation lag. Such a cash-flow structure is commonly referred to as capital-indexed. 

We will concentrate on French government linkers as they are the most liquid in the Euro-
denominated ILB market.4 

The following table presents the situation of the euro-denominated sovereign inflation-linked 
debt in the largest European markets, as of the end of November 2009, and its relative 
importance in the corresponding total government debt market. 
 

 France Germany Italy  Greece Total 

Nom. 133.90 22.70 78.50 13.40 248.50 

% of LT debt 20.9 3.9 8.6 N/A 11.0 

% of EUR 
debt 

13.2 2.3 6.1 5.1 7.0 

Source: Periodic bulletins of the respective debt agencies and Barclays Capital.  

 

The prices of inflation-linked bonds are quoted in real terms. Settlement values and cash-
flows then adjust for accrued inflation. This mechanism makes linkers entirely equivalent to a 
conventional bond denominated in a foreign currency: Everything is traded, computed and 
negotiated in the foreign currency (in real terms in our case) and then the resulting 

                                                 
3  This promise of a real return is just a promise, on the same ground as the promise of a certain nominal yield 

offered by conventional bonds is subject to a series of assumptions such as reinvestment conditions etc. 
4  French linkers account for more than 50% of the euro-linker government market, followed by Italy, 

representing about 30%, and then Germany and Greece both accounting for less than 10% each.  
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magnitudes so calculated (accrued interests, principal, coupons) are just multiplied by the 
“exchange rate” (the index ratio). 

This means that for settlement amounts, real accrued interests are calculated as for ordinary 
OATs. Clean prices and accrued interests are then each multiplied by the index ratio to arrive 
at a cash settlement amount. As for the coupons paid, the (real) annual coupon rate is 
multiplied by the index ratio, and likewise for the par redemption amount (with the cash value 
subject to a par floor). 

3. Including government ILBs in a bond portfolio 

Now we come to the question if are there any advantages from a risk/return perspective in 
including ILBs on a bond portfolio made up of conventional fixed/floating rate bonds and 
possibly some money market instruments?5 In other words, do ILBs have the potential to 
enhance the efficient frontier of such a portfolio? 

The answer from a theoretical perspective is clearly yes. From an efficient frontier point of 
view, linkers can significantly enhance the risk/return characteristics of an otherwise classical 
portfolio. This argument effectively relies on the beta relationship between real and nominal 
yields. Recalling the Fisher equation that was introduced earlier, which relates nominal rates 
to real rates, inflation and risk; the offered yield on a nominal bond  i  can be decomposed 

into the required real return  r , a necessary compensation for inflation  e  and a certain 

risk premium   , as previously stated. 

In its loose version the Fisher equation states that  

 eri  

Based on the definition of breakeven inflation,  ebei , we can write: 
beiri   

The variance of the nominal yield can then be written as: 

         beiiCovriCovbeiriCoviiCoviVar ,,,,   

Based on this expression, dividing both sides by  iVar  we can get: 

 
 

 
 iVar
beiiCov

iVar
riCov ,,

1   

Again from a theoretical perspective, we should expect some positive covariation between 
nominal yields and expected inflation, or more precisely between nominal yields and 
breakeven inflation, ie   0, beiiCov , which means that: 

 
    1,
,

 ri
iVar
riCov

 

In other words, this means that part of the variability in nominal yields is accounted for by the 
variability in breakevens, which leaves the real yield relatively more stable, which in turn 
translates into additional stability in real prices and real returns on linkers. This also means 

                                                 
5  References to risk are made to market risk and leave aside credit risk, which is completely similar to that 

already existing on conventional bonds. 
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that the sensitivity of linkers to changes in nominal yields will usually (but not necessarily) be 
less than 1.6 

The attractiveness of an asset to a portfolio is usually measured in terms of the risk and 
return trade-off; so if the theory holds in reality, linkers should stand a very good chance of 
being included in a fixed income portfolio.  

Several empirical studies have shown that the efficient frontier of portfolios including linkers 
as an asset class moves upward, meaning that better rewards are achieved for the same 
levels of risk. 

Barclays ([3]) has tested empirically this assertion for several markets, but we concentrate on 
the euro-linkers. By the end of 2007 the size of the euro-linker market had surpassed that of 
the UK, making it the second-largest in the world. In their empirical analysis (with data 
covering 1998–2007) Barclays found that adding linkers to a portfolio of MM, conventional 
bonds and equities significantly improved the efficient frontier. Barclays also ran the exercise 
restricting the weight in the portfolio to 20%, to reflect the fact that linkers share a portion in 
the market that is lower than 20%, and the improvement remained significant (see 
Barclays([3])).  

Société Générale (SG) also discusses the case of a portfolio investing in European securities 
(MM, conventional bonds and equities7). The study shows that the portfolio becomes more 
efficient when including linkers from a historical perspective. 

In the following section we develop a 3-factor HJM to characterize the economy, with time-
dependent (non-stochastic) volatilities. If validated, the fixed income market can be 
characterized as Gaussian and so the inclusion of linkers in a bond portfolio can be analyzed 
in the context of the classical portfolio analysis, ie building an efficient frontier just based in 
the variance-covariance matrix of returns. 

4. An HJM approach to pricing bonds 

We start from the modeling of the market itself by applying an HJM model to consistently 
price both ILB and conventional euro-denominated (French) sovereign bonds. As explained 
in the description of linkers, a foreign currency analogy is naturally suited to implementing 
this methodology. In the vein of Jarrow and Turnbull [9] and Jarrow and Yildirim [10] we 
consider a hypothetical world under the no-arbitrage assumption where nominal euros 
correspond to the domestic currency, real euros correspond to the foreign currency, and the 
HICP corresponds to the spot exchange rate. In this setup, the fluctuations of the real and 
nominal interest rates and the inflation rate will be correlated. 

Following the foreign bonds analogy, nominal bonds will play the role of “national” bonds 
(upper-scripted N), the role of “foreign bonds” will be played by the real bonds (upper-
scripted R) and the HICP will play the role of the “exchange rate”. The following notation will 
be used: 

                                                 
6  If this beta were always a stable number, it would be easy to calculate the equivalent nominal duration for an 

inflation bond. Equally, though, if it were that easy, then there would be no additional value to inflation-linked 
bonds as a diversifying asset class (Barclays Capital).  

7  Total return for nominal bonds and linkers computed from total return Barclays Capital Euro Indices (France), 
money market returns based on one-month Euribor rates and equity returns derived from the total return MSCI 
Equity index for France. 
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1. h
Ttf ,  stands for country's h  forward rate (with  RNh , ), set at t ,for borrowing over 

  tTdtTT  ,, .8 

2.  h
TtP ,  stands for the price at t  of country’s h  zero-coupon bond, maturing at tT  . 

3.  tI  stands for the HICP, ie the “exchange rate” for a unit of “foreign currency” 
expressed in terms of the local currency.9 

4.  h
tr  stands for country's h  instantaneous risk-free interest rate. 

5.  durh
t

h
u

t

eB 0 stands for country's h  money market account. 

In a general HJM-world, h
Ttf , evolves according to: 

t
h
Tt

h
Tt

h
Tt dWdtdf  ,,,   

with  hk
Tt

h
Tt

h
Tt ,

1
,, ,,    

and  k
ttt WWW ,,1   

a k-dimensional Brownian Motion.10 

In the spirit of Jarrow and Yildirim [10], we will assume a three-factor model, where nominal 
bonds depend on NW , real bonds depend on RW  and the HICP depends on IW , with: 

dtdWdW RNRN ,  

dtdWdW ININ ,  

dtdWdW IRIR ,  

The price of a zero-coupon bond,  RNhP h
Tt ,,,  , may be expressed as a function of these 

forward rates as: 


T
t

h
ut dufh

Tt eP ,

, . (1) 

Letting h
Tf ,0  be the forward rate curve at time 0, it is possible to express h

Ttf ,  as: 

 
t h

s
h

Ts
t h

Ts
h
To

h
Tt dWdsff

0 ,0 ,,,  

As a particular case, the short rate h
tt

h
t fr ,  results: 

                                                 
8  The dynamic is with respect to calendar time, t , whereas the maturity, T , acts as a parameter. 

9  Each ILB has associated a particular initial HICP value, 0I , which depends on its issuance date, and which 

constitutes the basis to calculate the applicable “exchange rate" at any particular time, so  ot II /  and not tI  

should be used. For easiness of exposition however, we will assume that both, the HICP’s basis and the initial 
ILB's index coincide, unless otherwise required by the context, which will be made clear in the text. 

10  Tt,  and Tt,  are adapted with respect to the  -algebra generated by 

tskjW j
s  ,1,  (the filtration W

tF ) and satisfy the boundary conditions 




  

T
Tt dt

0 ,  

and  




 

T
Tt dt

0

2

, . 
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 
t h

s
h

ts
t h

ts
h
t

h
tt

h
t dWdsffr

0 ,0 ,,0,   

with dynamics: 

 
























t h
s

h
tsh

t
h

tt
t

h
tsh

tt

h
th

t dtdW
t

dWdtds
tt

f
dr

0

,
,0

,
,

,0  

(assuming that h
Tt,  and h

Tt,  are differentiable with respect to maturity).11 

Bond prices as given by (1) satisfy a SDE: 
















  h

t
h
Tt

h
Tt

h
Tt

h
t

h
Tt

h
Ttt dWdtrPPd *

,

2*
,

*
,,, 2

1
 (2) 

where we have put: 

 
T

t
h
Ut

h
Tt dU,
*
, , 

 
T

t
h
Ut

h
Tt dU,
*
,  

for, respectively, the integrated drift and the integrated volatility with respect to maturity.  

The HICP (or “exchange rate") tI  satisfies a SDE as well: 

 I
t

I
tttt dWdtIdI   (3) 

Real (“foreign") bonds and the real current account are non-tradeable assets in the domestic 
economy, ie it is precise to express them (price them) in nominal terms (the domestic 
currency), in order for them to be tradeable: 

 Let 
R
Ttt

T
Tt PIP ,,   be the price in “domestic currency" at t , of the real zero-coupon 

bond, maturing at tT  , ie 
T
TtP ,  is the price of a zero-coupon linker. 

 Similarly, for the “foreign" money market account, let us define R
tt

T
t BIP  , the 

value at t , in the domestic currency, of the foreign money market holdings. 

These two assets are governed by the following stochastic processes (as a simple 
application of Ito’s rules): 

   
































 










I
t

I
tt

R
t

T
t

R
t

R
Tt

I
t

I
t

R
Tt

I
tIRt

R
Tt

R
Tt

R
t

T
Tt

T
tt

T
Ttt

dWdtrP

dWdWdtrP
Pd
Pd *

,
*

,,

2*
,

*
,,, 2

1
 (4) 

In order to price claims in this economy, we need: 

1.  A replicating self-financing trading strategy (SFTS). 

2.  An equivalent martingale measure (EMM) for discounted bond prices. 

As there are three sources of uncertainty in our model, we need three securities and a 

savings account to build a SFTS. We choose a (any) nominal zero-coupon bond  T
TtP

1, , a 

                                                 

11  This is in general not a SDE, due to the final integral. In fact, h
tr  is in general not a Markov process. 
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(tradeable) inflation-linked zero-coupon bond  T
TtP

2, , the (tradeable) real saving account  T
tP  

and the nominal saving account  N
tB . 

The SFTS will be a vector of adapted processes    tttttt
 ,,,, 321  on this set of 

securities, such that, if  tttV  ,  is the portfolio's value at t , 

  tt
T
tt

T
Ttt

N
Tttttt BPPPV  3

,
2

,
1

21
, , 

then, for  21,min TTt  : 

  tt
T
tt

T
Ttt

N
Tttttt dBdPPPdV  3

,
2

,
1

21
, , 

(where we have put N
tt BB  ). 

If  tt  ,  is self-financing for  t
T
t

T
Tt

N
Tt BPPP ,,,

21
,, , then it is also self-financing for the 

discounted bond prices  1,,, ,,, 21

T
tt

T
Tt

N
Tt ZZZ  with: 

 TNh
B
PZ

t

h
h ,,:   

From equations (2) and (4), the definition of Bt and the rules of Ito’s calculus, it results that: 

 
 

 
































 







 





























I
t

I
tt

N
t

R
t

R
t

R
Tt

I
t

I
t

R
Tt

I
tIRt

N
t

R
t

R
Tt

R
Tt

N
t

N
Tt

N
Tt

N
Tt

T
t

T
t

T
Tt

R
Tt

N
Tt

N
Tt

dWdtrr

dWdWdtrr

dWdt

Z
dZ
Z

dZ
Z

dZ

*
,,,

*
,

2*
,

*
,

*
,

2*
,

,

,

,

,

2222

111

2

2

1

1

2

1
2

1

 

We now turn into the issue of the EMM for hZ . Let us define: 

 
t

stt dsWW
0

ˆ  

dtWddW
ttt  ˆ , 

where tŴ  is a three-dimensional Brownian motion with respect to a new probability measure 

Q , given by Girsanov’s theorem, with Girsanov density 





   

*

0

*

0

2

2
1

exp
T T

ttt
dtdW , 

With respect to this new probability measure, ZdZ /  becomes: 

 
 

 
































 







 


















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








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Tt
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t
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TtIRt
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N
Tt

N
Tt

T
t

T
t

T
Tt

R
Tt

N
Tt

N
Tt

Wddtrr

WdWddtrr
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ˆ
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*
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*
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*
,
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*
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*
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*
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,

22222

1111

2

2

1

1

(5) 

and to have hZ*  driftless, we need that: 
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 
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  


























































R
TtRI

R
t

R
Tt

R
Tt

I
t

I
t

R
t

R
t

R
Tt

I
tRIt

N
t

R
t

I
t

I
t

R
t

R
Tt

R
Tt

N
t

N
Tt

N
Tt

R
Tt

t

R
Tt

N
Tt

rr

rr

*
,

*
,

2*
,

*
,

*
,

2*
,

*
,

2*
,

*
,

*
,

*
,

222

222

11

2

2

1

2
1

2
1

2
1

 (6) 

(the last equation for *
, 2

R
Tt  in the fourth line above, results from substituting t  for its 

expression in the third line.) 

In order for QQ  to be an EMM simultaneously for bond prices of all maturities, 
t
  needs 

to be T -independent and this in turn means that, given the (integrated) volatilities *
,

h
Tt , 

equation (6) is a condition on the (integrated) drifts,  
T

t
h

Ut dU, . 

Differentiating both sides with respect to T  we obtain a condition on the  ’s themselves: 
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Our HJM-model is therefore determined by: 

 specifying the volatilities  ItR
Tt

N
Tt  ,, ,,  with respect of the three risk-factors 

 ItR
Tt

N
Tt WWW ,, ,,  and 

 specifying the corresponding market prices of risk  ItR
Tt

N
Tt  ,, ,, . 

These solutions for the drifts, { h*,  and  }, allow us to write the following system of 
equations which is the basis for our estimation: 
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4.1  Pricing contingent claims 

Let X  be 
T
WF  - measurable. 

 The martingale representation theorem allows to write any discounted claim’s price 
as: 
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 Using equations (5) and (6), we get: 
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 and, assuming that the 33  matrix   
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 is invertible, for all t, it is possible to invert the set of linear relations (9), and with 
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 in a saving account, constitute a self-financing trading strategy replicating X~ atT . 

 The price of our contingent claim, 0X , is obtained by taking expectations with 

respect to  , as   0,*, h
tt dZ , by construction. 
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5. Data treatment/generation 

5.1  Data description 

The data set includes daily closings of selected euro-benchmark government nominal 
bonds12

 and French government inflation-linked bonds for the period 09/03/2007 to 
26/02/2010, as well as monthly data on the harmonized consumer price index (HICP), 
covering the same period but with a monthly frequency. Consequently, the data set 
comprises around 800 daily observations for each tenor corresponding to nominal and real 
bonds and 36 observations corresponding to the HICP. 

5.2  Nominal and real interest rates 

Data for nominal bonds (spot rates) was available on 15 different maturities: three and six 
months, one to 10, 15, 20 and 30 years. Data on linkers (daily prices) corresponded to the 
five benchmark French HICP-linked bonds.  

Zero-coupon (spot) nominal rates were available directly from Bloomberg information 
service.13 They are estimated by Bloomberg itself, on the basis of the data on traded nominal 
bonds, issued by euro area-based sovereign issuers. The data as published by Bloomberg 
are constant maturity rates. 

Data on zero-coupon real rates were not readily available from Bloomberg. Therefore, in 
order to extract the rates at the desired maturities, we estimated the relevant daily term 
structures on the basis of the five benchmark euro-denominated French sovereign bonds, 
linked to the euro area HICP inflation index (excluding tobacco) and published monthly by 
Eurostat. 

The estimation procedure involved cross-sectional fitting of the zero-coupon, Nelson-Siegel 
(1987) term structure to all daily price observations, available from 09/03/2007 until 
26/02/2010.14 It is a fairly accurate approximation of the current term structure of zero-
coupon rates, provided that its shape is not too irregular. The model is still widely used by the 
market participants (see eg BIS (2005 ([7] )). 

The starting point is the description of the forward rate curve. Its shape is given by the time to 
maturity, tT  , as well as four parameters: ,,,, 210   according to the following formula: 

    tTR
Tt etTf  210,  

where R
Ttf ,  stands for the rate, set at t , for borrowing over   tTdtTT  ,,  in the “foreign 

country”. 

The corresponding spot rate term structure takes the form: 
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12  French government treasury bills for maturities up to one year and German government bonds for maturities 

beyond one year. 
13  More precisely, the indices can be found using the Fair Market Curve (FMC) function in Bloomberg, and then 

choosing curve number F960. 
14  Although the Nelson-Siegel model family is known to violate the no-arbitrage assumptions when considered in 

the time dimension, it must be noticed that the estimations were carried out for a series of cross-sectional 
observations. In other words, the inter-temporal dynamics of the Nelson-Siegel model did not play any role in 
the analysis. 
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By making T  approach t  the instantaneous short rate results as   10 tr R  and allowing 

for T  to grow unbounded the long-term rate R
tr ,  becomes equal to 0, 

R
tr . The remaining 

parameters govern the location and size of the hump. 

These spot rates can be easily transformed into the discount factors: 

 tTrR
Tt

R
TteP  ,

,  

and these, in turn, can be used to price financial assets traded on the market, including 
bonds. However, the specific problem encountered in the present project necessitated the 
application of a reverse engineering, whereby the observed market prices of the five French 
HICP inflation-linked bonds served to estimate the unknown parameters. More specifically, 
the observed bond prices were compared to the theoretical prices given by the formula: 

  R
jt

R
j

R
Tt PcB ,,  

where R
jc  denote the (real) cash-flows, and R

TtB ,  stands for the sum of the discounted real 

cash-flows – ie the “foreign-currency’ price of the bond. The estimation of the parameters 
was conducted by way of minimizing the sum of the squared errors between the prices of the 
five French inflation-linkers and their model counterparts. Obviously, given that the Nelson-
Siegel model in its original form is static (ie it describes the term structure at a given moment, 
and not its evolution over time), the estimation procedure needed to be carried out separately 
for each day in the sample – ie around 800 daily observations.15 

Then, the (theoretical) real zero-coupon rates were also calculated for the 15 selected 
maturities, as outlined above. From this set of zero-rates, the (daily) returns are derived as 
follows: 

  
252

1
,,,1, TtTtTtTt rtTrrR    (10) 

Both the nominal zero-coupon rates published by Bloomberg and the model-derived real 
zero-coupon rates have in effect constant maturities. Thus, in order to compute the return 
(either nominal or real) for holding a Z-bond over a one day period, we need the 
corresponding (   1Tt day) maturity rate, which is not directly available from the data. For 

this purpose, we assume that the interest rate of a given maturity  Tt   is also valid for 
maturity ( 1Tt day).16 

Zero-coupon forward bonds are martingales under the forward measure. To preserve 
consistency in the empirical part, parameter estimation was conducted using forward rates. 
For example, the three-month spot and six-month spot nominal rates for a given day were 
used to calculate the implied 3x3M forward rate for that same day. The same transformation 
was conducted for the remaining maturities. The resulting dataset comprised the forward 
nominal and real interest rates, with the following fourteen maturities: (3M, 9M, 1.75Y, 2.75Y, 
9.75Y, 14.75Y, 19.75Y, 29.75Y). 

                                                 
15  One of the French inflation-linkers, FRTR –3:15% maturing in July 2032, was deliberately left out of the 

estimation sample, in order to evaluate the out-of-sample performance of the model. The table at the end of 
this section presents the results of the estimation. 

16  Although several “fine-tuned” alternatives are possible, the impact of this assumption on the final result is 
negligible. 
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5.3  Returns on inflation-linked zero-coupon bonds 

As explained in Section 2, inflation-linked bonds are traded on a nominal basis, after 
adjusting for the inflation accrued over a given period: 

  T
jt

R
jt

R
Tt

T
Tt PcIRBB ,,,  (11) 

where t
R
jt

T
jt IRPP  ,,  denotes the price, at time t , of an index-linked zero-coupon bond, R

jtP ,  

stands for the t -time price of the underlying real zero-coupon bond, and tIR  is the 
corresponding index ratio for day t . 

The price of the synthetic 3M-forward zero-ILB was calculated according to the following 
formula: 

N
Mt

T
jtT

jMtt P
P

P
3,

,
,3,   (12) 

with T
jMttP ,3,   denoting the price, agreed at t , of a 3M-forward index linked zero-coupon bond 

delivered at Mt 3  and maturing at j . N
MtP 3, , in turn, is a price of a three-month nominal bill. 

The return on such synthetic forward zero-coupon bonds was calculated in line with the 
procedure as outlined in the equation (10). 

5.4  Smoothing algorithm 

The final step before estimating the variance was to apply the smoothing algorithm, similar to 
that implemented by Jarrow and Yildirim (2003). The aim of the procedure was to ensure that 
the obvious outliers (eg resulting from the poor market quotes), which generate noise in the 
data, are excluded from the analysis. The smoothing algorithm was based on the following 
formula: 

  kyieldMeanyield
yield





 (13) 

where k  varies from 3.25 to 2.50, depending on the maturity. The purpose of varying the 
parameter k  was to ensure that the overall data sample is broadly balanced (ie the number 
of observations is approximately equal) across the maturities. 

5.5  The rate of inflation 

The monthly rate of inflation was calculated from the euro area HICP inflation index 
(excluding tobacco), published monthly by Eurostat.17 In line with Jarrow and Yildirim (2003), 
the raw index data was transformed into the rate of inflation using the following formula: 


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
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

 
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t

t
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t

I
I

I
dI

ln  (14) 

                                                 
17  The data can be found eg in Bloomberg using the following mnemonic: CPTFEMU < Index >. 
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5.6  Estimation procedure 

The aim of the procedure was to estimate the following parameters:  

Parameter Definition 

N  Time decay factor of the nominal return’s volatility:  tTN N
e  . 

R  Time decay factor of the real return’s volatility:  tTR R
e  . 

N  
Scale factor for the nominal return’s volatility. 

R  
Scale factor for the real return’s volatility. 

I  
Constant HICP’s volatility. 

RN,  Correlation between Nominal and Real return risk drivers. 

IN,  Correlation between Nominal return and Inflation risk drivers. 

IR,  Correlation between Real return and Inflation risk drivers. 

 

The estimation proceeded in several steps. In each case, it involved fitting of the 
variance/covariance function to the cross section of the observed variances/covariances of 
the returns on the forward real bonds, forward inflation-linked bonds, forward nominal bonds, 
as well as inflation. Fitting was performed using nonlinear least squares. 

As shown in the table above, volatilities were assumed to be time dependent, but 

deterministic     RNhe tThh
Tt

h
,,,    and as a consequence the rates of price changes 

are Gaussian. The parameters of the nominal return process were then estimated using the 
following equation: 
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with   denoting the (forward) maturity and 2521dt  representing the time step. As usual, 
the variable to be explained (the variance of the forward returns on the nominal bonds) is on 
the left-hand side, and the only explanatory variable on the right-hand side is the forward 
maturity. Likewise, the parameters of the real return process were evaluated based on the 
equation: 
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The four parameters RRNN  ,,,  served immediately to evaluate the correlation between 
the nominal and the real returns, NR, . To this end, use was made of the following equation: 
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The next step required the evaluation of the volatility of inflation, I . It was approximated by 
the sample standard deviation of the rate of inflation (Eurozone HICP) over the period 
starting in March 2007 and ending in February 2010 (36 observations). With use of this 
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additional parameter, it was possible to estimate the correlation between the nominal returns 
and the inflation, based on the equation: 
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Another equation, analogous to the previous one, albeit involving the real rate and the 
inflation, was used to estimate IR, , the correlation between these two processes: 
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5.7  Calibration based on ZCIIS 

An alternative way to calibrate the real part of our HJM model is to recur to the market for 
inflation derivatives, in particular to the Zero-Coupon Inflation-Indexed Swaps (ZCIIS). 

ZCIIS are actively traded in the European, UK and US markets and are the most liquid 
inflation derivatives. As their prices are model-independent, the term structure of real rates 
can be easily derived from the nominal term-structure and market inflation swap rates. 

On a ZCIIS one party pays inflation on a notional amount N , whereas the other party pays 
fixed on the same notional. The contract is for settlement at maturity  T  and its value is zero 

at inception  t . The fixed rate  k  is chosen so as to make the value of the fixed leg equal to 
that of the inflation leg, when the swap is initially traded at t . Formally: 
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from where it results that: 

  tTN
Tt

R
Tt kPP  1,,  (18) 

where k  is the quoted ZCIIS, and the corresponding data series is available from 
Bloomberg. 

5.8  Results of estimation 

The following tables present the estimated coefficients, together with their standard errors 
and significance levels for both, the Nelson-Siegel derived real z-bonds and the ZCIIS-
derived bonds: 
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Estimation using Nelson-Siegel-derived zero-coupon real bonds. 

Parameter Value St. Error 

N  1.9713E – 03 (1.575E – 03) 

R  6.0379E – 03*** (8.65E – 04) 

2N  4.5289E – 05*** (1.94E – 06) 

2R  4.4214E – 05*** (1.01E – 06) 

2I  2.1052E – 04 * 

RN,  0.7434*** (7.384E – 03) 

IN,  0.3780*** (1.566E – 02) 

IR,  0.2468*** (8.559E – 03) 

*** significance at %1  

* estimate based on sample variance of inflation 

 

Estimation using ZCIIS-derived zero-coupon real bonds. 

Parameter Value St. Error 

N  1.9713E – 03 (1.575E – 03) 

R  11.4361E – 03*** (13.14E – 04) 

2N  4.5289E – 05*** (1.94E – 06) 

2R  7.0432E – 05*** (2.37E – 06) 

2I  2.1052E – 04 * 

RN,  0.7995*** (8.29E – 03) 

IN,  0.3780*** (1.566E – 02) 

IR,  0.1809*** (8.563E – 03) 

*** significance at %1  

* estimate based on sample variance of inflation 

6. Hedging analysis 

The three-factor HJM model we have fitted to the market needs now to be validated. 

We will do this via a hedging analysis, ie we will price traded inflation-linked bonds and 
nominal bonds out of the model and compare these model-derived prices with those actually 
traded in the market. We will do this for the whole time range considered in this study 
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(09/03/2007–26/02/2010). Traded are coupon-bearing bonds, not zeroes, so we need to do it 
with actual traded bonds. The procedure to hedge the linker is as follows:18 

 First build two portfolios: portfolio A, including the linker whose price we are trying to 
validate and portfolio B, including (in principle) three bonds (two linkers and one 
nominal bond). Portfolio B requires three different bonds in order to control for the 
three risk factors in the economy. 

 Then calculate the required amounts of each bond in portfolio B ( tn ,1 , tn ,2  and tn .3 ) 
so that the total investment required to build it at time t  matches exactly the cost of 
buying the linker in portfolio A. 

 Then calculate the daily return of each portfolio  B
t

A
t RR ,  and compute the difference 

 B
t

A
tt RR  . If the model is correct, the difference should be indistinguishable 

from 0. 

 Finally validate the model via analysis of residuals. 

Due to the fact that we have specified the volatilities as deterministic functions of time, all 
zero-coupon bonds (nominal and real) are Markov in three state variables: The 

instantaneous nominal and real rates, N
rr , R

rr  and the inflation index, tI . 

In particular, the specification of volatilities in the model –  tThh
Tt

h
e  ,  – translates into 

Nr  and Rr  following Ornstein–Uhlenbeck stochastic processes: 
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which in turn determines specific forms for the corresponding zero-coupon bond prices: 


























R
t

R
Tt

R
Tt

N
t

N
Tt

N
Tt

rbA

rbA

R
Tt

N
Tt

e
e

P
P

,,

,,

,

,  (20) 

where  RNhAh
Tt ,,,   are functions of time that turn out not to matter for the hedging exercise, 

and 
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We first build portfolio B so that it is worth the same as the price of the ILB we are trying to 
hedge: 

T
t

N
t

T
t

T
t BBnBnBn 0,3,32,21,1   

where f
ktB , ,  NTf , , k (0, 1, 1, 3) stand for the price at t  of the corresponding coupon 

bearing bond k . 

                                                 
18  As stated in the section describing the index-linked bonds, linkers usually include a par floor, granting that the 

capital received will at least be equal to 100%. The value of this option is usually considered to be zero, and 
we treat them similarly, given that it is highly unlikely that it would ever need to be executed. 
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Prices of traded linkers are actually the product of the “real” bond prices, R
ktB ,  and the 

corresponding “exchange rate”, kt II , with kI  standing for the associated base index. 

R
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In order for portfolio B to hedge portfolio A (the linker) we need: 
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where the second equation follows from the strategy being self-financing. The dots in the 
formulae involve other terms multiplied by dt , which cancel out. The system is solved by 

gathering all terms associated with each of the two random magnitudes ( tdI  and R
tdr ) and 

making their coefficients equal to zero for each t : 
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where the k
jt, 's are: 

 
j

k
jR

jt

R
jt
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jk

jt B
Pc

1,
,

,
,  

There are no nominal bonds in the hedging strategy  03 n , which results from the fact that 

nominal bonds don't depend directly neither on R
tr  nor on tI . However, they are correlated 

with them. 

The procedure to hedge the nominal bond is as follows: 

 First build two portfolios: portfolio A, including the nominal bond whose price we are 
trying to validate and portfolio B, including two other bonds (just nominal bonds, as 

their prices only depend directly on N
tr , not on R

tr  or tI ). Portfolio B requires just 

one bond in order to control for the single risk factor N
tr , but a second bond is 

required in order to ensure that the total value of portfolio B exactly matches that of 
portfolio A. 
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 Calculate the required amounts of each bond in portfolio B ( tn ,1  and tn ,2 ) so that the 

total investment required to build it at time t  matches exactly the cost of buying the 
bond in portfolio A. 

 Then calculate the daily return of each portfolio ( A
tR , B

tR ) and compute the 

difference  B
t

A
tt RR   in the same way we did for linkers. If the model is correct, 

the difference should be undistinguishable from 0. 

 Finally validate the model via analysis of residuals. 

In order for portfolio B to hedge portfolio A we need: 
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where the second equation follows from the strategy being self-financing. The dots in the 
formulae involve other terms multiplied by dt , which cancel-out. Solving the system for each 
t  in a similar way as before, the result is: 
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6.1  Hedging results 

The hedging exercise was run first run on the five existing benchmark linker bonds employed 
to estimate the HJM parameters: there are 10 possible combinations of three bonds each out 
of these five bonds, which are shown in the table below numbered from one to 10. We also 
included as portfolio 11 the hedging of the single bond left out of the parameter estimation, 
the OAT i 3, 15%2032, to check the model performance on an out-of-sample bond. 

We performed this exercise both, for the NS and for the ZCIIS estimated parameters. All in 
all 22211   portfolios were created. 

These hedging portfolios generated 22 series of errors, which constitute the basis for the 
model-validation analysis. The error analysis was performed on the original series (as 
generated from the hedging exercise) and also on the same number of “filtered” series, ie 
series where the errors were filtered in line with the three sigma rule, according to which all 
the outlier observations exceeding three sample standard deviations were iteratively 
excluded from the series, until the sample moments (mean and variance) converged to a 
stable level.19 

 

                                                 
19  This allowed for smoothing the series and decreasing the dispersion of the sample distribution. 
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Hedged bond hedging bonds 

1) BTANi 1,25% 2010 OATi 3% 2012 OATi 1,6% 2015 

2) BTANi 1,25% 2010 OATi 3% 2012 OATi 2,25% 2020 

3) BTANi 1,25% 2010 OATi 3% 2012 OATi 1,8% 2040 

4) BTANi 1,25% 2010 OATi 1,6% 2015 OATi 2,25% 2020 

5) BTANi 1,25% 2010 OATi 1,6% 2015 OATi 1,8% 2040 

6) BTANi 1,25% 2010 OATi 2,25% 2020 OATi 1,8% 2040 

7) OATi 3% 2012 OATi 1,6% 2015 OATi 2,25% 2020 

8) OATi 3% 2012 OATi 1,6% 2015 OATi 1,8% 2040 

9) OATi 3% 2012 OATi 2,25% 2020 OATi 1,8% 2040 

10) OATi 1,6% 2015 OATi 2,25% 2020 OATi 1,8% 2040 

11) OATi 3,15% 2032 OATi 2,25% 2020 OATi 1,8% 2040 

 

The following chart presents the result of the analysis: 

The results clearly show that in all cases but the NS-filtered series from portfolio 11 (the 
2020/2040 portfolio hedging the 2032 bond) there is no reason to reject the null hypothesis of 
zero mean error.20 This constitutes a strong argument for validating the model: In other 
words, none of the strategies considered allows for making consistent profits (ie arbitrage 
opportunities). 

                                                 
20  Regarding the filtered series, as it is apparent from the above results, the smoothing algorithm did not affect 

the inference regarding the zero mean error. 
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Figure 1 

ILBs – Null hypothesis: mean error= 0 

 

 

Figure 2 presents a table showing the mean error and corresponding standard deviation per 
portfolio (both, for the NS and the ZCIIS filtered series), and a chart showing the error range 
covering 90% of the distribution for the NS-filtered series.21 The chart permits to have a 
second assessment on the quality of the HJM-model to represent the economy: six out of 
11 hedging portfolios produced errors which stayed inside ±20 bps 90% of the time and two 
portfolios produced errors which stayed inside ±35 bps 90% of the time. Remarkably, 
portfolio 11, which hedges the bond 2032 (which wasn't included in the set of bonds to 
estimate the HJM parameters), produced very small errors.  

                                                 
21  The table shows that the NS parameter estimation produced much more accurate results than the ZCIIS 

approach. 
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Figure 2 

ILBs – NS-filtered selection 

 

 

Finally, Figure 3 shows from another angle that the NS approach to build the zero-coupon 
bonds produced superior results compared to the ZCIIS approach. The probability mass of 
hedging errors enclosed in specific ranges is larger in the NS approach than in the ZCIIS. 
The results are presented both, for filtered and unfiltered errors. 

There is still a need to perform a similar hedging analysis on nominal bonds in order to 
validate the model, which is done below. The hedging analysis was based on 10 portfolios 
made out of five different synthetic bonds, built to exactly match the maturities of the five 
benchmark linker bonds and the same methodology used to hedge the ILBs was used to 
analyze the nominal bonds. 

The following charts present the results of the analysis. 
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Figure 3 

ILBs–probability mass 

 

 

The results show that in all cases there is no reason to reject the null hypothesis of zero 
mean error.22 This completes the argument for validating the model: In other words, none of 
the strategies considered allows for making consistent profits (ie arbitrage opportunities). 

                                                 
22  Regarding the filtered series, as was the case also for ILBs, the smoothing algorithm did not affect the 

inference regarding the zero mean error. 
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Figure 4 

Nominal bonds-null hypothesis: mean error= 0 

 

7. Portfolio selection 

We have built a model to characterize the bond market (including nominal and inflation-linked 
sovereign bonds) and we are now capable of building a sovereign bond portfolio including 
both asset classes. As the model is Gaussian, the variance-covariance matrix characterizing 
all securities in the portfolio is required, as is the corresponding vector of expected returns. 

As there are just three risk factors driving the market, all we need is the risk-free rate and 
three bonds (two linkers and one nominal bond) spanning the whole maturity range. 



134 BIS Papers No 58
 
 

Figure 5 

Nominal bonds–filtered selection 
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Tt,  be the return on a nominal bond: 
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Let dtRT
Tt,  be the return on a ILB: 
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The instantaneous rate of return on a bond (either nominal or real) is: 
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7.1  Variance-covariance 

In this subsection the required Variance-covariance matrix is derived. The covariances 
between the different returns of discount bonds are presented below: 
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Now, using these expressions together with those for the returns of traded bonds, the 
covariances between returns of the different traded (coupon-paying bonds) are derived: 
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Based on the sample period of our database (09/03/2007–26/02/2010) these formulae 
produced the following variance-covariance matrix for the set of the three selected bonds: 

Nominal bond coupon 3.85% maturity July/2040 

ILB bond coupon 1.25% maturity July/2010 

ILB bond coupon 2% maturity July/2040 
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Using this variance-covariance matrix, the portfolio allocation between nominal bonds and 

linkers results from an optimization exercise between three securities ( N
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where   stands for the asset’s optimal weights in the portfolio, R  for the vector of expected 
returns and r  for the portfolio’s expected return. 

8. Conclusions 

The financial crisis changed the appreciation of different asset classes among public 
investors leading to a fundamental reassessing of their risks, which in turn reduced the 
investment universe. As a result, the quest for diversification became even more critical and 
the case for including inflation linkers in a fixed income portfolio grew stronger. 

We first discussed the general case for including linkers in an otherwise traditional fixed 
income portfolio, to later develop a specific model to characterize the market. 

Using French ILB’s market prices and zero-coupon inflation indexed swaps, we derived 
corresponding real zero-coupon bond price curves. Zero (real) coupon prices were derived 
as it is typically done in the industry, ie by recourse to traded ZCIIS, but also by fitting 
Nelson-Siegel curves to the daily data. Both methodologies resulted in different parameter 
estimates, which were later tested in the hedging analysis to validate the model. 

We then fitted a three-factor HJM model to characterize the economy, with time-dependent 
(non-stochastic) volatilities, which consequently resulted on a Gaussian economy. 

Some 21 hedging portfolios were built and the statistical characteristics of their errors 
permitted to validate the model.23 The validation of the model provided a coherent theoretical 
background to build a portfolio of bonds which includes linkers as well as nominal bonds. 

In the context of this model, the asset returns are normally distributed, so the case for 
including linkers in a bond portfolio is reduced to the classical CAPM analysis, as assets are 
characterized by their expected returns and their variance-covariance matrix. 

This is the first, to the authors’ knowledge, attempt to calibrate the HJM framework using 
data on European inflation-linked bonds. 
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