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Zero-coupon yield curves estimated by central banks 

Introduction 

Following a meeting on the estimation of zero-coupon yield curves held at the BIS in June 1996, 
participating central banks have since been reporting their estimates to the Bank for International 
Settlements. The BIS Data Bank Services provide access to these data, which consist of either spot 
rates for selected terms to maturity or represent estimated parameters from which spot and forward 
rates can be derived. In the case estimated parameters are reported, the Data Bank Services 
provides, in addition to the parameters also the generated spot rates.    

The purpose of this document is to facilitate the use of these data. It provides information on the 
reporting central banks’ approaches to the estimation of the zero-coupon yield curves and the data 
transmitted to the BIS Data Bank. In most cases, the contributing central banks adopted the so-called 
Nelson and Siegel approach or the Svensson extension thereof. A brief overview of the relevant 
estimation techniques and the associated mathematics is provided below. General issues concerning 
the estimation of yield curves are discussed in Section 1. Sections 2 and 3 document the term 
structure of interest rate data available from the BIS. The final section provides examples of estimated 
parameter and selected spot and forward rates derived thereof. A list of contacts at central banks can 
be found after the references. The remainder of this document consists of brief notes provided by the 
reporting central banks on approaches they have taken to estimate the yield curves. 

Since the last release of this manual in March 1999 there have been four major changes: Switzerland 
started to report their estimates of the yield curve to the BIS in August 2002. Furthermore, Sweden 
began to use a new estimation method in 2001, the United Kingdom since September 2002 and 
Canada since January 2005. These changes are included in Tables 1 and 2. 

1. Zero-coupon yield curve estimation techniques 

The estimation of a zero-coupon yield curve is based on an assumed functional relationship between 
either par yields, spot rates, forward rates or discount factors on the one hand and maturities on the 
other. Discount factors are the quantities used at a given point in time to obtain the present value of 
future cash flows. A discount function dt,m is the collection of discount factors at time t for all maturities 
m. Spot rates st,m, the yields earned on bonds which pay no coupon, are related to discount factors 
according to: 

( )msd mtmt ,, exp −=  and mtmt d
m

s ,, log1
−=  (1) 

Because spot interest rates depend on the time horizon, it is natural to define the forward rates ft,m as 
the instantaneous rates which, when compounded continuously up to the time to maturity, yield the 
spot rates (instantaneous forward rates are, thus, rates for which the difference between settlement 
time and maturity time approaches zero): 
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These relations can be inverted to express forward rates directly as a function of discount factors or 
spot rates: 
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where dots stand for derivatives with respect to time to maturity.  

However, the general absence of available pure discount bonds that can be used to compute zero-
coupon interest rates presents a problem to practitioners. In other words, zero coupon rates are rarely 
directly observable in financial markets. Attempting to extract zero-coupon rates from the prices of 
those risk-free coupon-bearing instruments which are observable, namely government bonds, various 
models and numerical techniques have been developed. Such models can broadly be categorised into 
parametric and spline-based approaches, where a different trade-off between the flexibility to 
represent shapes generally associated with the yield curve (goodness-of-fit) and the smoothness 
characterizes the different approaches. These main modelling approaches are now briefly discussed 
below. 

Parametric Models 

The underlying principle of parametric models, also referred to as function-based models, is the 
specification of a single-piece function that is defined over the entire maturity domain. Whilst the 
various approaches in this class of models advocate different choices of this function, they all share 
the general approach that the model parameters are determined through the minimisation of the 
squared deviations of theoretical prices from observed prices. 

The Nelson and Siegel method 

The method developed by Nelson and Siegel (1987) attempts to estimate these relationships by fitting 
for a point in time t a discount function to bond price data by assuming explicitly the following function 
form for the instantaneous forward rates: 
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In this equation m denotes time to maturity, t the time index and βt,0, βt,1, βt,2 and τt,1 are parameters to 
be estimated.1 The zero-coupon or spot interest rate curve sm can be derived by integrating the 
forward rate curve: 
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which is equivalent to: 
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For long maturities, spot and forward rates approach asymptotically the value β0 which must be 
positive. (β0 + β1) determines the starting value of the curve at maturity zero; β1 thus represents the 
deviation from the asymptote β0. In addition, (β0 + β1) must also be positive. The remaining two 
parameters β2 and τ1 are responsible for the “hump”. The hump’s magnitude is given by the absolute 
size of β2 while its direction is given by the sign: a negative sign indicates a U-shape and a positive 
sign a hump. τ1, which again must be positive, determines the position of the hump. 

                                                      
1 To simplify the notation, the time index t is dropped below. 
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The Svensson method 

To improve the flexibility of the curves and the fit, Svensson (1994) extended Nelson and Siegel’s 
function by adding a further term that allows for a second “hump”. The extra precision is achieved at 
the cost of adding two more parameters, β3 and τ2, which have to be estimated. The instantaneous 
forward rates curve thus becomes: 
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with β3 and τ2 having the same characteristics as β2 and τ1 discussed above. Again, to derive the spot 
rates curve the instantaneous forward rates curve is integrated: 
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For zero-coupon bonds, spot rates can be derived directly from observed prices. For coupon-bearing 
bonds usually their “yield to maturity” or “par yield” only is quoted. The yield to maturity is its internal 
rate of return, that is the constant interest rate rk that sets its present value equal to its price: 

∑
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where Pk is the price of bond k which generates n cash-flows CF at periods tj (i = 1, 2, .. , n). These 
cash flows consist of the coupon payments and the final repayment of the principal or face value. 
Yields to maturity on coupon bonds of the same maturity with different coupon payments are not 
identical. In particular, the yield to maturity on a coupon-bearing bond differs from the yield to maturity 
- or spot rate - of a zero-coupon bond of the same maturity. Nevertheless, if the cash flow structure of 
a bond trading at the market (“at par”) is known, it is possible to derive from estimated spot rates 
uniquely the coupon bond’s theoretical yield to maturity, ie the rate the bond would require in order to 
trade at its face value (“at par”). Drawing on the spot rates st,m, the price equation can be expressed 
as: 
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where C represents the coupon payments and V the repayment of the principal. The yield to maturity 
of a coupon-bearing bond is therefore an average of the spot rates which, in general, varies with the 
term to maturity. 

To derive the term structure of interest rates, the discount function is estimated by applying a 
(constrained) non-linear optimisation procedure to data observed on a trade day. More important than 
the choice of a particular optimisation method (eg maximum likelihood, non-linear least squares, 
generalised method of moments) is the decision whether the (sum of squared) yield or price errors 
should be minimised. If one is primarily interested in interest rates, it suggests itself to minimise the 
deviation between estimated and observed yields. In this case the estimation proceeds in two stages: 
first, the discount function dt,m is used to compute estimated prices and, secondly, estimated yields to 
maturity are calculated by solving the following equation for each coupon-bearing bond k: 
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At both stages, the starting point is from pre-selected values for the relevant parameters and to run 
through an iterative process until convergence is achieved. It is computationally easier to minimise 
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price errors than yield errors, as this only requires finding a solution for the first stage. Unfortunately, 
minimising price errors can lead to large yield errors for financial instruments with relatively short 
remaining term to maturity. Considering how yield, price and term to maturity of a bond are related, it 
is not surprising to observe this heteroscedasticity problem: drawing on the concept of duration,2 the 
elasticity of the price with respect to one plus the yield is equal to the duration of the bond. A given 
change in the yield corresponds to a small/large change in the price of a bond with a short/long term to 
maturity or duration. Fitting prices to each bond, given an equal weight irrespective of its duration, 
leads to over-fitting of the long-term bond prices at the expense of the short-term prices. One 
approach to correct for this problem is to weight the price error of each bond by a value derived from 
the inverse of its duration. 

Other factors can also contribute to fairly large yield errors at the short end of the term structure. For 
instance, the trading volume of a bond can decrease considerably when it approaches its maturity 
date. The quoted price for such a bond may not accurately reflect the price at which trading would take 
place. For such reasons it may be appropriate to exclude price data of bonds close to expiration when 
fitting term structures. 

Spline-based Models 

Rather than specifying a single functional form over the entire maturity range, spline-based methods fit 
the yield curve by relying on a piecewise polynomial, the spline function3, where the individual 
segments are joined smoothly at the so-called knot points. Over a closed interval, a given continuous 
function can be approximated by selecting an arbitrary polynomial, where the goodness-of-fit 
increases with the order of the polynomial. Higher-order polynomials, however, quite frequently display 
insufficient smoothing properties. This problem can be avoided by relying on a piecewise polynomial 
whereby the higher-order polynomial is approximated by a sequence of lower-order polynomials. 

Consequently, spline functions are generally based on lower-order polynomials (mostly quadratic or 
cubic). A cubic spline, for instance, is a piecewise cubic polynomial restricted at the knot points such 
that their levels and first two derivatives are identical. One parameter corresponds to each knot in the 
spline. 

The “smoothing splines” method 

This method developed by Fisher, Nychka and Zervos (1995) represents an extension of the more 
traditional cubic spline techniques (eg Vasicek and Fong (1982)). In the case of “smoothing splines” 
the number of parameters to be estimated is not fixed in advance. Instead, one starts from a model 
which is initially over-parameterised. Allowing for a large number of knot points guarantees sufficient 
flexibility for curvature throughout the spline. The optimal number of knot points is then determined by 
minimizing the ratio of a goodness-of-fit measure to the number of parameters. This approach 
penalizes for the presence of parameters which do not contribute significantly to the fit. It is not 
convenient to draw on the (varying number of) parameters in disseminating yield curve information. 

There is a broad range of spline-based models which use this “smoothing method” pioneered by 
Fisher et al. The main difference among the various approaches simply lies in the extent to and 
fashion by which the smoothing criteria are applied to obtain a better fix. The “variable penalty 
roughness” (VRP) approach recently implemented by the Bank of England allows the “roughness” 
parameter to vary with the maturity, permitting more curvature at the short end.4  

                                                      
2 Recall that the duration of a zero-coupon bond is equal to its maturity. Assuming a flat yield curve, the sensitivity of a zero-

coupon bond to a change in the term structure should be directly proportional to its maturity. A change in the interest rate 
divided by one minus the interest rate of 1% corresponds to a change in the price of 1% of a bond with a maturity of one 
year and of 10% of a 10-year bond. 

3  Spline functions, such as basis or B-splines, are used in the context of yield curve estimation. At times there exists some 
confusion among practitioners between spline functions and spline-based interpolation. While the former technique uses 
polynomials in order to approximate (unknown) functions, the latter is simply a specific method to interpolate between two 
data points. 

4  See James and Webber (2000) for a comprehensive overview and comparison of the various approaches and Anderson 
and Sleath (1999) for a detailed description of the VRP approach. 
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Generally, the estimation method largely depends on intended use of data: no-arbitrage pricing and 
valuation of fixed-income and derivative instruments vs information extraction for investment analytical 
and monetary policy purposes. One of the main advantages of spline-base techniques over parametric 
forms, such as the Svensson method, is that, rather than specifying a single functional form to 
describe spot rates, they fit a curve to the data that is composed of many segments, with the 
constraint that the overall curve is continuous and smooth.5 

2. Provision of information on the term structure of interest rates 

The term structure of interest rates, defined as the functional relationship between term to maturity and 
the spot interest rate of zero-coupon bonds, consists of an infinite number of points. In many respects 
forward interest rates are more interesting than spot rates, as implied by the spot rate curve or vice 
versa, as the former can pertain information about expected future time paths of spot rates. At any 
point along the maturity spectrum there exists an infinite number of forward rates which differ in terms 
of their investment horizon. The instantaneous forward rate represents just a special case, the one for 
which the investment horizon approaches zero.  

Published information on term structure of interest rates usually consists of selected spot rates at 
discrete points along the maturity spectrum. Occasionally, these spot rates are complemented by a 
selection of specific forward interest rates.  

Such limitations would be mitigated if information on the term structure of interest rates could be 
presented in terms of algebraic expressions from which spot and forward rates can be derived. This is 
straightforward for parsimonious approaches such as Nelson and Siegel and Svensson discerned 
above, for which spot and instantaneous forward rates can be calculated using the estimated 
parameters (β’s and τ’s).  

Further information can be useful in interpreting the curves such as statistics on the quality of the fit, 
details on the debt instruments used in the estimations, and if and what kind of efforts were made to 
prevent that specific premia, eg tax premia, distort estimation results. Some of this information can be 
found below and in the notes provided by the central banks.  

Comparability of central banks’ term structures of interest rates 

To estimate the term structure of interest rates, most central banks reporting data have adopted either 
the Nelson and Siegel or the extended version suggested by Svensson. Exceptions are Canada, 
Japan, (in part) Sweden6, the United Kingdom, and the United States which all apply variants of the 
“smoothing splines” method. 

Government bonds data are used in the estimations since they carry no default risk. Occasionally, 
central banks complement this information by drawing on money market interest rates or swap rates. 
Clearly, financial markets differ considerably in terms of the number of securities actively traded and 
their turnover, the variety of financial instruments and specific institutional features. Such differences 
can give rise to a variety of premia which should be taken into consideration in the estimation process 
but in practice this is difficult to do.  

Premia induced by tax regulations are notoriously difficult to deal with. One could attempt to remove 
tax-premia from the observed prices/yields before they are used in estimations. In other instances it 
may be preferable to simply exclude instruments with distorted prices/yields from the data set. In 
cases where it is expected that tax distortions have only a minor impact on the estimation results the 
best approach may be to ignore this problem altogether. Occasionally, central banks prefer modifying 
the estimation approach instead of adjusting the data to deal with specific problems (see Table 1).  

                                                      
5  For example, at the long end of the yield curve, the Svensson model is constrained to converge to a constant level, directly 

implying that the unbiased expectation hypothesis holds. 
6 Although Sveriges Riksbank adopted the “smoothing splines” method in 2001, they still only report their Svensson method 

estimates to the BIS Data Bank.  
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Not all central banks estimate the term structure for the full maturity spectrum for which debt 
instruments are available. Although this concerns both ends of the curves, the short-end is usually 
more difficult to deal with than the long-end. In modelling the short-end of the term structure, the 
approaches taken by monetary authorities differ considerably. On the data side this concerns mostly 
the choice of the types of short-term instruments regarded to be the most suitable and the minimum 
remaining term to maturity allowed in the estimation. On the modelling side, it is this part of the term 
structure on which the decision for either Nelson and Siegel’s “one-hump” or Svensson’s “two-hump” 
model may have the greatest impact. The requirement of a minimum remaining term to maturity for a 
bond to be included in the estimations influence the fit of the very short-end of the curve. Considering 
the difficulties to consistently achieve a good fit for this part of the curve helps to explain why some 
central banks regard the short-end of their curves as less reliable than the rest. Across the board, the 
interval from one to 10 years is hardly controversial. 
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Table 1 

The term structure of interest rates - estimation details 

Central bank Estimation 
method 

Minimised 
error 

Shortest 
maturity in 
estimation 

Adjustments 
for tax 

distortions 

Relevant 
maturity 
spectrum 

Belgium Svensson or 
Nelson-Siegel 

Weighted prices Treasury 
certificates:  
> few days 

Bonds: > one 
year 

No Couple of days 
to 16 years 

Canada Merrill Lynch 
Exponential 
Spline 

Weighted prices Bills: 1 to 12 
months 

Bonds: > 12 
months 

Effectively by 
excluding 
bonds 

3 months to 30 
years 

Finland Nelson-Siegel Weighted prices ≥ 1 day No 1 to 12 years 

France Svensson or 
Nelson-Siegel 

Weighted prices Treasury bills: 
all Treasury 

Notes: : ≥ 1 
month 

Bonds: : ≥ 1 
year 

No Up to 10 years 

Germany Svensson Yields > 3 months No 1 to 10 years 

Italy Nelson-Siegel Weighted prices Money market 
rates: O/N and 
Libor rates from 
1 to 12 months 

Bonds: > 1 year 

No Up to 30 years 

Up to 10 years 
(before 
February 2002) 

Japan Smoothing 
splines 

Prices ≥ 1 day Effectively by 
price 
adjustments for 
bills 

1 to 10 years 

Norway Svensson Yields Money market 
rates: > 30 days 

Bonds: > 2 
years 

No Up to 10 years 

Spain Svensson 

Nelson-Siegel 
(before 1995) 

Weighted prices 

Prices 

≥ 1 day 

≥ 1 day 

Yes 

No 

Up to 10 years 

Up to 10 years 

Sweden Smoothing 
splines and 
Svensson 

Yields ≥ 1 day No Up to 10 years 

Switzerland Svensson Yields Money market 
rates: ≥ 1 day 

Bonds: ≥ 1 year 

No 1 to 30 years 
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Table 1 cont 

The term structure of interest rates - estimation details 

Central bank Estimation 
method 

Minimised 
error 

Shortest 
maturity in 
estimation 

Adjustments 
for tax 

distortions 

Relevant 
maturity 
spectrum 

United 
Kingdom1 

VRP 
(government 
nominal) 

VRP 
(government 
real/implied 
inflation) 

VRP (bank 
liability curve) 

Yields 
 
 

Yields 
 
 
 

Yields 
 

1 week (GC 
repo yield) 
 

1.4 years 
 
 
 

1 week 
 

No 
 
 

No 
 
 
 

No 
 

Up to around 
30 years 
 

Up to around 
30 years 
 
 

Up to around 
30 years 

United States Smoothing 
splines 
(two curves) 

Bills:  
weighted prices 

Bonds:  
prices 

– 
 

≥ 30 days 

No 
 

No 

Up to 1 year 
 

1 to 10 years 

1  The United Kingdom used the Svensson method between January 1982 and April 1998. 

 

3. Zero-coupon yield curves available from the BIS 

Table 2 provides an overview of the term structure information available from the BIS Data Bank.  
Most central banks estimate term structures at a daily frequency. With the exception of the United 
Kingdom, central banks which use Nelson and Siegel-related models report estimated parameters to 
the BIS Data Bank. Moreover, Germany and Switzerland provide both estimated parameters and spot 
rates from the estimated term structures. Canada, the United States and Japan, which use the 
smoothing splines approach, provide a selection of spot rates. With the exception of France, Italy and 
Spain, the central banks report their data in percentage notation. Specific information on the retrieval 
of term structure of interest rates data from the BIS Data Bank can be obtained from BIS Data Bank 
Services.
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Table 2 
The structure of interest rates available from the BIS Data Bank1 

Central 
bank Method2 

Estimates 
available 

since 
Frequency Available 

yield series 
Maturity 
interval Parameters3 Parameter 

notation4 

Belgium SV-NS 1 Sep 1997 Daily 0 to 10 years 3 months 6 Per cent 

Canada SV 

SS 

23 Jun 1998 to 
15 Oct 2003 

1 Jan 1986 

Daily 

Daily 

1 to 10 years 

3 months  to 
30 years 

3 months 

3 months 

6 

na 

Per cent 

na 

Finland NS 3 Nov 1997 Weekly;  
daily from 
4 Jan 1999 

1 to 10 years 3 months 4 Per cent 

France5 SV-NS 3 Jan 1992 to 
1 Jun 2004 

Weekly 0 to 10 years 3 months 6 Decimal 

Germany6 SV 

SV 

SV 

SV 

7 Aug 1997 

Jan 1973 

28 Aug 1997 

Jan 1973 

Daily 

Monthly 

Daily 

Monthly 

1 to 10 years 

na 

1 to 10 years 

1 to 10 years 

3 months 

— 

1 year 

1 year 

6 

6 

6 

6 

Per cent 

Per cent 

Per cent 

Per cent 

Italy NS 1 Jan 1996 Daily 0 to 10 years 3 months 4 Decimal 

Japan5 SS 29 Jul 1998 to 
19 Apr 2000 

Weekly 1 to 10 years 1 year na na 

Norway SV 21 Jan 1998 Once a 
month 

0 to 10 years 3 months 6 Per cent 

Spain NS 

SV 

2 Jan 1991 to 
30 Dec 1994 

2 Jan 1995 

Daily 

Daily 

na 

1 to 10 years 

— 

3 months 

4 

6 

Decimal  

Decimal 

Sweden SV 

SV 

9 Dec 1992 to 
1 Mar 1999 

2 Mar 1999 

Weekly 

Daily 

0 to 10 years 

0 to 10 years 

3 months 

3 months 

6 

6 

Per cent 

Per cent 

Switzerland7 SV 

SV 

SV 

4 Jan 1988 

4 Jan 1998  

Jan 1988 

Daily 

Daily 

Monthly 

1 to 10 years 

1 to 10, 15, 
20, 30 years 

1 to 10, 15, 
20, 30 years 

3 months 

1 year 

1 year 

6 

6 

6 

Per cent 

Per cent 

Per cent 

SV 
 

SV 

4 Jan 1982 to 
30 Apr 1998 

Jan 1982 to 
April 1998 

Daily 
 

Monthly 

2 to 10 years 
 

2 to 10 years 

6 months 

6 months 

na 
 

na 

na 
 

na 

United 
Kingdom 

VRP 

VRP 

VRP 

VRP 

4 Jan 1982 

Jan 1982  

15 Jan 1985 

Jan 1985 

Daily 

Monthly 

Daily 

Monthly 

5, 10 years8 

5, 10 years8 

20 years8  

20 years8 

— 

— 

— 

— 

na 

na 

na 

na 

na 

na 

na 

na 

United 
States 

SS 

SV 

14 Jun 1961 

01 Dec 1987  

Daily 

Daily 

0 to 10 years 

0 to 10 years 

6 months 

3 months 

na 

na 

na 

na 

1  As of August 2005.    2  NS = Nelson-Siegel, SV = extended Nelson-Siegel (Svensson), SS = smoothing splines, 
VRP = variable roughness penalty.    3  Where there is an indication of a parameter there is also a BIS generated yield 
available on the BIS Data Bank. Moreover, “na” means that the country is transmitting estimated yields and not parameters. 
4  Estimated parameters define spot and forward interest rates expressed in either decimal notation or per cent.   5  The yield 
curve is currently not estimated.   6  BIS generated yields are available at three months interval in addition to the yearly yields 
reported by the Bundesbank.   7  BIS generated yields are available at three months interval in addition to the yearly yields 
reported by the Swiss National Bank.   8  The nominal and real yields as well as the implied inflation term structure are 
calculated for the corresponding maturities. 
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4. Spot interest rates and forward rates derived from estimation 
parameters 

Spot interest rates and instantaneous forward rates can be derived directly from the equations for the 
Nelson-Siegel and Svensson approaches presented above: replace the parameters of the equations  
- β0, β1, β2 and τ1 in the Nelson and Siegel and β0, β1, β2, τ1, β3 and τ2 in the Svensson case - by their 
estimated values and evaluate the equations at terms to maturity m for which the spot or forward rates 
have to be derived (eg m = 1 for one year to maturity). Table 3 provides examples of estimated 
parameters and a selection of corresponding points on the term structures. For the calculation of spot 
and instantaneous forward rates, it is partly relevant if the term structure was estimated either in 
decimal or percentage notation; the only difference is that the β-parameters are rescaled by a factor of 
100. Clearly, such rescaling has no impact on the location of the humps as determined by the  
τ-parameters. By setting β3 = 0 and τ2 to an arbitrary non-zero value (eg τ2 = 1), the Svensson 
equations can be used to derive spot and forward rates of term structures estimated by the Nelson 
and Siegel approach. Thus it is sufficient to implement just the two Svensson equations to derive the 
spot and instantaneous forward rates for both approaches. 

 

Table 3 

Spot interest rates and instantaneous forward rates derived from estimation parameters 

Estimation 
parameters 

Svensson 
(in percentage notation) 

Nelson and Siegel 
(in decimal notation) 

Nelson and Siegel 
(in percentage notation) 

β0 5.82 0.0769 7.69 

β1 –2.55 –0.0413 –4.13 

β2 –0.87 –0.0244 –2.44 

τ1 3.90 0.0202 2.02 

β3 0.45 – – 

τ2 0.44 – – 

Term to 
maturity 

Spot rate 
(%) 

Forward 
rate (%) Spot rate Forward 

rate 
Spot rate 

(%) 
Forward 
rate (%) 

0 3.27 3.27 0.0356 0.00356 3.56 3.56 

1 year 3.61 3.78 0.0400 0.0444 4.00 4.44 

15 months 3.65 3.84 0.0411 0.0465 4.11 4.65 

18 months 3.69 3.91 0.0421 0.0486 4.21 4.86 

21 months 3.72 3.98 0.0432 0.0506 4.32 5.06 

2 years 3.76 4.05 0.0443 0.0526 4.43 5.26 

5 years 4.17 4.80 0.0546 0.0683 5.46 6.83 

10 years 4.68 5.45 0.0639 0.0758 6.39 7.58 

∞ 5.82 5.82 0.0769 0.0769 7.69 7.69 

 

The calculation of forward rates with non-instantaneous term to maturity is slightly more complicated. It 
is important to notice that in those cases where the term structure parameters are readily available, 
forward rates can be derived for any desired term to maturity. To compute such implied forward rates, 
evaluate the spot rate equations at discreetly chosen term to maturity intervals, then calculate the 
implied forward rates recursively from the shortest to the longest term to maturity. 
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Technical note on the estimation procedure 
for the Belgian yield curve 

Michel Dombrecht and Raf Wouters1 

The purpose of this note is to document the methodology and data used for the construction of the 
zero coupon yield curve that is daily estimated by the National Bank of Belgium. The yield curve is 
based on the functional form proposed by Nelson and Siegel (1985) and extended by Svensson 
(1994). 

Theoretical model 

The following functional form is used to represent the zero coupon yield curve: 
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The zero coupon yield r depends on the maturity of the bond (m) and the parameters β0, β1, β2, β3, τ1 
and τ2. This function is used to define the discount factor d (m): 

d (m) = exp ( )
⎟
⎠
⎞

⎜
⎝
⎛ τβ
− mmr

100
,,  (2) 

Each bond price can then be approximated by the discounted sum of the coupon payments and final 
capital: 
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The parameters β0, β1, β2, β3, τ1 and τ2 are estimated by minimising the sum of squared bond price 
errors weighted by (1/Φ): 
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where Φ equals the duration ∗ price/(1+ yield to maturity) of the bond. 

Application and data 

The daily estimation is based on the market price of Treasury certificates and linear bonds: all 
outstanding Treasury certificates (with a maturity between days and one year) and all linear bonds or 
OLO’s in Belgian francs with a maturity longer than one year (excluding line 239) are included in the 
sample. This means that some 45 prices are considered, of which 18 bond prices and 27 Treasury 

                                                      
1 National Bank of Belgium, Research Department. 
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certificates. This sample is adjusted over time according to the information from specialists in the bond 
market. 

The market prices of the bonds are corrected for the accrued interest calculated as a proportion of the 
coupon payment. There is no correction for the deviation between the day of trade (t ) and the day of 
settlement (t + 3 for bonds and t + 2 for the Treasury certificates). 

The estimation programme starts by estimating the parameters β0, β1, β2 and τ1 with fixed β3 = 0 and 
τ2 = 1. Then the programme checks whether the estimation result improves by adding β3 and τ2. If 
these coefficients are not significant, the simple Nelson-Siegel formula is retained; otherwise, the 
extended Svensson formula is used. 
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A technical note on the Merrill Lynch Exponential Spline model 
as applied to the Canadian term structure 

David Bolder, Scott Gusba, and David Stréliski1 

The purpose of this note is to describe the methodology used by the Bank of Canada to construct the 
Government of Canada yield curve. We generate zero coupon curves daily, for maturities from 0.25 to 
30.00 years, by applying an estimation method based on the Merrill Lynch Exponential Spline (MLES) 
model to a selection of Government of Canada Treasury bill and bond prices.2 

1. Data 

The two fundamental types of Canadian dollar-denominated marketable securities issued by the 
government of Canada are Treasury bills and Canada bonds. Treasury bills, which do not pay periodic 
interest but rather are issued at a discount and mature at their par value, are currently issued at three-, 
six- and 12-month maturities. Government of Canada bonds pay a fixed semi-annual interest rate and 
have a fixed maturity date. Issuance involves maturities across the yield curve with original terms of 
maturity at issuance of two, five, 10 and 30 years.3 Each issue is reopened several times to improve 
liquidity and achieve “benchmark status”.4 Canada bonds are currently issued on a quarterly 
“competitive yield” auction rotation with each maturity typically auctioned once per quarter.5 In the 
interests of promoting liquidity, Canada has set targets for the total amount of issuance to achieve 
“benchmark status”; currently, these targets are CAD 7 billion to 10 billion for each maturity. 

2. Data filtering 

Our goal is to select only those bonds that are indicative of the current market yields. As a result, we 
use a system of filters to omit bonds which create distortions in the estimation of the yield curve. 

• To avoid potential price distortions when large deviations from par exist, bonds that trade at 
a premium or a discount of more than 500 basis points from their coupon are excluded.6 

• Bonds with less than CAD 500 million outstanding are excluded in order to include only 
those bonds with the requisite degree of liquidity. This amount was chosen in a fairly 
arbitrary manner to ensure a reasonable number of bonds in the sample. 

• Canada benchmark bonds are the most actively traded Canada bonds in the marketplace 
and it is thus essential that the information contained in these bonds be incorporated into the 
yield curve.7 

                                                      
1 Analysts, Bank of Canada, Ottawa. 
2 For a more detailed description of the approach, see Bolder and Gusba (2002), or Bolder, Johnson and Metzler (2004). 
3 Canada eliminated three-year bond issues in early 1997; the final three-year issue was 15 January. 
4 A “benchmark” bond is analogous to an “on-the-run” US Treasury security in that it is the most actively traded security for a 

given maturity. 
5 Government of Canada bond yields are quoted on an actual/actual day count basis net of accrued interest. The accrued 

interest, however, is by market convention calculated on an actual/365 day count basis. 
6 This value of 500 basis points is intended to reflect a threshold at which the tax effect of a discount or premium is not 

believed to have an economic impact. 
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• Additional “discretionary” filtering of bonds is possible. It should be noted, however, that the 
inclusion or exclusion of a bond is based on judgment and would occur after investigating the 
underlying reason for a problematic (or unusual) bond quote. 

3. The model 

The Bank of Canada uses the Merrill Lynch Exponential Spline (MLES) model, developed by Li et al.8 
The MLES model is a parametric model which specifies a functional form for the discount function, 
d( t ) , as 

tk

k
keztd α−

=
∑=
9

1
)(  (1) 

where zk (k = 1,...,9) and α are the parameters to be estimated. 

Once a functional form for the discount function has been specified, a zero coupon interest rate 
function is derived. The zero coupon curve, z(t), is given by 

ttdtz /))((ln()( −=  (2) 

 

4. The estimation 

The basic process of determining the optimal parameters for the discount function which best fits the 
bond data is outlined as follows: 

• The sample of Government of Canada bond and Treasury bills is selected and the timing 
and magnitude of their cashflows are determined. 

• The estimation involves 9 linear parameters (the zk), and one non-linear parameter (α). The 
optimization normally takes less than one minute to complete. Maximum likelihood 
estimation is used. As a result of the fact that the discount function is a linear function of 9 of 
the 10 parameters, the majority of the maximum likelihood computations can be carried out 
as matrix multiplications, which are computationally efficient. 

• Price residuals are calculated using theoretical Government of Canada security prices and 
the actual price data and inversely weighted by (modified) duration. The calculation of 
estimated prices is straightforward as the discount function permits us to discount any 
cashflow occurring throughout the term to maturity spectrum. The weighting on the i-th bond 
(wi) is given as follows: 

ii Dw /1=  

where Di is the (modified) duration of the i-th bond.9 

  

                                                                                                                                                                      
7 As previously discussed, the new issues may require two or more reopenings to attain “benchmark status”. As a result, the 

decision as to whether or not a bond is a benchmark is occasionally a matter of judgment. 
8 Li et al (2001) 
9 This is consistent with the Bliss approach. For a complete explanation of the justification for weighting price errors, see Bliss 

(1996). 
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Notes on the estimation for the Finnish term structure 

Lauri Kajanoja and Antti Ripatti1 

1. Nelson and Siegel method as applied at the Bank of Finland 

The daily term structure of interest rates for Finland is estimated using the methods developed by 
Nelson and Siegel (1987).2 Given the parameter vector, β, and maturity, m, the instantaneous forward 
rate is defined as follows: 
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The corresponding spot rate (zero coupon interest rate) is: 
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The parameters β0 (labelled as BETA0 in the database), β1 (BETA1), β2 (BETA2), and τ1 (TAU1) are 
estimated using the following assumptions: 

• The estimation is based on the minimisation of the yield errors (based on the maximum 
likelihood method assuming that yield errors follow normal distribution). 

• The spot curve is usually but not always forced to pass the overnight rate. When it is, the 
instantaneous forward rate with zero maturity corresponds to the overnight rate. 

• The data consist of the following instruments: Eonia (pre-1999: Finnish overnight rate), one-, 
three-, six- and 12-month money market (Euribor interbank offered rate (actual/360), %, daily 
fixing) rates (pre-1999: Helibor), and a variety (four to seven different bonds) of government 
benchmark bonds (average of primary dealers’ bids/offers at 1 pm). The data are from the 
Bank of Finland database. No tax corrections are made. 

When the estimated parameters are used to compute spot or forward rates using the above formulas, 
the following applies: time to maturity is expressed in years; the size of the parameters is as given. 
The results are expressed as annualised rates. 

2. Metadata 

BETA0 Nelson-Siegel parameter beta 0; estimate based on the minimisation of the yield errors; 
original data from O/N up to 12 years of maturity. 

BETA1 Nelson-Siegel parameter beta 1; estimate based on the minimisation of the yield errors; 
original data from O/N up to 12 years of maturity. 

BETA2 Nelson-Siegel parameter beta 2; estimate based on the minimisation of the yield errors; 
original data from O/N up to 12 years of maturity. 

TAU1 Nelson-Siegel parameter tau 1; estimate based on the minimisation of the yield errors; 
original data from O/N up to 12 years of maturity. 

                                                      
1 Bank of Finland, Economics Department. 
2 C Nelson and A F Siegel, “Parsimonious modeling of yield curves”, Journal of Business, 60, 1987, pp 473-89. 
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Estimating the term structure of 
interest rates from French data 

Roland Ricart, Pierre Sicsic and Eric Jondeau1 

The data used 

The data used for estimating zero coupon yield curves cover three categories of government issues: 

• French franc-denominated OAT bonds (Obligations Assimilables du Trésor) with maturities 
at issue ranging between seven and 30 years, which have been the main instrument used 
for financing the government since the mid-1980s.2 

• Treasury notes, or BTANs (Bons du Trésor à taux fixe et intérêts ANnuels), with maturities of 
two to five years, which are used for medium-term financing. 

• Treasury bills, or BTFs (Bons du Trésor à taux Fixe et intérêts précomptés), which are 
issued with maturities up to one year, offering a wide choice of maturities at the time of 
issue. The prices quoted are those of each Friday. 

OATs are issued through a process of assimilation: they are often issued with the same characteristics 
as existing OATs (ie the same coupon and maturity). At the first coupon date, all the new issues are 
pooled with the earlier releases. 

OATs are no longer issued with maturities of less than a year. With the latter category, the liquidity 
tended to diminish, which can lead to abrupt price swings. Indeed, market operators make their 
decision on the basis of yield to maturity, and a slight variation in the latter has a very strong impact on 
the price of assets with only a short time remaining to maturity. A comparable phenomenon occurred 
in the case of BTANs, leading the Treasury to stop issuing them with maturities of less than one 
month. The prices and yield to maturity of BTFs were calculated to make them consistent with data on 
OATs and BTANs, whose yields are based on a 365-day year. 

For all securities, coupons are paid once a year and are subject to taxation. Households are liable to a 
withholding tax of 18.1% on income. For the business sector, the same rate applies as with taxes on 
profits (34%). For non-residents, the tax rate depends on the bilateral agreement with the country 
concerned. 

Some notes on the estimations 

In selecting data for the estimations, the following rules apply. 

Concerning OATs, only the most liquid of the fixed rate and French franc-denominated issues (except 
strips) are used. For liquidity reasons, the following issues are excluded: OATs with a maturity of less 
than one year, BTANs of less than one month and BTFs of less than one week. In estimating the zero 
coupon yield curves, tax effects are not taken into account. 

The estimation goes back to January 1992. The prices or yield to maturity quoted are those of each 
Friday. For OAT data, the prices used correspond to the last price; for BTAN data, the price is the 
average between the bid and ask prices quoted; for BTF data, the yield is the average between the bid 
and ask yields quoted. 

                                                      
1 Bank of France, Economic Studies and Research Division. 
2 French franc-denominated Treasury bonds were the main instrument used for financing the government until 1985. 
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Two specifications are used for the interpolations: the original Nelson-Siegel function and the 
augmented function as proposed by Svensson. The parameters of each function are obtained for each 
observation date by minimising the weighted sum of the square of the errors on the prices of all of the 
securities, using a non-linear estimation method. The weights are the interest rate sensitivity factors of 
prices. In fact, this function can be seen as an approximate criterion defined on the yields to maturity. 
This method, strictly based on the yields to maturity, would make the estimation process longer, 
because a system of non-linear equations has to be solved for each iteration. Thus, a criterion 
obtained by taking an approximation of the estimated interest rate on the basis of a first-order Taylor 
approximation is substituted for this function. The function is then minimised and can be interpreted as 
a criterion established on the weighted prices. The latter represents the derivative of the price with 
regard to the yields to maturity or, in other words, the interest rate sensitivity of prices.3  

A constraint is imposed on the parameters, so that the estimated curve goes through the shortest-term 
interest rate available at each observation date. 

In view of the number of coefficients and the high degree of non-linearity of the function to be 
optimised, the parameters of the “augmented” Nelson-Siegel relationship are obtained in two stages.4 
This cuts down the estimation time and thus reduces the risk of false convergence. At first, the basic 
function proposed by Nelson and Siegel is estimated, using as the initial coefficients values that suit all 
of the possible configurations of the term structure of interest rates.5 After convergence, the results are 
used as the initial values for estimating the “augmented” Nelson-Siegel function. The two parameters 
that are specific to the augmented part of the function, which are not available in the first step, are 
initialised with 0 and 1 for the extra β and τ respectively. This procedure makes it possible to start the 
second step with values that can be assumed to be close to the real parameters of the model. After 
making the estimates, the term structure of interest rates found is checked to see if it justifies the use 
of the “augmented” relationship rather than the basic Nelson-Siegel relationship. 

The selection between the basic and the augmented Nelson-Siegel functions is based on the Fisher 
test (at the 5% significance level). Confidence intervals based on the data method are also estimated. 

The estimated zero coupon yield curves are published in Section 4 of the Bank of France’s Bulletin 
Digest. 

References 
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4 The estimates are made using Gauss software. 
5 The initial coefficients, which are constant for all estimate dates, were obtained by testing various possibilities in order to 

come up with the smallest possible number of non-convergence points over the period 1992-94. 
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The data for estimating the German 
term structure of interest rates 

Sebastian T Schich1 

The choice of securities used in constructing the yield curve from the prices of government debt 
instruments is important since it affects the estimates. A decision has to be taken on the trade-off 
between “homogeneity” and the availability of sufficient observations in each range of the maturity 
spectrum. There is no objective criterion available for determining the optimal choice of data. The 
following paragraphs describe an attempt to find a compromise solution to these problems.2 

The available set of data comprises end-month observations of the officially quoted prices (“amtlich 
festgestellte Kassakurse”), remaining maturities and coupons of a total of 523 listed public debt 
securities from September 1972 to February 1996. They include bonds issued by the Federal Republic 
of Germany (Anleihen der Bundesrepublik Deutschland), bonds issued by the Federal Republic of 
Germany - “German Unity” Fund (Anleihen der Bundesrepublik Deutschland - Fonds “Deutsche 
Einheit”), bonds issued by the Federal Republic of Germany - ERP Special Fund (Anleihen der 
Bundesrepublik Deutschland - ERP-Sondervermögen), bonds issued by the Treuhand agency 
(Anleihen der Treuhandanstalt), bonds issued by the German Federal Railways (Anleihen der 
Deutschen Bundesbahn), bonds issued by the German Federal Post Office (Anleihen der Deutschen 
Bundespost), five-year special federal bonds (Bundesobligationen), five-year special Treuhand agency 
bonds (Treuhandobligationen), special bonds issued by the German Federal Post Office 
(Postobligationen), Treasury notes issued by the German Federal Railways (Schatzanweisungen der 
Deutschen Bundesbahn), Treasury notes issued by the German Federal Post Office 
(Schatzanweisungen der Deutschen Bundespost), and Federal Treasury notes (Schatzanweisungen 
des Bundes).3  

The vast bulk of available securities have a fixed maturity and an annual coupon. There are a few 
bonds with semiannual coupons and special terms, such as debtor right of notice and sinking funds. 
The differing coupon payment frequencies (annual, semiannual) are taken into account in the 
calculation of yields. Bonds with semiannual coupon payments were issued until the end of December 
1970; they matured not later than December 1980. The debtor right of notice gives the issuer the right 
to redeem (or call) loans prematurely after expiry of a fixed (minimum) maturity; therefore these bonds 
are referred to as callable bonds. Such bonds were issued until September 1973 and were traded until 
November 1988. Bonds with a sinking fund may be redeemed prematurely and in part after a fixed 
(minimum) maturity. They were issued until December 1972 and traded until December 1984. 

In order to obtain a more homogeneous set of data, bonds with special terms and those issued by the 
German Federal Railways and the German Federal Post Office were eliminated from the original set.4 
The yields of these debt securities are characterised by additional premia compared to debt securities 
on standard terms issued by the Federal Republic of Germany. For example, the price of a bond with 
a debtor right of notice can be interpreted as the price of a standard bond minus the price of a call 
option on that bond. Since this call option has a positive value as long as the volatility of interest rates 
is positive, the price of the bond with the debtor right of notice is lower and its yield higher than that of 
a standard bond. As for bonds issued by the German Federal Railways and the German Federal Post 

                                                      
1 Deutsche Bundesbank, currently on sabbatical in the Money and Finance Division of the OECD’s Economics Department. 
2 No data are available for May 1982. The May 1982 term structure estimates are proxied by the arithmetic average of the 

estimates for April and June 1982. 
3 For information on individual securities issued after 1984, see Deutsche Bundesbank (1995), pp 81-8. 
4 Another possible source of variation among the yields is the fact that, since the introduction of the Deutsche Terminbörse 

(DTB), it has been possible to deliver some bonds and Special Federal Notes under bund futures contracts. In particular, 
bonds with a remaining time to maturity of between eight and a half and 10 years and Special Federal Notes with a 
remaining time to maturity of between three and a half and five years are candidates for delivery under futures contracts. 
However, a close inspection of the data did not reveal significant differences due to these characteristics. 
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Office, they have a rating disadvantage compared to bonds issued by the Federal Republic of 
Germany because the perceived default risk is marginally higher.5 In practice, the bonds of the former 
carry a spread with respect to the bonds of the latter, and this spread varies over time. 

The final data set comprises (standard) bonds issued by the Federal Republic of Germany 
(170 issues), five-year special federal bonds (116 issues), and Federal Treasury notes (17 issues), 
making altogether 303 issues for the period September 1972-February 1996. A list of the individual 
securities, as of end-December 1996, is contained in the appendix to Schich (1997).6 The debt 
securities available for each month vary considerably over time, especially until the mid-1980s. For 
example, only a few observations are available at the beginning of the 1970s, the smallest set being 
September 1972 with just 15 observations. The number of debt securities available grows sharply 
during the 1970s, increasing (almost) monotonically to more than 80 observations in 1983. During the 
rest of our sample period, the number of observations available varies between 80 and almost 100. 

The observations are in general spaced equally over the maturity range from zero to 10 years. 
Nevertheless, there are a few gaps in the maturity spectrum at the beginning of the 1970s. Although 
there are no bonds with a short original time to maturity, the short end of the yield curve is generally 
well represented by medium- and long-term issues with small residual maturities. 

This leads on to the question of the maturity spectrum used. We adopt the Bank of England approach 
and consider all bonds with a remaining time to maturity above three months. The yields of bonds with 
residual maturities below three months are excluded because they appear to be significantly 
influenced by their low liquidity and may therefore not be very reliable indicators of market 
expectations. Bonds with maturities between three months and one year appear to be more liquid. 
Including these bonds is at variance with the Bundesbank’s former practice of excluding bonds with a 
residual time to maturity below one year. Although this exclusion would improve the overall fit in terms 
of the deviations between observed and estimated yields, we do not adopt that strategy here because 
it implies very imprecise estimates for the one-year yields. Since observations of exactly one year and 
slightly higher than one year are regularly missing, the estimate of the one-year rate essentially 
becomes an out-of-sample forecast. This forecast turned out to be often not very reliable. For 
example, the parametric approach adopted here could produce a “spoon effect”, whereby the curve 
flips up at the short end when observations are sparse, thus resulting in unrealistically high estimates 
for the one-year rate. As the one-year rate is of special concern to policymakers and is also one of the 
frequently cited interest rates in reports on the capital market, these properties are particularly 
undesirable. Thus, bonds with a remaining time to maturity of between three months and one year are 
included. 

Another issue is whether or not the three bonds at the very long end of the maturity spectrum should 
be included. There is a case for leaving them out because not all of them appear to be very actively 
traded. However, when the curve is very steep, the observations at the long end help to tie down the 
10-year estimates. We follow the practice employed in the past at the Bundesbank and include the 
long-term bonds as well. 

Reducing the sample to the 303 issues improved the fit of the estimates, measured as the deviation 
between observed and estimated yields. The extent of improvement varied over time and amounted to 
just 1 basis point on average. It should be noted that the reduction of the sample also rendered 
convergence of the estimates more difficult. Nevertheless, convergence was achieved in all periods. 
Thus, the sample of 303 issues seems to offer a good compromise between homogeneity and 
efficiency in estimation. 

                                                      
5 This is supported by simple statistical tests. Regressing separately for various dates the yields of the final set of securities, 

on the one hand, and of the omitted securities, on the other, on the coupons and maturities, the null hypothesis of equality of 
the estimated coefficients (Wald test) can be rejected, with the coefficients obtained from the omitted securities being 
generally higher. 

6 Clearly, in estimating its (spot) yield curve, the Deutsche Bundesbank continuously updates the list of securities. 
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Technical note on the estimation of forward 
and zero coupon yield curves as applied to 

Italian euromarket rates 

Bank of Italy, Research Department, Monetary and Financial Sector 

1. Estimation of the nominal yield curve: data and methodology 

The nominal yield curve is estimated from Libor and swap rates, with maturity dates of one to 
12 months for Libor rates and two to 10 years for swap yields, downloaded daily from Reuters. Rates 
are quotes in the London market provided by the British Bankers’ Association and Intercapital Brokers 
respectively.1 The underlying assumption is that the price (par value) of these securities equals the 
present values of their future cash flows (ie coupon payments and final redemption payment at 
maturity). 

At the Bank of Italy, we have a fairly long tradition of estimating zero coupon rate yield curves and 
have experimented with several methodologies and models. In the middle of the 1980s, we started 
zero coupon yield curve estimation by using the CIR (1985) one-factor model for the short rate, 
estimated on a cross section of government bond prices (Barone and Cesari (1986)2); before that, a 
cubic splines interpolation was in place as a routine device to gauge the term structure of interest 
rates. The CIR model application was later updated (Barone et al (1989)) and then the CIR model 
extended to a two-factor model for the short rate (Majnoni (1993)), along the lines of Longstaff and 
Schwartz (1992). Drudi and Violi (1997) have tried to efficiently combine cross-section and time series 
information in estimating parameters for a two-factor model of the term structure, in which a stochastic 
central tendency rate is introduced as a second factor determining the shape of the yield curve. 

More recently, we have been considering the Nelson-Siegel approach, as a viable alternative to the 
general equilibrium model-based yield curve estimation, because of its relatively low implementation 
and running cost in building a forward yield curve on a daily basis. 

2. Functional specification of the discount function: Nelson-Siegel vs 
Svensson approach 

Forward rates and yield to maturity are estimated using the methodology suggested in Nelson and 
Siegel (1987), subsequently extended in Svensson (1994). The modelling strategy is based on the 
following functional form for the discount function: 

d (τ) = exp (–y(τ)τ) 

with 
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where τ represents time to maturity, y(τ) the yield to maturity and vectors (β0, β1, β2, β3, τ1, τ2) the 
parameters to be estimated, with (β0, τ1, τ2) > 0. 

                                                      
1 Reuters RIC pages: FRBD/H and ICAQ/T respectively. 
2 See also Barone et al (1991). 
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The spot yield function, y (τ), and forward rate function, ƒ(τ), are related by the equation: 

∫
τ

τ
ƒ

=τ
0

)()( dssy  (2) 

Replacing (1) into (2) and differentiating, one obtains the closed-form expression for the forward yield 
curve: 
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where β0 represents the (instantaneous) asymptotic rate and (β0 +β1) the instantaneous spot rate. 
Restricting β3 equal to zero in (3), one obtains the Nelson-Siegel (1987) forward rate function. This 
function is consistent with a forward rate process fulfilling a second-order differential equation with two 
identical roots. Such a restriction limits to only one local minimum (or maximum) the maturity profile, 
according to the sign of β2. When β3 differs from zero, eg Svensson extension, more than one local 
maximum or minimum is allowed, hence increasing flexibility in fitting the yield curves. 

Estimation requires prior specification of a price, Pi , for the i-th security, obtained by discounting the 
cash flow profile, ⎨C j⎬i , for a given time to maturity, ⎨τ i⎬. This is carried out on a daily sample of 
n securities whose price is modelled as the sum of their discounted cash flows: 
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where ki stands for the time to maturity for the i-th security. 

The econometric implementation leads to the introduction of a pricing error process, εi : 

)(bPP ii =∗ + εi 

∀i = 1, . . . . ,n (5) 

where P ∗ indicates the market price of the security and εi is assumed to be a white noise process. The 
objective function minimises the squared deviation between the actual and the theoretical price, 
weighted by a value related to the inverse of its duration, Φi : 
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 (6) 

Criterion (6) is implemented by means of a non-linear least squares algorithm (TSP command LSQ) to 
derive the parameters’ estimates. The Nelson-Siegel parsimonious parametrisation has been 
preferred to Svensson’s extended version for practical reasons. Often, the Svensson extension seems 
to be less robust at the shortest end of the yield curve. In our experience, the Svensson approach 
offers little, if any, practical advantage in improving the precision of the estimates, in the terms of both 
pricing errors and information criteria (for instance, Akaike or Schwarz-Bayes). With the Nelson-Siegel 
specification, simulated yield curves normally show average pricing errors of some 4-5 basis points, 
equivalent to 1-2 basis points in terms of yield to maturity. Parameter significance tests, with the 
covariance matrix corrected for heteroskedasticity, are almost always passed. In comparing daily 
pricing errors over time across maturities, we have found some evidence of autocorrelated residuals, 
pointing to regression residuals which are not always "white". In addition, larger, duration-adjusted, 
pricing errors often seem to show up more often at the shorter end of the curve; the Svensson 
extension does not provide a remedy for these latter shortcomings. 
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A technical note on the estimation of the zero coupon yield 
 and forward rate curves of Japanese government securities 

Bank of Japan, Research and Statistics Department 

This note covers data description and estimation techniques for estimating zero coupon yield curves 
and implied forward rate curves using Japanese government securities. The Bank of Japan estimates 
these curves based on the method developed by Fisher et al (1995). 

1. Data description 

To estimate the yield curves of risk-free fixed income assets, the following four types of Japanese 
government securities are used: 10-year and 20-year government bonds (hereinafter 10-yr JGBs and 
20-yr JGBs, respectively) and three- and six-month Treasury bills (hereinafter 3m TBs and 6m TBs, 
respectively). The first two are fixed income bonds with semiannual coupon payments while the latter 
two are discount securities. In each case, the data required for estimation are: ID number, quote date, 
redemption date, coupon rate (zero for TBs), and price. 

 

Table 1 

Selected features of each security 

 10-yr JGBs 20-yr JGBs 3m TBs 6m TBs 

Frequency of issuance Monthly Quarterly Monthly Monthly 

Number1 of issues outstanding in 
secondary markets  

Around 85 Around 35 3 6 

Price data for estimation purposes Small-lot trades,2 price as of 3 pm 
on TSE3 

Inter-dealer price as of 5 pm 

1  Varies over time.   2  Orders of more than JPY 1 million but less than JPY 10 million, par value.   3  3 pm is the closing time 
of the Tokyo Stock Exchange (TSE). 

 

Input data set details: 

1. The data set includes all JGBs listed on the TSE and TBs outstanding in the inter-dealer 
market with one exception: due to the existence of a “redemption fee”,1 the data for 10-yr 
JGBs with a remaining maturity of less than half a year are excluded.2 

2. TB prices are adjusted for withholding tax levied at issuance and repaid at redemption 
according to the following formula: 

 TB price for input data = quoted price ∗ 100 / (100 + withholding tax), 
where withholding tax = (100 – average issuance price) ∗ 0.18 and 0.18 is the withholding 
tax rate. 

                                                      
1 The redemption fee (currently JPY 0.09) is gradually incorporated into the JGB price as remaining maturity becomes 

shorter, especially when it becomes less than half a year. 
2 Since the shortest remaining maturity of 20-yr JGBs is currently around nine years, the “redemption fee” problem applies 

only to 10-yr JGBs - at least for now. 
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2. Estimation techniques 

Interpolating forward rate curves by smoothing splines 

Following Fisher et al (1995), zero coupon yield and forward rate curves are extracted by smoothing 
the spline with the roughness penalty selected according to generalised cross validation (GCV). 

First, the cash flow of each security i is decomposed into the scheduled coupon and principal 
payments (c1i,c2i, ...,cmi) and the number of days to each payment (t1i, t2i, ..., tmi) is calculated. m is the 
number of remaining coupon payments until maturity. 

Let δ(t ji) be the discount factor at time t ji. Also let )(~
itδ  and ci be the column vector of discount factors 

and payments for security i, respectively. Then, the price of security i can be written as )(~
iii tcp δ′= .3 

This decomposition is effected for all securities in the data set (i =1,2, ...,n), and P is defined as 
(p1, p2, ..., pn)′. 

Instantaneous forward rate curves are expressed by linear combination of cubic B-splines as below: 

ƒ(t) ≡ (φ1(t),φ2(t),...,φκ(t))(β1,β2,...,βκ)′ ≡ φ(t)β (1) 

where (φ1(t),φ2(t),...,φκ(t)) is a cubic B-spline basis, (β1,β2,...,βκ)′ is a column vector of coefficients, and 
κ is the number of knot points plus 2. 

By definition, the discount factor can be written with the above forward rates as: 
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where T is the largest t ji for all j ’s and i ’s. 

Let Π(β) be the vector of prices of securities based on the above interpolating forward rates such that: 

Π(β) ≡ (π1(β),π2(β),...,πm(β)) (3) 

where πi(β) ≡ ),(~ βδ′ isi tc  and ),(~ βδ is t ≡ (δs(t1i,β),δs(t2i,β),...,δs(tmi,β))′ 
The smoothing spline minimises the following problem for a given λ (stated below) with respect to β: 
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The first term of this expression is the sum of the residuals of squares and the second term defines the 
roughness penalty. λ, a constant, is a weighting parameter of the roughness penalty. The bigger λ 
becomes, the smoother the estimated forward rate curves look. In the smoothing splines, the number 
of effective knots is determined automatically to secure a certain degree of smoothness and goodness 
of fit; at the same time, the minimiser β (denoted as β*(λ)) is derived once the value of λ is set. 

In order to set λ, we have to refer to the shape of the yield curve and the size of residual terms, which 
is inevitably a subjective operation. GCV works to choose λ in a more objective way. Once the “tuning 
parameter” (θ) is set by discretion, GCV selects λ under a constant criterion for each estimation time. 

We choose the value of λ as the minimiser of the GCV value (γ): 
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where Α(λ) ≡Χ (β*(λ)) (Χ (β*(λ))′Χ (β*(λ))+λΗ )–1Χ (β*(λ))′ 

(= measure of the effective number of parameters) 

                                                      
3 (′) denotes the transpose. 
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As θ gets bigger, the forward rate curves appear smoother at the expense of goodness of fit. In the 
original paper, θ is set to be 2 for US data. However, we found it is not always enough for the data set 
we examined. 

Graph 1 shows instantaneous forward rate curves as of 24 December 1997 estimated using the 
program written by Fisher and Zervos (1996).4 With θ= 2 the estimated forward rate curve (solid curve) 
seems too rough, especially between five and 10 years, while with θ = 3 it looks more reasonable 
(thick curve).5 After examining samples between April 1997 and January 1998, we decided to set θ (at 
least provisionally) to be 3. 

Graph 1 

Estimated instantaneous forward rates 
with different tuning parameters 

As of 24 December 1997; in percentages 

 

Market conventions with respect to Japanese government securities 

Some market conventions peculiar to Japan make the estimation procedure and the interpretation of 
output complicated. We adjusted the original program (see subsections 1 and 2 below). 

1. Initial and final coupon payments 

Coupon payments are semiannual for JGBs. The actual number of days to the next coupon payment 
varies, for the two reasons stated below. However, the amount of each coupon payment is fixed at half 
the coupon rate regardless of the actual number of days, except for initial and final payments. 

                                                      
4 The estimation procedure described in this paper is implemented using this program with some adjustments (described in 

the next section). It runs on Mathematica version 2.2. 
5 In either case, we obtain a humped region between five and 10 years, which implies that JGB prices with a remaining 

maturity of seven to 10 years are somewhat overvalued. This phenomenon might be attributable to the fact that these JGBs 
are eligible for settlement as JGB futures. 
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• Coupon payment and redemption dates for JGBs are basically the 20th of the month, 
becoming the nearest following business day if the 20th is not a business day.6 Only the final 
payment takes account of such a shift in the redemption date. 

• 10-yr JGBs are currently issued every month but redemption months are grouped by the 
rule7 shown in Table 2. The month of initial coupon payment is determined accordingly. 
Thus, the number of months from issuance to initial coupon payment may be seven or eight, 
rather than six, which means an additional payment to the initial payment. In practice, the 
initial coupon payment is calculated based on the number of days between the issuance day 
and the 20th of the initial coupon payment month (including the issuance day). 

 

 

Table 2 

Issuance month, redemption month and 
initial coupon payment month for 10-yr JGBs 

Issuance month Redemption month Month for initial coupon 
payment 

Apr, May, Jun Jun Dec 

Jul, Aug, Sep Sep Mar 

Oct, Nov, Dec Dec Jun 

Jan, Feb, Mar Mar Sep 

Note: This rule has been in effect since 1987. 

 

Similarly, there is a rule, as shown in Table 3, regarding 20-yr JGBs; initial and final coupon payments 
are treated accordingly. 
 

 

Table 3 

Issuance month, redemption month and 
initial coupon payment month for 20-yr JGBs 

Issuance month Redemption month Month for initial coupon 
payment 

Apr Sep Sep 

Jul Sep Mar 

Oct Mar Mar 

Jan Mar Sep 

Note: This rule has been in effect since 1996. 

 

                                                      
6 The date of issuance varies irregularly. 
7 This rule is not official, but de facto. 
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2. Accrued interest 

The price data do not include accrued interest, which is calculated using the following formula8 and 
added to the price. 

Accrued interest = N * coupon rate / 365, where N is the number of days from the last coupon payment 
to settlement. 

3. Business days from the quote day to the settlement day 

For both JGBs and TBs, the number of business days from the quote day to the settlement day is now 
three. Our estimation procedure treats the settlement day as if it were the quote day. Thus, for 
example, estimated zero coupon rates are, strictly speaking, forward rates whose delivery day is three 
business days after the quote day. However, since this interval (three business days) is quite short 
and an appropriate short-term risk-free rate does not exist in the Japanese market, we decided to 
report the estimated rates as of the quote day without any adjustment. 
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Estimation of spot and forward 
rates from daily observations 

Øyvind Eitrheim1 

Introduction 

Spot and forward interest rates are calculated from daily observations of the yield to maturity on 
Norwegian government bonds and their coupon payments for bonds with maturities in the range of two 
to 10 years, and four money market rates on one-, three-, six- and 12-month holdings respectively. 

We use money market rates instead of Treasury bill rates since the secondary market for the latter is 
much less liquid in Norway. 

Details of the estimation procedure 

We consider two variants of parametric forward interest rate functions ƒ (m,β) proposed by Nelson and 
Siegel (1987) and Svensson (1994), where m denotes the remaining maturity and β the parameter 
vector to be estimated. The corresponding spot interest rate function can be written as the average of 
the instantaneous forward rates with settlement between 0 and m: 

s(m,β) = ( )∫
=τ

βτƒ
m

m 0

,1 dτ (1)) 

For a given trading date, let there be n bonds (cj , mj , yj , pj ), j = 1, ....., n represented by their coupons 
cj , remaining maturity mj and observed yield to maturity yj . pj denotes the observed price of a given 
bond. For bonds with annual coupon payments, we index the coupon payments by the sequence 
τjk , k = 1, ...., Kj , where Kj denotes the number of coupon payments for bond j . Allowing remaining 
maturity mj to be non-integer, we define: 

τjk = mj – [mj ] + k – 1 (2) 

Kj = [mj ] + 1 (3) 

where [mj ] denotes the highest integer lower than mj . The estimated price of a coupon bond Pj (β) can 
be written as the sum of prices of a sequence of zero coupon (discount) bonds related to each coupon 
payment and the face value of the bond (normalised to 1), each priced with the discount function: 
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    j = 1, ....., n (5) 

We note that we can characterise each bond either by the observed triplet (cj , mj , pj ) or by the triplet 
(cj , mj , yj ) replacing the price pj of the bond with the bond’s yield to maturity yj . From the coupons 
cj , j =1, ...., n and the indexed sequence of payments τjk(mj), k = 1, ...., Kj , we can then use the present 
value function and estimate a corresponding price Pj of bond j : 

                                                      
1 Central Bank of Norway, Research Department. 
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Alternatively, when we know the observed price pj on bond j , we can estimate the yield to maturity (Yj) 
by solving for Yj in: 
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using a standard Newton-Raphson algorithm. 

Likewise, this relationship between Yj and Pj can be used in the parametric case when we derive the 
discount function from the forward interest rate function ƒ(m,β), hence the estimated yield to maturity 
for bond j denoted Yj (β) can then be computed from the present value function: 
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also using a standard Newton-Raphson algorithm. 

The observed yield to maturity yj is assumed to differ from the estimated yield to maturity Yj (β) by a 
normally distributed error term εj ~ Niid(0,σε),∀j : 

yj = Yj (β) + εj ,    j = 1, ....., n (9) 

We use the method proposed in Svensson (1994) and estimate the following forward rate function, 
with parameters β = (β0, β1, β2, β3, τ1, τ2). This relationship is also denoted as the extended Nelson-
Siegel forward rate function: 
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It can be shown that the corresponding spot interest rate function can be expressed as: 
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The parameters in the forward rate function β are estimated by solving the following maximum 
likelihood estimation problem: 
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inserting the following MLE : Σ =ε =σ n
jn 1

1ˆ (yj – Yj (β))2 for σε. An alternative to minimising the sum of 

squared yield errors would be to minimise the sum of squared price errors Σ =
n
j 1 (pj – Pj (β))2 instead. 

As pointed out by Svensson (1994), however, minimising price errors sometimes results in fairly large 
yield errors for bonds and bills with short maturities while minimising yield errors gives a substantially 
better fit for short maturities, and the two procedures seem to perform equally well for long maturities. 
This is because prices are very insensitive to yields for short maturities. 
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On the other hand, minimising yield errors entails, as we have seen, an extra Newton-Raphson 
iteration where we solve for the yield Yj in the price function. This could potentially cause some 
convergence problems to occur at certain data points. 

The continually compounded spot and forward interest rates which are derived from the equations 
above for a given β̂  are finally transformed into annually compounded interest rates, ie: 
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Notes on the estimation procedure 
for the Spanish term structure 

Soledad Núñez1 

Data 

At present, about 34 securities are used in the estimation. These securities are distributed as follows: 

• 22-26 coupon bonds with a residual maturity between one and 30 years, 

• four Treasury bills with a residual maturity of three, six, nine and 12 months, 

• four bond repos with a maturity of one, seven, 15 and 30 days. 

Bond repos (called operaciones simultáneas in Spain) are used for the very short-run maturity 
observations because the Treasury bill secondary market is rather illiquid for maturities less than three 
months, while the repo market is very active for such maturities. These repos are “American-style”, 
that is, the buyer (the party who acquires the bond) is considered the owner of it so that he/she is free 
to sell it or make a reverse repo with the corresponding bond. Thus repos may be considered as 
Treasury bill equivalents (assuming no credit risk). The observed repo rate for maturity m, r (m) is 
converted into a price as follows: 

P = 100(1– r (m)m / 360) 

Estimation methods 

The estimation goes back to January 1991. However, the estimation method used for the period 
January 1991-December 1994 is different from the one used since January 1995. 

For the period January 1991-December 1994, the estimation method used is from Nelson and Siegel 
(1987), that is, the following equation is assumed for the instantaneous forward rate: 

ƒ0(h) = β0 +β1 exp ⎟⎟
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where h is the horizon and b = (β0 , β1 , β2 , τ1) is the parameter vector to be estimated. β0 represents 
the instantaneous asymptotic rate and (β0 +β1) the instantaneous spot rate. This equation is 
consistent with a forward rate process fulfilling a second-order differential equation with two identical 
roots. This functional form allows for only one local maximum or minimum along the maturity profile, 
according to the sign of β2 . 

The spot rate function for maturity m, r (m) and the forward rate function, ƒ0(m), are related by: 
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Replacing r (m) in the discount function, d (m): 

d (m) = exp (–mr (m)) (4) 

one obtains d (m) as a function of b = (β0 , β1 , β2 , τ1). 

Therefore the price of the i-th bond is expressed as: 
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i = 1,....,n 

where t is the day of observation, n is the number of observations, v i is the number of payments for 
the i-th bond, and i

tcc  is the accrued interest, calculated as: 

datepaymentlastdatepaymentnext
datepaymentlastdateactualcouponcc

−
−

=  

C i = coupon 

b = (β0 , β1 , β2 , τ1) is the parameter vector to be estimated. 

The estimation is made by using a non-linear least squares procedure. More precisely, the algorithm 
used is from Marquardt and runs with SAS. 

Once the parameter vector, b = (β0 , β1 , β2 , τ1), is estimated, instantaneous forward rates are obtained 
from equation (1), and zero coupon rates from equation (3). The estimation criterion is to minimise the 
squared price error. Observed prices used in the estimation correspond to the median of prices traded 
during the day of observation. Tax effects are not taken into account in the estimation. 

Since January 1995, the estimation method used has been from Svensson (1994). Svensson’s 
method is identical to Nelson and Siegel’s, but adding to the instantaneous forward rate function the 
term β3(h /τ2) exp (–h /τ2), where now the parameter vector to be estimated is 
b = (β0 , β1 , β2 , β3 , τ1 , τ2). Here, β0  also represents the instantaneous asymptotic rate and (β0 +β1) the 
instantaneous spot rate. This functional form allows for more than one local maximum or minimum 
along the maturity profile. Thus, Svensson’s method is more flexible than Nelson and Siegel’s. 

Again, the estimation is made by non-linear least squares using the Marquardt algorithm. The 
estimation criterion is to minimise the squared price error weighted by the inverse of duration, that is: 

( )( )∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

n

i
i
t

i
t

i
tb D

bPPMin
1

2
1ˆ  (6) 

where: i
tD  = i

t

i
t

i
t

i
t

P
y

y
P )1( +
∂
∂  

 i
ty  = yield to maturity 

 i
tP  = observed price 

 ( )bP i
t

ˆ  = estimated price 

The prices used in the estimation correspond to the average between the bid and ask prices quoted at 
4 pm. These prices correspond to a settlement date of t + j  days, where t is the trading date.2  For the 
estimation, prices are valued at t  and obtained from the following expression: 
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2 Up to 30 November 1997, j  was seven days. Since then, j  has been three days. 
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where: t = observation day 

 Pt + j = average of bid-ask quoted price 

 cct = accrued interest at t 

 r ( j ) = simple interest rate for j days 

 t1 = date of next coupon payment 

 C i = coupon if t < t1 < t + j , 0 otherwise 

Tax effects are not taken into account in the estimation. Since July 1997, an additional parameter (Y), 
which measures the differences in prices between non-stripped and stripped bonds (the last are 
traded at a lower yield), is estimated. In order to take this feature into account in the estimation, it is 
assumed that for the stripped bonds: 

r s(m) = r (m) + γ (8) 

where r (m) is the spot rate of equation (3) and γ is the new parameter to be estimated. Therefore, the 
price of the i-th bond is expressed as: 
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i = 1,....,n 

(β1 , β2 , β3 , τ1 , τ2) if i is stripped where  
(β1 , β2 , β3 , τ1 , τ2, γ ) if i is not stripped 

 

Summary of characteristics of estimation 

 January 1991-December 1994 January 1995 onwards 

Frequency of estimation Daily Daily 

Prices used in the estimation Median of traded prices Average of bid-ask quoted prices 

Short-run securities Bond repos for 1, 7, 15 and 30 days 
Treasury bills for 3, 6, 9 and 
12 months 

Bond repos for 1, 7, 15 and 30 days 
Treasury bills for 3, 6, 9 and 
12 months 

Long-run securities Treasury bonds Treasury bonds 

Estimation method Nelson and Siegel Svensson 

Minimisation criterion Price error Price error weighted by the inverse of 
duration 

Regression procedure Non-linear least squares Non-linear least squares 

Algorithm used Marquardt Marquardt 

Econometric package SAS SAS 
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The estimation of forward interest rates  
and zero coupon yields at the Riksbank 

Hans Dillén and Carl Fredrik Pettersson 

1.  Overview 

Since 2001 the forward interest rates reported in the inflation report have been calculated by means of 
the smoothing splines method. Earlier forward interest rates were calculated by the extended Nelson-
Siegel method (or the Svensson method) and we continue to calculate Nelson Siegel parameters for 
the sake of continuity and to have a back-up method. Moreover, the extended Nelson Siegel model 
has also been used in macroeconomic studies. The quantitative difference between the extended 
Nelson Siegel and the smoothing splines are normally very small. Recently parameters of the original 
Nelson Siegel (1987) model have been estimated on monthly basis (from 1996 and onwards) in order 
to do analysis along the lines of Diebold and Li (2003) and Diebold, Rudebusch, and Auroba (2003). 

2.  Data 

The data we use are benchmark government bonds from 2-10 years. In the short end, T-Bills with 
maturities (closest to) 3, 6, 9, and 12 months are used, in addition to the repo rate. 

3.  Description of the methods 

3.1  Smoothing splines 

When fitting the zero coupon bond (ZCB) curve, we do so in yield-space, that is we minimize the 
weighted sum of two terms: the squared deviations of the fitted yields from the quoted yields, and a 
penalty for roughness, which is the integral of the squared second derivatives of the ZCB curve. The 
weight on the penalty term is determined by the variable roughness penalty (VRP) method, described 
in Waggoner (1997). It follows the original method in Fisher, Nychka, and Zervos (1995) closely, but 
with different penalty weights for the shorter yield maturities in order to allow a more flexible 
specification of the short end of the curve. The penalty weights in the different segments are 
determined once and for all by a trial-and-error approach. Occasionally, we reinvestigate the choice of 
optimal penalty weights. With the ZCB curve at hand, we then calculate the forward curve. 

3.2  Extended Nelson Siegel 

The chosen objective in this estimation procedure is to minimise the sum of squared yield errors. The 
functional form for the forward rate curve at date t to be estimated is: 
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where s is time to settlement. 

In the estimations, we impose the restriction that β0 + β1 is equal to the official repo rate, in order to 
facilitate the interpretation of implied forward rates as expected future repo rates. The original Nelson 
Siegel model is obtained by the restriction β3 = 0. 
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4.  Reporting routines to BIS 

The Riksbank reports the daily data on the six parameters in the extended Nelson Siegel model once 
a week (Mondays). The data set from which these parameters are estimated normally consists of 
9 benchmark bonds and 4 treasury bills (see paragraph 2). The yields used in the computations are 
the average yields from bid and ask yields (close yields). 

References 

Diebold, F and C Li (2003): “Forecasting the term structure of government bond yields”, NBER 
Working Paper. 

Diebold, F, G Rudebusch and S Auroba (2003): “The macro economy and the yield curve: a 
nonstructural analysis”, CFS Working Paper 31. 

Fisher, M, D Nychka and D Zervos (1995): “Fitting the term structure of interest rates with smoothing 
splines”, Board of Governors of the Federal Reserve System, Working Paper 1. 

Nelson, C R, and A F Siegel (1987): Parsimonious modeling of yield curves”, Journal of Business 60, 
473-89. 

Waggoner, D (1997): “Spline methods for extracting interest rate curves from coupon bond prices”, 
Federal Reserve Bank of Atlanta Working Paper 10. 



28 BIS Papers No 25
 

A technical note on the Svensson model 
as applied to the Swiss term structure 

Robert Müller1 

The purpose of this note is to describe the methodology used by the Swiss National Bank to construct 
the Swiss government zero coupon curve by applying an estimation based on the Svensson model. 

1. Data and data selection 

Spot and forward rates are estimated based on daily observations of the yield to maturity on Swiss 
government bonds and their coupon payments for bonds with maturities ranging from one to 50 years, 
and four money market rates on one-, three-, six- and 12-month holdings respectively. Callable bonds 
and bonds with a residual maturity of less than one year are excluded from the estimation. At the 
moment (August 2003), the estimation is done with 18 bonds and the money market rates. 

2. The model 

The Swiss National Bank uses a model developed by Charles Nelson and Andrew Siegel in 1987 and 
extended by Svensson. Nelson and Siegel assume that the instantaneous forward rate is the solution 
to a second-order differential equation with two equal roots. Let ƒ(t, t +m) denote the instantaneous 
forward rate with time to settlement m , for a given trade date t . Then the Svensson forward rate 
function can be written as: 

ƒ(t, t +m,b) = β0 + β1 exp ⎟⎟
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where b = (β0, β1, β2, β3, τ1, τ2) is a vector of parameters (β0, τ1 and τ2 must be positive). The Svensson 

method is identical to Nelson and Siegel’s, but adds the term ⎟⎟
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forward rate function. In contrast to the Nelson-Siegel approach, this functional form allows for more 
than one local extremum along the maturity profile. This can be useful in improving the fit of yield 
curves. 

The spot rate can be derived by integrating the forward rate and then dividing the result by the 
remaining time to maturity. It is given by: 

i (t,t + m,b) = β0 + β1
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1 Swiss National Bank, Statistics Section. 
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The discount function is related to the spot rate by: 

d (t,t+m , b) = exp ⎟
⎠
⎞

⎜
⎝
⎛ +
− mbmtti

100
),,(  (3) 

This discount function is used to compute the estimated (theoretical) bond price. We can define the 
price of a coupon bond, similarly to the traditional valuation of an investment, as the sum of discounted 
future coupon payments c and the present value of the face value paid after m years. It follows that the 
price of the bond P(t, t +m) on trade day t can then be approximated by: 

P(t, t +m,b) = ),,(1 bkttcdm
k +∑ =

+100d (t, t +m,b) (4) 

For coupon bonds, yields to maturity are often quoted. The yield to maturity is the internal rate of 
return for the coupon bond that makes the present value of the coupon payments and the face value 
equal to the price of the bond. Thus, the price of the coupon bond can be written as a function of the 
yield to maturity y (t, t +m): 
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3. The estimation 

The discount function is estimated for each trade date by minimising either the sum of squared price 
errors or the sum of squared yield errors. We choose the parameter so as to minimise yield-to-maturity 
errors. Minimising price errors sometimes results in fairly large yield errors for bonds and money 
market rates for short maturities. This is because yields are very sensitive to prices for short 
maturities. 

The estimation is done with the restriction that the forward rate curve (and hence the spot rate curve) 
should start at the left end (from the overnight rate). This means that the term (β0 + β1) equals the 
overnight rate. 

The optimisation is performed using a numerical non-linear optimisation to maximise a log-likelihood 
function subject to the constraint on the parameter β1 (= overnight rate – β0). First, we use the Simplex 
algorithm to compute starting values and then the Berndt, Hall, Hall and Hausmann (BHHH) algorithm 
to estimate the final parameters. The optimisation procedure consists of the following steps for both 
numerical algorithms: 

Initialising the parameter bt = (β0t , β1t , β2t , β3t , τ1t , τ2t) for t =1. 

Calculating those spot rates i (t,t + m,bt ) which are necessary in order to calculate the discount 
functions (equation (2)). 

Computing the discount factors d (t,t + m,bt ) for each bond (equation (3)). 

Computing the estimated (theoretical) prices for the N different bonds (equation (4)). 

Calculating the estimated (theoretical) yields to maturity for all the bonds (equation (5)) using the 
Newton-Raphson numerical algorithm. 

Computing the function 2
1 )),,(ˆ),(( tiiti

N
i it bmttymtty +−+∑ =

(sum of squared yield errors) using first the 
Simplex algorithm and then the BHHH algorithm in order to determine a new bt +1. 

Examining the convergence condition: 

(bt +1 – bt )′(bt +1 – bt ) < α for an α > 0 

If the condition does not hold, go back to step 2 with bt +1 as a new vector instead of bt . 
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The optimisation procedure alternates the parameters of b and with them the spot rates so as to 
minimise the sum of the (squared) differences between observed and calculated yields to maturity. 
The 95% confidence intervals are computed using the delta method.2 
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Table 1 

Term structure of interest rates - estimation details 

Estimation 
method Minimised error Shortest maturity 

in estimation 
Adjustments for 
tax distortions 

Relevant maturity 
spectrum 

Svensson Yields Money market 
rates: 
≥ 1 day 
bonds: 
≥ 1 year 

No 1 to 30 years 

 

 
 

Table 2 

Term structure of interest rates -  
availability from the EASY database 

Method 
Estimates 
available 

since 
Frequency Spot rates Forward 

rates Parameters Notation 

Svensson 4 January 
1988 

5 January 
1998 

Weekly 
 

Daily 

1 to 10 years 

15 years 

20 years 

30 years 
(since 5 January 
1998) 

1 to 10 
years 

15 years  

20 years 

30 years 

6 Percentages 

 

                                                      
2 The delta method implies that, for the purpose of computing confidence intervals for the instantaneous forward rate, the 

estimated forward rate ƒ(m;b) for a given time to settlement m is considered to be distributed as a normal variable with 

mean ƒ (m; b̂ ) and covariance ( ) ( ),ˆ,ˆˆ,
b

bmf
b

bmf
∂

∂
∑

∂

′
∂  where b̂ , ∑̂   and ( )

b
bmf

∂
∂ ˆ,  denote the estimates of the parameter 

vector b, its covariance matrix and the column vector of partial derivatives for the parameters, respectively. When the BHHH 

algorithm is used, a natural estimator for the asymptotic covariance matrix for β̂  is ,ˆ
2ˆ,ˆ

1

1ˆ

σ

−

=β ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
′∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=∑ ∑
b

N
i

nn

b
L

b
L

 

where L is the log-likelihood function and i = 1, 2, ..., N the number of securities. 
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Yield curve estimation at the Bank of England 

Matthew Hurd1 

The Bank of England estimates yield curves for the United Kingdom on a daily basis. Three basic 
curves are produced:  a nominal and a real government liability curve and a nominal commercial bank 
liability curve. These curves are published daily on the Bank’s website (www.bankofengland.co.uk). 
This note provides a brief description of the curves we produce and the methods used to derive them. 

Government liability curve 

The government liability curve is based on yields on UK government bonds (gilts) and yields in the 
general collateral repo market. The nominal yield curves are derived from UK gilt prices and General 
Collateral (GC) repo rates. The real yield curves are derived from UK index-linked bond prices. Using 
the Fisher relationship,2 we are also able to estimate a term structure of inflation expectations for the 
United Kingdom. 

Estimates for the nominal curve are available from 2 January 1979. Estimates for the real yield curve 
and implied inflation term structure are available from 2 January 1985. Depending on the range of 
available bonds, we aim to publish estimates of both the spot rate and the instantaneous forward rate 
out to a maturity of about 25 to 30 years. 

GC repo rates are used to estimate the nominal curve down to a maturity of one week. By generating 
synthetic zero coupon bonds from the GC repo rates, we improve the estimation of the short end of 
the nominal curve, where gilts tend to be less liquid. 

Commercial bank liability curve 

The commercial bank liability curve3 is based on sterling interbank rates (Libor) and on yields on 
instruments linked to Libor, specifically short sterling futures, forward rate agreements and Libor-based 
interest rate swaps. These commercial bank liability curves are nominal only. 

Estimates of the commercial bank liability curve are available out to a maturity of 10 years from 
November 1990 to July 1997, out to a maturity of 15 years from July 1997, and out to a maturity of at 
least 25 years from January 1999. 

Estimation 

The technique currently used by the Bank to estimate its yield curves is the variable roughness penalty 
(VRP) method, which replaced the approach by Svensson.4 The VRP methodology is based on the 

                                                      
1 Bank of England, Monetary Analysis, Monetary Instruments and Markets Division. 
2 The Fisher relationship means that an implied inflation term structure can be calculated as the difference between nominal 

and real yields. 
3 For further details, see Brooke et al (2000). 
4 Estimates of the nominal yield curve were first published by the Bank in the November 1999 Inflation Report and are 

discussed in an article by Anderson and Sleath in the November 1999 Bank of England Quarterly Bulletin.  

http://www.bankofengland.co.uk/
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spline-based technique proposed by Waggoner (1997). This method was considered superior to the 
Svensson method and other estimation techniques, based upon the criteria of smoothness, flexibility 
and stability.5 An important innovation of this technique is that the degree of smoothing is a function of 
maturity, and in particular that the curve is more flexible at the short end (where the curve is likely to 
exhibit the greatest curvature) than at the long end (where expectations are likely to be more smooth). 

The spline-based technique models forward rates as a piecewise cubic polynomial, with the segments 
joined at “knot points”. The coefficients of the individual polynomials are restricted so that both the 
curve and its first derivatives are continuous at all maturities, and knot points are placed at the time of 
maturity of each bond. Although the cubic spline is more flexible than parametric forms, an 
unconstrained spline would be far too flexible to generate the type of yield curves necessary for the 
purpose of monetary policy. In order to control the trade-off between smoothness of the curve and 
goodness of fit, a roughness penalty is included to penalise excessive curvature of the forward curve. 
The size of this roughness penalty is determined by a time-invariant function, λ(m), which varies with 
horizon m. 

Formally, the VRP method minimises the objective function Xs : 

Xs  = Xp + ∫λ
M

t
0

(m)[ƒ”(m)]2dm (1) 
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Pi  is the observed price of the i-th bond, Di  is its modified duration, Πi (β) is the fitted price, m is the 
maturity, ƒ”(m) is the second derivative of the fitted forward curve, M is the maturity of the longest 
bond and β is the vector of spline parameters. 

From the above objective function, it can be seen that the VRP technique minimises the sum of the 
squared bond price residuals (Xp)6 subject to a penalty for curvature. In addition, the bond prices are 
weighted according to the inverse modified duration. 

The optimisation procedure for the VRP technique has two steps. First, the parameters of the 
smoothing function, λ(m), are optimised and then, holding these parameters constant, we estimate the 
spline parameters on a daily basis. 

The parameters of the smoothing function were chosen to maximise out-of-sample goodness of fit7 
over the period 1 May 1996 to 31 December 1998. The function, λ(m), is defined to be a continuous 
function of three parameters: 

log λ(m) = L – (L – S) exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ

−
m  (2) 

with L, S and µ the parameters maximised over the sample period. 

                                                      
5 A more in-depth comparison of the VRP method with other techniques can be found in Anderson and Sleath (2001). 
6 Minimising the squared bond price residuals weighted by duration is a first-order approximation to minimising yields. 

Proceeding in this way has the advantage of not needing to numerically calculate yields at each step of the optimisation. 
7 Following Waggoner, the main criterion for choosing the parameters was to maximise the out-of-sample goodness of fit 

averaged over the sample period. It was found that many combinations of these parameters gave similar measures of 
goodness of fit. We therefore opted for the set of parameters that led to the highest level of smoothing among these 
combinations. 
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Fitting the US term structure at the 
Federal Reserve Board 

Mark Fisher1 

1. Some notes on the US bond market 

Treasury bills are discount securities with maturities of three and six months and one year. The three- 
and six-month bills are auctioned weekly and the year bill is auctioned monthly. 

Treasury notes and Treasury bonds are coupon securities issued with various original terms to 
maturity in various auction cycles. Currently, the Treasury is issuing coupon securities with maturities 
of two, five, 10 and 30 years. The two-year note is auctioned monthly; the five-, 10- and 30-year notes 
are auctioned quarterly. 

Reopenings. Not all auctions result in a new security. For bills, three-month bill auctions are always 
reopenings of outstanding six-month bills, and every fourth six-month bill auction is the reopening of 
an outstanding year bill. Coupon bonds are occasionally reopened. This occurs most often for the 
30-year bond, but also for the 10-year note. 

The bond price quotes are for regular delivery, for which the settlement date is the next business day 
(t +1). (Note that the yields on the FRBNY quote sheets are skip-day yields (t + 2) computed from 
regular-delivery price quotes.)  

Accrued interest. Notes and bonds pay coupons semiannually. Accrued interest is calculated as 
follows: 

a = ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

b
dc

2
 (1) 

where a is the accrued interest per dollar of face value, 

 b is the number of days in the coupon period (the basis), 

 c is the annual coupon rate, and 

 d is the number of days from issue or last coupon to settlement. 

Tax treatment. Coupon payments and Treasury bill capital gains are subject to income tax as ordinary 
income. Capital gains on coupon securities are subject to income tax as capital gains, which have 
often been taxed at a lower rate than ordinary income. 

Special features. In the past, the Treasury has issued notes and bonds with special features. 

● Callable bonds are typically callable at par in the last five years of their life. 

● Flower bonds are low-coupon bonds (typically) that can be redeemed at par for the payment 
of estate taxes. 

Repo market. Government securities dealers finance their positions in the repurchase agreement 
market. They borrow funds (to finance their long positions) using the securities they own outright as 
collateral (so-called repos), and they take in securities (to deliver on their short positions) as collateral 
on loans they make (so-called reverses). When the aggregate short positions are large, dealers that 
are short may have to pay a premium to those who have possession of the collateral to acquire the 
specific collateral needed. The premium is paid by lending funds at less than the risk-free rate, in 
which case the security is said to be on special in the repo market. The (expected) difference between 

                                                      
1 The views expressed herein are the author’s and do not necessarily reflect those of the Board of Governors of the Federal 

Reserve System. 
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the risk-free rate and the special rate (over the life of the security) is capitalised into the security’s 
price, pushing its yield below the yield curve. 

The STRIPs (Separate Trading of Registered Interest and Principal) market provides direct 
observations on zero coupon securities at quarterly intervals out to 30 years. Ten-year notes and 
30-year bonds are eligible for stripping (as well as some older 20-year bonds). Market participants 
strip (decompose) whole coupon bonds into a series of individual coupon strips and a final principal 
strip. While coupon strips with the same maturity date are fungible, principal strips are not - the coupon 
bond cannot be reconstituted without the principal strip. As a result, principal strips often trade at a 
premium relative to coupon strips. 

When-issued trading is a forward market for a security that has yet to be issued. It starts when the 
Treasury announces the amount to be auctioned (about one week before the auction) and continues 
until the security is issued (about one week after the auction). 

Futures market. There are a number of futures contracts for which various Treasury securities are 
deliverable. At times, the demand for an individual Treasury security may be affected by its 
deliverability. 

2. Fitting the term structure 

We have described in detail our technique for fitting the term structure in Fisher et al (1995). Here is a 
very brief summary: 

● We fit a cubic spline to the forward rate curve. 

● We minimise the weighted sum of two terms: 

– the sum of squared deviations of the fitted bond prices from the observed bond prices, 
and 

– a penalty for non-linearity - the integral of the squared second derivative of the forward 
rate curve. 

● The weighting of the two terms is determined by minimising the generalised cross-validation 
(GCV) criterion: 

– the ratio of (i) a quasi-out-of-sample goodness-of-fit measure to (ii) the effective 
number of parameters. 

● This can be thought of as a signal extraction technique. 

– The greater the forward rate signal in the bond prices, the more the forward rate curve 
may deviate from linearity. 

– The “amount” of signal extracted can be controlled by adjusting the trade-off between 
the two factors in the GCV criterion ratio. 

Treasury bills vs notes and bonds. Currently, we fit separate yield curves for bills and coupon 
securities. We do not consider this to be an entirely satisfactory situation. The practice began because 
we were fitting the yield curve to measure deviations from the yield curve largely for coupon securities, 
and we noticed that coupon securities with less than one year to maturity were priced measurably 
differently from bills. This difference may be driven by liquidity, taxes, or other effects. We have 
estimated both curves daily starting in December 1987. 

Coupon curve: 

● We make no adjustments for tax effects. 

● We exclude: 

(a) Treasury bills. 

(b) Notes and bonds with less than 30 days to maturity. We found that the prices of 
coupon securities very near maturity did not behave well. 
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(c) Callable bonds and flower bonds. The price of these securities reflects special 
features not captured by the discount function. As a result, we currently have no 
bonds in the estimation with maturities in the range of 10 to 18 years. 

(d) The two most recently issued securities of each original term to maturity. We exclude 
these securities even though they are the most actively traded. The reason is that 
these securities are most likely to be on special in the repo market. Thus the price of 
these securities probably reflects special features not captured by the discount 
function. 

Bill curve. There are three differences in the settings we use for the bill curve relative to the coupon 
curve. 

(a) No bills are dropped. (There are about 32 bills outstanding each day.) 

(b) We weight the observations by the inverse of the maturity. 

(c) The GCV ratio has been adjusted to extract more signal. 

Bills and coupons. We have a project under way to use the CRSP2 daily bond file to estimate a curve 
daily starting in June 1961 that incorporates both bills and coupon securities. Given the limited number 
of long-term securities outstanding in the 1960s and 1970s, this curve will rely to some extent on 
callable bonds and flower bonds. 

Linearised Nelson-Siegel. Prior to developing the smoothing spline approach to fitting the term 
structure using market prices for bonds, a simpler approach was developed, which could be applied 
directly to the constant maturity yields. This technique uses a linear approximation to the relationship 
between yields and prices. 

STRIPs quotes. In principle, the STRIPs market is an excellent source of information. Currently, we 
have only limited historical data and no current data. 

3. Modelling the term premia 

It has been well documented that the expectations hypothesis does not hold: forward rates do not 
equal expected future spot rates. One reflection of the failure of the expectations hypothesis is that the 
slope of the yield curve is not an unbiased predictor of future changes in yields.3 This failure results 
from the presence of time-varying term premia. Therefore, to extract the path of the expected short 
rate implicit in the term structure, we need to model these random term premia. 

The approach we have undertaken is to fit multifactor models of the term structure that are based on 
absence-of-arbitrage conditions. (These models should not be confused with the so-called arbitrage-
free models that exactly match a given term structure by fitting, for example, a deterministic time 
trend.) There is a class of numerically tractable models (the exponential-affine class, which includes 
the multifactor Cox, Ingersoll and Ross model, among many others) that has the potential to capture 
many of the stylised facts of the term structure, including the Campbell-Shiller regression results. 

For this project, we take the zero coupon rates estimated with our smoothing spline techniques as 
“data”. Thus, it is of prime importance that the cross-sectional and time series properties of the zero 
coupon rates not be obscured by the method used to obtain them. In particular, since intuition 
regarding the shape of the yield curve that relies on the expectations hypothesis may well be quite 
wrong, it is important not to impose an overly restrictive functional form that may obscure important 
relationships. 

                                                      
2 Center for Research in Security Prices. 
3 See, for example, the regression results in Campbell and Shiller (1991). 
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