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Abstract 

The goal of this paper is to determine empirically the information content of the nominal yield curve of 
riskless non-indexed bonds in Switzerland, that is, future expected inflation rates and real interest 
rates. Applying the three-factor term structure model proposed by Cox, Ingersoll and Ross (CIR), we 
estimate the model parameters by the full information maximum likelihood method for a sample of 
pooled time-series and cross-section data. This maximisation is subject to the condition that the 
theoretical yield curve fits the actual yield curve observed on the trading day under consideration as 
well as possible. 

For a sample of 40 weeks, we obtain the puzzling result that the term structures of real spot interest 
rates are both upward- and downward-sloping, while the term structures of expected spot inflation 
rates are always upward-sloping. We attribute this result to the particular assumptions of the CIR 
model. 

We test the model performance indirectly in two ways. First, we compare the future expected nominal 
spot interest rates with the nominal forward interest rates implied by the observed yield curve over a 
future time horizon of four years. The outcome of this test is quite satisfactory. Second, we test 
whether the future expected three-month nominal spot interest rate is an unbiased estimator of the 
future observed three-month nominal spot interest rate for future time horizons of up to 91 days. This 
hypothesis is accepted for future time horizons of both one day and seven days. In restricted 
regressions, however, we accept this hypothesis for all the future time horizons considered in this 
paper. 

Finally, we compare the behaviour of the interest premium or inflation risk premium, respectively, 
between two different monetary policy regimes. We find that the interest premium has vanished since 
the beginning of the year 2000, when the Swiss National Bank switched from a regime with medium-
term monetary targeting to a concept with inflation forecasts as a main indicator for monetary policy 
decisions. This reduced risk may indicate that the new concept has further increased the credibility of 
Swiss monetary policy. 

1. Introduction 

The goal of this paper is to determine empirically the information content of the nominal yield curve of 
riskless non-indexed bonds in Switzerland. Applying the three-factor term structure model proposed by 
Cox, Ingersoll and Ross (henceforth CIR), we obtain estimates of the term structure of expected spot 
inflation rates as well as of the term structure of real spot interest rates. We test the performance of 
the CIR model indirectly in two ways using three-month nominal spot interest rates. The model 
parameters are estimated by the full information maximum likelihood method for a sample of pooled 
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time-series and cross-section data. This maximisation is subject to the condition that the theoretical 
yield curve fits the actual yield curve observed on the trading day under consideration as well as 
possible. 

As regards the term structure of expected spot inflation rates, earlier attempts such as that in Frankel 
(1982), which relies on a macroeconomic framework, assume that the expected inflation rates are 
equal to the difference between nominal and real spot interest rates. This is Irving Fisher�s hypothesis 
that the nominal interest rate moves one for one with the expected inflation rate (Fisher (1930)). 
Probably the first author to show that the Fisher hypothesis does not hold true in an uncertain world 
was his near namesake Stanley Fischer (1975) in his path-breaking paper on indexed bonds.2 He 
shows that the difference between the nominal and real spot interest rate is equal to the expected spot 
inflation rate minus a term, which I call the �interest premium�, which may have either sign.3 Many 
other authors, including Bakshi and Chen (1996), Benninga and Protopapadakis (1985), Breeden 
(1986), Cox, Ingersoll and Ross (1981, 1985a & b), Evans and Wachtel (1992), Fama and Farber 
(1979) and Lucas (1982), have confirmed this result within quite different frameworks. To my 
knowledge, the empirical studies, however, have neglected the interest premium so far.4 There are 
two exceptions to this observation. One exception is the recent paper by Evans (1998), who is able to 
estimate the time-varying interest premium in his investigation of index-linked bonds. However, he fails 
to estimate both the term structure of expected inflation rates and the interest premia endogenously 
within his framework. Instead, he uses an exogenous variable for the expected inflation rate, namely 
the Barclay�s survey measure of expected inflation.5 The other exception is the recent paper by 
Remolona, Wickens and Gong (1998). Using time-series data on both nominal and real discount bond 
prices, they are able to estimate simultaneously the expected inflation rates and the interest premia in 
the course of time. They find that the expected inflation rate obtained from their bond price model is an 
unbiased estimator of future inflation for the period 1982-97. Our approach is different in that we 
estimate the term structures of both expected inflation rates and interest premia entirely from nominal 
bonds by means of pooled time-series and cross-section data. 

In order to calculate the nominal yield curve on the trading days under consideration, we use a 
non-linear optimisation to determine the nominal instantaneous forward interest rates from observed 
prices of coupon-bearing government bonds. The objective of the optimisation is nominal 
instantaneous forward rates as smooth as possible, subject to the condition that the theoretical 
coupon-bearing bond prices fit the observed coupon-bearing bond prices as well as possible. This 
optimisation procedure is a modification of the multi-objective goal attainment problem proposed by 
Delbaen and Lorimier (1992) and Lorimier (1995). The term structure of nominal spot interest rates or 
the nominal yield curve is deduced from the optimised instantaneous forward rates by numerical 
integration. This approach has two advantages. First, it is able to explain any term structure of interest 
rates, because no functional form of the instantaneous forward interest rates is assumed. Second, the 
numerical integration is more exact than the numerical differentiation. To my knowledge, the methods 
proposed in the literature are inferior to the one put forward by Delbaen and Lorimier. For instance, we 
have shown by an example that the bootstrap method is not reliable if the yield curve is sufficiently 
bent, or if there are no discount bonds available in the sample of bonds under consideration (Büttler 
(2000)). Other methods such as the regression of prices of coupon-bearing bonds on discount factors 
as proposed in Carleton and Cooper (1976) or various spline methods as proposed in McCulloch 
(1971, 1975) or in Vasicek and Fong (1982) have many drawbacks as mentioned in Shea (1984, 
1985). The recent models proposed by Nelson and Siegel (1987) as well as Svensson (1995) assume 
an exponential function for the instantaneous forward rates. This approach has two disadvantages: it 
does not obey the fundamental partial differential equation to value a discount bond (Björk and 
Christensen (1997)) and it assumes rather than extracts the yield curve from observed data. In a 

                                                      
2 For a criticism of Fischer�s equilibrium condition, see Fama and Farber (1979, p 643). 
3 Fischer calls it just �premium�. Other authors call it the �inflation risk premium� or the �purchasing power risk of the nominal 

bond�. We prefer the neutral term �interest premium� to the term �risk premium�, because the latter associates in general 
positive values only. 

4 For a comprehensive list of empirical studies on index-linked bonds, see Evans (1998). In particular, Brown and Schaefer 
(1994), although applying the CIR model, do not investigate the term structure of expected inflation rates and interest 
premia. 

5 Evans also uses the ex post realised inflation rate as a proxy for the expected inflation rate. 
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recent paper, we applied our optimisation procedure, the bootstrap method and the extended 
Nelson-Siegel method to an arbitrary yield curve. While our optimisation procedure is able to mimic the 
given yield curve perfectly, both the bootstrap method and the extended Nelson-Siegel method fail 
(Büttler (2000)). 

In view of Fisher�s hypothesis, the nominal yield curve contains information on real interest rates, 
expected inflation rates and the interest premium at least. As long as there are no indexed bonds 
issued in the country under consideration, we must rely on an economic model, which is able to 
explain simultaneously nominal and real interest rates. To my knowledge, there are two candidate 
models to be used, the one proposed by Cox, Ingersoll and Ross (1985a & b) on the one hand, and 
the one by Bakshi and Chen (1996) on the other hand. We choose the CIR model for the sake of 
tractability. The CIR model is a three-factor model of the nominal yield curve, the factors or state 
variables being the real instantaneous spot interest rate, the expected instantaneous spot inflation rate 
and the consumer price level. The stochastic differential equations of these three factors together with 
those of a set of nominal discount bond prices in real terms constitute the sample of pooled time-
series and cross-section data to be estimated by the full information maximum likelihood method. The 
cross-section data refer to the various terms of the discount bonds. 

The plan of the paper is as follows. In Section 2, the basic relationships to be used in the paper are 
explained. In particular, we define spot and forward inflation rates for a future time horizon, which 
correspond to the spot and forward interest rates defining the actual yield curve. Since future inflation 
rates are random, we derive their expected values to be used in the calculation of the term structure of 
expected inflation rates. In Section 3, we present the three-factor model proposed by Cox, Ingersoll 
and Ross. The estimation procedure is explained in Section 4 and the results are presented in 
Section 5, followed by conclusions. 

2. Basic relationships 

In the following, we will use continuously compounded rates. However, the results presented in all 
charts are annually compounded rates. To clarify the use of various yields, we start with the definition 
of the term structure. A list of variables is given in the appendix to the paper. In order to distinguish 
between nominal and real variables or variables associated with the inflation rate, we use two 
subscripts, if necessary. The first subscript of a variable, v = {n,r,y}, denotes nominal values for v = n, 
real values for v = r, and values associated with the inflation rate for v = y. The second subscript, 
k = {m,c}, denotes the compounding frequency with the understanding that m denotes a compounding 
m times a year and c denotes the continuous compounding (m � �). 

2.1 Interest rates 
The spot interest rate, denoted as Rv(t,T), is defined as the yield of a pure discount bond with spot 
price Pv(t,T): 

 (2.1) 

We assume that the first derivative of the pure discount bond price with respect to time exists and is 
bounded for any lifetime of the bond. Solving for the spot interest rate yields the following expression: 

 (2.2) 

The term structure of spot interest rates or the yield curve is defined by equation (2.2). The 
instantaneous spot interest rate, denoted as rv(t), is equal to the spot interest rate with a vanishing 
lifetime: 

 (2.3) 

The (� �T)-year forward interest rate, denoted as Fv(t,T,� ), corresponds to a forward contract on a 
pure discount bond with the agreement that the forward price, denoted as Pv(t,T,�), is fixed at date t 
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and paid at a later date T when the discount bond is delivered. The discount bond matures at a later 
date � (� ≧ T ≧ t). 

 (2.4) 

In this case, the forward price is equal to the futures price (see Hull (1997), p 95). Again, we assume 
that the first derivative of the forward pure discount bond price with respect to time exists and is 
bounded for any lifetime of the bond. Solving for the forward interest rate yields the following 
expression: 

 (2.5) 

The price of a pure discount bond fixed at date t with maturity date � should be equal to the price of a 
portfolio at date t, which consists of a pure discount bond maturing at date T plus a (� �T)-year forward 
pure discount bond (see eg Hull (1997)). This leads to the following well known relationship: 

 (2.6) 

It holds true that Fv(t, t,T) = Rv(t,T). The instantaneous forward interest rate is obtained for a forward 
contract that expires in the same instant it has been initiated. Using the above equation, we obtain the 
following relationship: 

 (2.7) 

It holds true that �v(t, t) = Rv(t, t) = rv(t), because we have assumed that the first derivative of the pure 
discount bond price with respect to time exists and is bounded for any lifetime of the bond. Integration 
by parts of the above equation leads to the well known relationship that the spot interest rate is equal 
to the integral of the instantaneous forward interest rate divided by the corresponding period of time: 

 (2.8) 

Substituting the above equation into equation (2.1), it follows that the spot price of a pure discount 
bond can be written in terms of the instantaneous forward interest rate: 

 (2.9) 

Differentiation of the logarithm of the above equation with respect to the maturity date leads to the 
following relationship for the instantaneous forward interest rate: 

 (2.10) 

If the price of a pure discount bond is given in a functional form, then the above equation can be used 
to determine the whole term structure of the instantaneous forward interest rate. 
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2.2 Inflation rates 
We define the spot and forward inflation rates in an analogous way to the interest rates. Although we 
are dealing now with random variables, it turns out that all the previous relationships for the interest 
rates carry over to the various inflation rates. Let Py(t,T) denote the purchasing power of money at the 
future date T in nominal terms at current prices as seen from date t, and let p(t) denote the consumer 
price level at date t, then we define the spot inflation rate, Ry,c(t,T), and the instantaneous forward 
inflation rate, �y,c(t,�), as follows: 

 (2.11) 

Since the future consumer price level p(T) is a random variable, both the spot inflation rate, Ry,c(t,T), 
and the instantaneous forward inflation rate, �y,c(t,� ), are random variables, too. Taking the logarithm 
of the above equation, the spot inflation rate becomes 

 (2.12) 

The instantaneous spot inflation rate, denoted as r y,c(t), is equal to the spot inflation rate with a 
vanishing time horizon, which turns out - as it should - to be equal to the relative change of the 
consumer price level. 

 (2.13) 

In the general equilibrium framework of Bakshi and Chen (1996), the instantaneous spot inflation rate, 
r y,c(t), consists of a random drift and a volatility term, both driven by macroeconomic variables. The 
same structure has been assumed by CIR (1985b). 

The (� �T)-year forward inflation rate, denoted as Fy(t,T,�), corresponds to a (� �T)-year forward 
purchasing power of money, denoted as Py(t,T,�), at date � at prices of the earlier date T as seen from 
date t (� ≧ T ≧ t). By definition, Py(t,T,�) � p(T) / p(�): 

 (2.14) 

Solving for the forward interest rate yields the following expression: 

 (2.15) 

By definition, the purchasing power of money at the future date � is equal to the purchasing power of 
money at an intermediate date T multiplied by the (� �T)-year forward purchasing power of money. 
This leads to the following relationship for the (� �T)-year forward inflation rate: 

 (2.16) 
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It holds true that Fy(t, t,T) = Ry(t,T ). The instantaneous forward inflation rate is obtained for a 
vanishing time horizon. Using the above equation, we obtain the following relationship: 

 (2.17) 

It holds true that �y(t, t) = Ry(t, t) = ry(t). Integration by parts of the above equation leads to the result 
that the spot inflation rate is equal to the integral of the instantaneous forward inflation rate divided by 
the corresponding period of time, which, in turn, is equal to the logarithm of the purchasing power of 
money. 

 (2.18) 

Hence, we return to the starting definition of equation (2.11). Differentiating the integral on the left-
hand side with respect to the �maturity� date T for a fixed date t, we obtain the result that the 
instantaneous forward inflation rate is equal to the instantaneous spot inflation rate at the future 
date T. 

 (2.19) 

By this result, we can extend the starting definition (2.11) by the integral of the instantaneous spot 
inflation rate. Again, it holds true that �y(t, t) = ry(t). 

In view of Fisher�s hypothesis, we need to determine the expected value of the spot inflation rate. Let 
t denote the expectation operator given the information at date t, then we obtain from the above 

equation 

 (2.20) 

and from equation (2.18) 

 (2.21) 

where we have assumed that the integral of the expectation of the instantaneous forward inflation rate 
remains finite. Then we can reverse the order of the expectation and the time integral by Fubini�s 
theorem (Duffie (1992)). Hence, we can calculate the expected value of the spot inflation rate, 

t Ry,c(t,T), from equations (2.21) and (2.20), given the expected values of the instantaneous spot 
inflation rate, t ry,c(�), (T ≧ � ≧ t). 

2.3 Interest premium 

Let the interest premium be denoted as �k(t,T), then the relationship between nominal and real 
interest rates can be written as 

 (2.22) 

The above equation is Fisher�s hypothesis in an uncertain world (Stanley Fischer (1975)). In the CIR 
framework, the interest premium consists of two terms, the variance of the future consumer price level 
and a term which we call the wealth premium. The latter depends both on the investor�s attitude 
towards risk, as measured by the relative risk aversion, and on the covariance between future real 
wealth and future inflation, which may have either sign. Hence the interest premium may have either 
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sign, too. If investors expect to gain real wealth from future inflation, then this covariance will be 
positive. In this case, investors do not ask for a full compensation of the expected spot inflation rate. 
On the other hand, if investors expect to lose real wealth from future inflation, then this covariance will 
be negative. In this case, they may ask for compensation in excess of the expected spot inflation rate. 

3. The CIR model 

In view of Fisher�s hypothesis, the nominal yield curve contains information on real interest rates, 
expected inflation rates and the interest premium at least. As long as there are no indexed bonds 
issued in the country under consideration, we must rely on an economic model which is able to explain 
simultaneously nominal and real interest rates. To my knowledge, there are two candidate models to 
be used, the one proposed by Cox, Ingersoll and Ross (1985a & b) on the one hand, and the one by 
Bakshi and Chen (1996) on the other hand. We choose the CIR model for the sake of tractability. The 
CIR model is a three-factor model of the nominal yield curve, the factors or state variables being the 
real instantaneous spot interest rate, the expected instantaneous spot inflation rate and the consumer 
price level. 

To be specific, CIR propose two competitive models to explain nominal and real interest rates. Again, 
we choose the simpler one, which is their model 2. In equilibrium, the real instantaneous spot interest 
rate is given by the following square-root process: 

 (3.1) 

The above process corresponds to a continuous time first-order autoregressive process where the 
randomly moving interest rate is elastically pulled towards a long-term equilibrium value, �. The 
parameter � determines the speed of adjustment, and � denotes the constant volatility parameter, and 
z1 a Gauss-Wiener process. With the square-root process, the real instantaneous spot interest rate 
remains non-negative. By means of their fundamental partial differential equation, CIR derive the price 
of a real pure discount bond in real terms as follows: 

 (3.2) 

The parameter λ denotes the factor risk premium, a negative number in the CIR framework. The 
payoff of the real pure discount bond in real terms is equal to one unit of consumption goods, ie 
Pr(T,T) = 1. 

Let y,c(t) denote the drift of the instantaneous spot inflation rate or the �expected� instantaneous spot 
inflation rate, respectively, at date t. CIR propose the following two random paths for the �expected� 
instantaneous spot inflation rate and the consumer price level to be tested empirically: 

 (3.3) 
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where  denotes the covariance operator, � denotes the correlation coefficient between the Wiener 
processes z2 and z3, and all other variables have the same meaning as above. Note that (1/d�) t 
{dp(�) /p(� ) } = t ry,c(�) = t y,c(�) for �  ≧  t, and t ry, c(t) = y,c(�). Given t y,c(�) for T ≧  �  ≧  t, we 
can apply equations (2.20) and (2.21) to calculate the expected spot inflation rate t Ry,c(t,T). Cox, 
Ingersoll and Ross derive the following price of a nominal pure discount bond in nominal terms from 
their fundamental partial differential equation: 

 (3.4) 

where Pr(t,T) denotes the price of a real discount bond given above. The payoff of the nominal pure 
discount bond in nominal terms is equal to one unit of money, ie Pn(T,T) = 1. 

The nominal and real spot interest rates according to the CIR model 2 can be written by equation (2.2) 
as follows: 

 (3.5) 

Taking the limit as T � t, we find for the nominal and real instantaneous spot interest rates by means 
of L�Hopital�s rule: 

 (3.6) 

The last equation is Fisher�s hypothesis (2.22) for instantaneous interest rates, where the 
instantaneous interest premium is given by �k(t, t) = y,c(t) = (1/dt) t {dp(t) / p(t) } = dt t ry,c(t). If 
there are no indexed bonds issued in the country under consideration, this equation allows you to 
calculate the real instantaneous spot interest rate; otherwise it determines the volatility parameter �p. 

Before moving to the estimation of the CIR model, it may be appropriate to add a few remarks. The 
price of a nominal discount bond in real terms, Pn(t,T) / p(t), at date t depends on the observed values 
of three factors or state variables, namely the real instantaneous spot interest rate, rr, c(t), the drift of 
the instantaneous spot inflation rate, y,c(�), and the consumer price level, p(t). However, the price of a 
nominal discount bond in nominal terms, Pn(t,T), as given in equation (3.4) does not depend on the 
consumer price level. In view of the empirical estimation, it is a great advantage of the CIR model that 
it provides a closed-form solution, which comes at the expense of some unrealistic features of the CIR 
model. First, there is no correlation between the real interest rate and the inflation rate, that is, 
monetary impulses are artificially superimposed on real shocks. Second, the inflation process of 
equation (3.3) does not allow for negative inflation rates (ie deflation rates). It is an empirical fact that 
moderate deflation rates could be observed for several industrial countries, for instance in the 1950s 
and 1990s. Third, the adjustment processes for the real instantaneous spot interest rate and the 
�expected� instantaneous spot inflation rate as given in equations (3.1) and (3.3) do not allow for the 
phenomenon of overshooting the long-run equilibrium value, nor for the phenomenon of oscillating 
around the long-run equilibrium value. Again, it is an empirical fact that both phenomena could be 
observed in the past. Despite these disadvantages, the nominal yield curve according to the CIR 
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model as given in equation (3.5) may exhibit a wide variety of possible shapes, including the well 
known normal, inverse and humped shapes. 

4. Estimation: pooled time-series and cross-section data 

In view of the empirical estimation of the model parameters described in the previous section, we wish 
to use all the information contained in the CIR model. This may best be accomplished by considering 
pooled time-series and cross-section data. The pooled time-series and cross-section data will consist 
of a sample of the three stochastic processes for the real instantaneous spot interest rate, the 
expected instantaneous spot inflation rate and the consumer price level on the one hand as well as of 
a sample of the stochastic processes for a selected number of prices of nominal pure discount bonds 
in real terms on the other hand. The cross-section data refer to the term structure of the yield curve. 
(The first three processes mentioned above have, of course, a term of zero years.) The estimation 
procedure maximises the full information maximum likelihood function of the pooled time-series and 
cross-section sample subject to the constraint that the sample of theoretical discount bond prices fits 
the sample of observed discount bond prices as well as possible on the trading day under 
consideration. 

Let us consider the stochastic processes for the discount bond prices first. Let �(·) denote the price of 
a nominal pure discount bond in real terms, ie �(t,T) = Pn(t,T) / p(t). Applying Ito�s lemma to equation 
(3.4), we derive the following stochastic differential equation for the price of a nominal pure discount 
bond in real terms: 

 (4.1) 

By this equation, the bond price change is driven by the three Wiener processes associated with the 
real instantaneous spot interest rate, the expected instantaneous spot inflation rate and the consumer 
price level as given in equations (3.1) and (3.3). The expressions for �(·), B(·) and D(·) are given in 
equations (3.2) and (3.4). 

Next, we consider discrete time steps �t (which may be variable) and select H discount bonds with 
remaining life periods (terms) �j = Tj � t, j = 1, 2, �, H. In the estimation to follow, the terms of the 
bonds will vary between three and 26 years. Let � j , t denote the bond price for term �j at date t, and 
similarly for B and D. Since we cannot expect that the CIR model perfectly fits the data, we introduce 
for each bond a new volatility as follows: 

 (4.2) 

where �0 is a new volatility parameter which is common to each bond selected. Note that we 
introduced H new Wiener processes, one for each bond selected, and that the expressions B and D 
depend on the various terms �j = Tj � t, j = 1, 2, �, H, but not on a particular date t. 

Let �z(t) denote the column vector of the (3 + H) discrete Wiener processes. This vector has mean 
zero and the following ((3 + H) x (3 + H)) variance-covariance matrix Σ(t) = (�z(t), �z(t) ) = {�z(t) 
�z(t) �} � �z(t) { �z(t) }� . 
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 (4.3) 

By the properties of the Wiener process, the vector �z(t) is normally distributed with mean zero and 
variance-covariance matrix Σ(t), that is, 

 (4.4) 

where (·) denotes the Gaussian (normal) distribution. 

Next, let �y(t) denote the column vector of the (3 + H) discrete, trend-adjusted increments of the 
variables considered, that is, 

 (4.5) 

Furthermore, let G(t) denote the ((3 + H) x (3 + H)) volatility matrix as follows: 

 (4.6) 

where the first (3 x 3) submatrix is defined as 

 (4.6a) 

the second (H x 3) submatrix as 

 (4.6b) 



 

308 BIS Papers No 12 
BISBIS  

and the last (H x H) submatrix as 

 (4.6c) 

Taking for the pre-period variables their realised (observed) values, the trend-adjusted increments are 
then normally distributed as follows (Goldberger (1964)): 

 (4.7) 

If we had not introduced new volatility terms for the selected bonds, then the rank of the variance-
covariance matrices Σ(t) and S(t) would be three at most, hence we could only estimate the processes 
for the real instantaneous spot interest rate, the drift of the instantaneous spot inflation rate and the 
consumer price level. 

Our goal is to maximise the likelihood of a given sample of the vector of trend-adjusted increments 
�y(t) for each date t. For computational ease, we wish to reduce the normal distribution as given in 
equation (4.7) to a standard multivariate normal distribution. This can be accomplished by the 
following transformation (Goldberger (1964)): 

 (4.8) 

where the ((3 + H) x (3 + H)) upper-triangle matrix Q(t) is the Cholesky decomposition of the variance-
covariance matrix S(t) as shown in the equation above, and I denotes the identity matrix. The upper-
triangle matrix, Q(t), and its inverse, Q(t) -1, can easily be computed recursively. The probability 
density function of the vector �y(t) is then equal to the standard multivariate normal distribution for the 
vector �x(t) divided by the absolute value of the determinant of the Jacobian of the above 
transformation (4.8), which is equal to the upper-triangle matrix Q(t). If the volatility matrix G(t) has full 
rank, then the variance-covariance matrix S(t) has full rank, too, and it is positive definite. Since the 
determinant of a positive definite matrix is positive, it follows that the determinant of the upper-triangle 
matrix Q(t) is also positive, that is, 

 (4.9) 

where �Q(t)� denotes the determinant of Q(t). Note that, by the transformation (4.8), all the elements 
of the vector �x(t) are independent of each other, that is, each element has a univariate standard 
normal distribution. 

Denote the (10 x 1) column vector of the CIR model parameters as β = [�, �, �, λ, �2, �2, �2, �p, �, �0]�. 
Let L(�y(t)�β) denote the logarithm of the likelihood of a given sample �y(t) in terms of parameters β. 
From equations (4.7) to (4.9), the logarithm of the likelihood function can be written as follows: 

 (4.10) 

Due to the transformation (4.8), the likelihood function is just the logarithm of the algebraic product of 
the univariate probability masses of the (3 + H) independent increments �xj divided by the determinant 
of the matrix Q(t). 

Consider next the correlation between the trend-adjusted increments �y at various dates. By the 
properties of the Wiener processes, these covariances become zero for any time period s greater than 
zero, that is, 
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 (4.11) 

By the equation above, all the likelihood functions (�y(t)�β) at different dates are independent of 
each other. Hence, the overall likelihood function is equal to the sum of the single logarithmic 
likelihood functions. 

Finally, let obs
nP  (s,Tk) denote the observed prices of the nominal pure discount bonds in nominal 

terms on the trading day under consideration, s, for various term dates Tk, k = 1, �, K. These terms 
need not be the same as the terms considered in the selection of the various bond price processes of 
equation (4.2). The goal of the estimation is to maximise the overall likelihood function subject to the 
condition that the theoretical bond prices do not deviate from the bond prices observed on the trading 
day under consideration by more than a given tolerance �, that is, 

 (4.12) 

where s denotes the actual trading day and  the set of trading days considered in the paper. Note 
that a different percentage tolerance may be given for each bond selected on the trading day for which 
we investigate the actual yield curve. 

In this paper, we run the optimisation as given in equation (4.12) above for a sample of 40 trading 
days between 14 August 2000 and 14 May 2001. These 40 trading days are approximately weekly 
spaced. Hence, we obtain a set of 40 parameter vectors β. The observed nominal discount bond 
prices are obtained from a set of observed coupon-bearing government bonds by means of the 
constrained optimisation described in the introduction above (Büttler (2000)). For each of the 
40 trading days, we consider a sample of pooled time-series and cross-section data which starts at the 
beginning of February 1998, the earliest date for which bond data with the required information are 
available from our database. The number of nominal pure discount bonds selected for the cross-
section data has been chosen to be five, that is, H = 5. Their terms vary between three and 26 years. 
The number of bonds selected for the constraints in equation (4.12) has been chosen to be 20, that is, 
K = 20. Their terms are equally spaced between zero years and the maximum term of the set of 
observed discount bond prices which define the actual yield curve on the trading day under 
consideration. Since indexed bonds are not traded in Switzerland, the time-series data of the real 
instantaneous spot interest rate have been calculated from equation (3.6); they depend on the 
parameter set, β, however. 

5. Results 

The estimates of the parameters for the 40 trading days are depicted in Figure 1. Except for the speed 
of adjustment of the real instantaneous spot interest rate process, �, the parameter estimates are quite 
stable over time. Note that the long-run equilibrium values, � and �2, are related to their corresponding 
speeds of adjustment, � and �2, respectively. For a speed of adjustment of zero, say, any long-run 
equilibrium value is compatible. 

Given the estimated parameters, β, for each trading day considered, the real yield curve, Rr(t,T), has 
been calculated from equation (3.5). The 40 real yield curves and the 40 observed nominal yield 
curves are depicted in Figure 2. Although the nominal yield curves are upward-sloping (ie normal) or 
U-shaped, the real yield curves turn out to be upward-sloping during the first half of the sample period, 
but downward-sloping (ie inverse) during the second half of the sample period. Since downward-
sloping real yield curves are puzzling in view of the falling trend of recent inflation rates, we checked 
whether we had encountered a local rather than a global maximum of the logarithmic likelihood 
function. Indeed, we found many local maxima of the logarithmic likelihood function, which result 
mostly in an upward-sloping real yield curve, and consequently in a downward-sloping term structure 
of expected spot inflation rates, but we could not find other maxima with greater function values than 
the ones reported here. We conclude, therefore, that the downward-sloping real yield curves result, 
most likely, from the assumptions of the CIR model, namely from the impossibility of the future 
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expected inflation rate overshooting its long-run equilibrium value. Furthermore, the real instantaneous 
spot interest rate is not correlated with the drift of the instantaneous spot inflation rate in the CIR 
model. 

In order to calculate the term structure of the expected spot inflation rates, t Ry,c(t,T), for a given 
trading date t, we need to know the expected instantaneous spot inflation rate, t ry,c(�) = t y,c(�) 
for T ≧ � ≧ t, by equations (2.20) and (2.21). The future expected instantaneous spot inflation rate can 
be derived in three different ways at least. First, since the transition probability density function of the 
drift of the instantaneous spot inflation rate is given by the non-central chi square probability density 
function, the expected values of the drift of the instantaneous spot inflation rate can be calculated 
straightforwardly from this distribution (Cox et al (1985b)). Second, the drift of the instantaneous spot 
inflation rate at date t can be written as an integral over time of the respective process as given in 
equation (3.3). Taking the expectation on the one hand and differentiating the integral equation on the 
other hand yields a first-order ordinary differential equation for the expected instantaneous spot 
inflation rate (Duffie (1992)). Third, the discrete-time version of the stochastic differential equation of 
the drift of the instantaneous spot inflation rate as given in equation (3.3) leads to a stochastic finite 
difference equation. Taking the expectation on the one hand and the limit as the time step goes to 
zero on the other hand, the same ordinary differential equation as mentioned in the second way can 
be derived. Similarly, we derive the first-order ordinary differential equations for the variance and the 
covariance of the drift of the instantaneous spot inflation rate. The solutions of these three differential 
equations are given below. 

 (5.1) 

where  denotes the variance operator. Note that t and s denote two arbitrary dates, whereas � 
denotes a non-negative time period. As seen from date s, the initial value is equal to the realised 
value, that is, s y,c(s) = y,c(s). By the third equation above, the auto-covariances decline 
exponentially with the speed of adjustment and time. Using equations (5.1), (2.20) and (2.21), the 
expected value of the spot inflation rate becomes as follows: 

 (5.2) 

The term structures of the expected spot inflation rates, t Ry,c(t,T), for the 40 trading days considered 
are depicted in Figure 3. Note that the expected spot inflation rates with terms zero are equal to the 
realised drifts of the instantaneous spot inflation rates on the trading day considered. The overall 
picture suggests that the term structure of expected spot inflation rates is quite stable over time. 

Next, we calculate the future expected three-month nominal spot interest rate over a future time 
horizon of four years from the estimated parameters. (We choose the three-month interest rate 
because three-month Libor is the operational target rate of the Swiss National Bank.) From 
equation (3.5), the expected three-month nominal spot interest rate is given by 

 (5.3) 

where the expected instantaneous spot inflation rate is given in equation (5.1). The expected real 
instantaneous spot interest rate is given below. 

 (5.4) 
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We compare the future expected three-month nominal spot interest rate with the three-month nominal 
forward interest rate which we calculate from the observed nominal yield curve by equation (2.6). 
Apart from a risk premium, these two interest rates should exhibit the same forecasting profile over the 
future time horizon. This may be taken as a plausibility test of the CIR model. The sample of the 
40 trading days considered is depicted in Figures 4a-4h. As you can see in these figures, the 
forecasting profiles are quite similar in most cases. 

As another indirect test of the performance of the CIR model, we address the question of whether 
future expected three-month Libor, calculated from the estimated model parameters according to 
equation (5.3), is an unbiased estimator of future three-month Libor. Let obs

,cnR (t ,T) denote the nominal 
spot interest rate which is observed at date t and which has a term of three months (T� t  = 1 / 4 years), 
then the ordinary least-squares regressions are written as follows: 

 (5.5) 

where again  denotes the set of the 40 trading dates considered. It is assumed that the 
disturbances, u(s), are identically and independently distributed normal variates with a zero mean 
value and a constant variance. We consider 14 different time horizons of up to 91 days into the future. 
If expected three-month Libor is an unbiased estimator of future three-month Libor, then 	0 = 0 and 
	1 = 1. The regression results are shown in Table 1 and depicted in Figures 5a-5d. For future time 
horizons of both one day and seven days, we accept the hypothesis that expected three-month Libor 
is an unbiased estimator of future three-month Libor. As one can see in Figures 5a-5d, the 
observations are clustered in a rather small range which is due to the small sample period. If we could 
consider a sample period of 10 years, say, then the observations would vary between 0 and 10%. 
Hence, it might be reasonable to argue that the 14 regressions would look different for a larger sample 
period. To account for this phenomenon, we rerun the 14 regressions subject to the condition that the 
coefficient of the constant term is equal to zero, that is, 	0 = 0. The results of these restricted least-
squares regressions are shown in Table 2 and depicted in Figures 5a-5d. For all 14 future time 
horizons considered, we now accept the hypothesis that expected three-month Libor is an unbiased 
estimator of future three-month Libor. 

Finally, we compare the behaviour of the interest premium or inflation risk premium, respectively, 
between two monetary regimes. At the beginning of the year 2000, the Swiss National Bank switched 
from a concept of medium-term monetary targeting to a concept with inflation forecasts as a main 
indicator for guiding monetary policy decisions. The old monetary policy mentioned above was 
operated mainly by foreign exchange swaps, whereas the new concept relies on repurchase 
agreements (repos) with commercial banks for short terms of one day up to several weeks. By these 
operations, the Swiss National Bank keeps three-month Libor - its operational target rate - within a 
particular band. Due to the limited database, we cannot estimate the CIR model by the full information 
maximum likelihood (FIML) method described in this paper before 2000. For the period 1999-2001, 
however, we applied the CIR model to observed yield curves by means of a multi-objective goal 
attainment (MOGA) method described elsewhere (Büttler (2000)). The MOGA method does not use 
time-series data at all, because it only requires that the theoretical yield curve fits the actual yield 
curve observed on a particular trading day as well as possible, given two other objective functions. 
The parameters estimated by the MOGA method are less stable than those estimated by the FIML 
method. Furthermore, some estimates are associated with a local rather than a global maximum in 
terms of the likelihood function. Although the term structures of expected inflation rates estimated from 
the MOGA method may deviate considerably from those obtained from the FIML method, the interest 
premia are close to each other during the period from January to May 2001, given weekly spaced 
data. The difference in the interest premium between these two methods is depicted in Figure 6. The 
maximum difference in absolute value is 31 basis points. The interest premia obtained from the MOGA 
method for the period between 1999 and 2001 are depicted in Figure 7. As you can see, the interest 
premia for all the terms considered between zero and 25 years are declining over this period. Since 
the middle of 2001, they have been almost zero. This reduced risk may indicate that the new concept 
has further increased the credibility of Swiss monetary policy. 
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6. Conclusions 

Applying the CIR model, we determine empirically the term structure of expected spot inflation rates 
and the term structure of real spot interest rates from the nominal yield curves of 40 consecutive 
weeks. The smooth evolution of these curves over the course of time suggests that the empirical 
estimation is quite stable. We find the puzzling result that half the real yield curves are upward-sloping, 
while the other half are downward-sloping, but all the expected inflation rate curves are upward-
sloping. We attribute this phenomenon to the fact that the future expected inflation rate cannot 
overshoot its long-run equilibrium value in the CIR model. We test the performance of the CIR model 
indirectly in two ways. First, we compare the time profile of the future expected nominal three-month 
spot interest rate with that of the three-month nominal forward interest rate implied by the observed 
nominal yield curve on the trading day under consideration. This test is quite satisfactory. Second, we 
test whether expected three-month Libor, calculated from the estimated model parameters, is an 
unbiased estimator of future three-month Libor for 14 different time horizons of up to 91 days into the 
future. We accept this hypothesis for future time horizons of both one day and seven days. With a 
restriction on the coefficient of the constant term, however, we accept this hypothesis for all 14 future 
time horizons considered. Finally, we compare the behaviour of the interest premium or inflation risk 
premium, respectively, between two different monetary policy regimes. We find that the interest 
premium has vanished since the beginning of the year 2000, when the Swiss National Bank switched 
from a regime with medium-term monetary targeting to a concept with inflation forecasts as a main 
indicator for monetary policy decisions. This reduced risk may indicate that the new concept has 
further increased the credibility of Swiss monetary policy. 
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Appendix: list of variables, functions and symbols 

Subscripts: 
xv,k(·) The first subscript of the variable x, v = {n, r, y}, denotes nominal values for v = n, real 

values for v = r, and values associated with the inflation rate for v = y. If necessary, we 
use a second subscript, k = {m, c}, which denotes the compounding frequency with the 
understanding that m denotes a compounding m times a year and c denotes the 
continuous compounding (m � �). 

Variables in Roman letters: 
A(t,T) See equation (3.2). 

B(t,T) See equation (3.2). 

C(t,T) See equation (3.4). 

D(t,T) See equation (3.4). 

Fv(t,T,� ) v = {n, r}. The (� �T)-year forward interest rate corresponding to a forward contract on a 
pure discount bond with the agreement that the forward price is fixed at date t and paid at 
a later date T when the discount bond will be delivered. The discount bond matures at a 
later date � (� ≧ T ≧ t). It holds true that Fv(t, t,T) = Rv(t,T). 

Fy(t,T,� ) The (� �T)-year forward inflation rate corresponding to future consumer price levels at 
future dates � and T as seen from date t (� ≧ T ≧ t). It holds true that Fy(t, t,T) = Ry(t,T). 

�v(t,T) � Fv(t,T,T); v = {n, r}. The instantaneous forward interest rate corresponding to a forward 
contract on a pure discount bond with the agreement that the forward price is fixed at 
date t and paid at a later date T when the discount bond will be delivered. The discount 
bond matures at the same instant it is delivered. It holds true that �v(t, t) = rv (t). 

�y(t,T) � Fy(t,T,T). The instantaneous forward inflation rate corresponding to a consumer price 
level at the future date T as seen from date t (T ≧ t). It holds true that �y(t, t) = ry (t). 

G(t) Volatility matrix. See equation (4.6). 

H Number of bonds selected for the cross-section data. See equation (4.2). 

I Identity matrix. See equation (4.8). 

K Number of bonds selected for the constraints. See equation (4.12). 

p(t) The price level of consumer goods or the cost of living index, respectively, at date t. 

Pv(t,T) v = {n, r}. The spot price of a pure discount bond, which is fixed and paid at the settlement 
date t. The debtor of the pure discount bond redeems one monetary unit when the bond 
matures at date T, but does not pay out any coupons during the bond�s life. 

Py(t,T) � p(t) / p(T), (T ≧ t). The purchasing power of money at the future date T in nominal 
terms at current prices as seen from date t. 

 Observed prices of the nominal pure discount bonds in nominal terms on the trading day 
under consideration, s, for various term dates Tk, k = 1, �, K. 

Pv(t,T,�) v = {n, r}. The (� �T)-year forward price of a forward contract on a pure discount bond 
with the agreement that the forward price is fixed at date t and paid at a later date T when 
the pure discount bond will be delivered. The pure discount bond matures at a later date 
�  (�  ≧ T ≧ t). In this case, the forward price is equal to the futures price of a discount 
bond (see Hull (1997), p 95). It holds true that Pv(t, t,T) = Pv(t,T). 

Py(t,T,�) � p(T) / p(� ). The (� �T)-year forward purchasing power of money at date �  at prices of 
the earlier date T as seen from date t (� ≧ T ≧ t). It holds true that Py(t, t,T) = Py(t,T). 

),(obs
kn TsP
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Q(t) Upper-triangle matrix. See equation (4.8). 

Rv(t,T) v = {n, r}. The spot interest rate of a pure discount bond with its price fixed at date t and 
which matures at date T (T ≧ t). The spot interest rate is also denoted as the yield of the 
discount bond. 

 The nominal spot interest rate which is observed at date t and whose contract matures at 
date T. 

Ry(t,T) The spot inflation rate corresponding to a consumer price level at the future date T as 
seen from date t (T ≧ t). 

rv(t) � Rv(t, t); v = {n, r}. The instantaneous spot interest rate of a pure discount bond with its 
price fixed at date t and which matures at the same instant. 

ry(t) � Ry(t, t). The instantaneous spot inflation rate at date t. 

 The drift of the instantaneous spot inflation rate or the �expected� instantaneous spot 
inflation rate, respectively, at date t. t ry(t) = t )(try = ).(try  

S(t) Variance-covariance matrix. See equation (4.7). 

xj(t) Transformed, trend-adjusted variables considered in the sample of pooled time-series 
and cross-section data, j = 1, �, 3 + H. See equation (4.8). 

yj(t) Trend-adjusted variables considered in the sample of pooled time-series and cross-
section data, j = 1, �, 3 + H. See equation (4.5). 

zj(t) Wiener processes, j = 1, �, 3 + H. A Wiener process has normally distributed increments 
with mean zero and variance dt. Any two increments at two different dates are 
independent. See equations (3.1), (3.3), (4.2) and (4.3). 

u(s ) Disturbance on the trading day s in linear regression. See equation (5.5). 

Variables in Greek letters: 

	0, 	1 Regression coefficients. See equation (5.5). 

β � [�, �, �, λ, �2, �2, �2, �p, �, �0]�. Parameter vector to be estimated. See equation (4.10). 


 See equation (3.2). 


2 See equation (3.4). 

� Error tolerance. See equation (4.12). 

� See equation (3.2). 

�k k = {m, c }. The interest premium. 

� See equation (3.4). 

� Speed of adjustment of the increments of the real instantaneous spot interest rate. See 
equation (3.1). 

�2 Speed of adjustment of the increments of the instantaneous spot inflation rate. See 
equation (3.3). 

λ Factor risk premium. See equation (3.2). 

�(t,T) � Pn(t,T) / p(t). The spot price of a pure nominal discount bond in real terms which is 
fixed and paid at the settlement date t. 

� Correlation coefficient. See equation (3.3). 

� Volatility parameter of the increments of the real instantaneous spot interest rate. See 
equation (3.1). 

�2 Volatility parameter of the increments of the instantaneous spot inflation rate. See 
equation (3.3). 

),(obs
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�p Volatility parameter of the increments of the consumer price level. See equation (3.3). 

�0 Volatility parameter of the increments of the nominal discount bond prices in real terms. 
See equation (4.2). 

Σ(t) Variance-covariance matrix. See equation (4.3). 

� Long-run equilibrium value of the real instantaneous spot interest rate. See equation 
(3.1). 

�2 Long-run equilibrium value of the instantaneous spot inflation rate. See equation (3.3). 

Functions: 

(����, Σ) Gaussian or normal distribution with mean vector ���� and variance-covariance matrix Σ. For 
the (n x 1) column vector x, the notation x ∼ (����, Σ) means that x has normal 
distribution. The normal probability density function is given by 

 . 

L(x�β) Logarithm of the likelihood function for a given sample x in terms of parameters β. 

exp � e. The exponential function. 

ln The natural logarithm. 

Symbols: 
 The expectation operator. For a variable x with probability density function �(x), the 

expectation of x is defined as x � � �(x) dx. 

 The covariance operator. For variables x and y, the covariance between x and y is 
defined as (x,y) � { (x� x) (y� y)}. 

 The variance operator. For a variable x, the variance is defined as x � { (x� x)2}. 

�·� Determinant of a matrix. 

� Transposition mark of a vector or of a matrix. 

� Backward difference operator in discrete time, ie �x(t) = x(t) � x (t �1). 

 The set of trading days or settlement days considered in the paper. The 40 trading days 
are approximately weekly spaced between 14 August 2000 and 14 May 2001. 



 

316 BIS Papers No 12 
BISBIS  

 

14.8.2000 22.10.2000 30.12.2000 9.3.2001  17.5.2001 
-3

-2

-1

 0

 1

 2

 3

 4

 5

 6
Figure 1a: Parameter estimates
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Figure 1b: Parameter estimates continued
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Figure 2: Nominal and real yield curves in percent per annum
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Figure 4a 
Expected three-month spot interest rates in percentages per annum 

 

Figure 4b 
Expected three-month spot interest rates in percentages per annum 
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Figure 4c 

Expected three-month spot interest rates in percentages per annum 

 

Figure 4d 

Expected three-month spot interest rates in percentages per annum 
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Figure 4e 

Expected three-month spot interest rates in percentages per annum 

 

Figure 4f 

Expected three-month spot interest rates in percentages per annum 
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Figure 4g 
Expected three-month spot interest rates in percentages per annum 

 

Figure 4h 
Expected three-month spot interest rates in percentages per annum 
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Table 1 

Ordinary least-squares regressions 

Future time horizon in days Independent 
variables 1 7 14 21 28 35 42 

Constant term 0.0496 0.4750 1.0890 1.8123 2.0643 2.5239 2.5909 
 (0.1151) (0.3438) (0.4315) (0.4846) (0.4853) (0.4723) (0.4406) 
Expected 3M Libor 0.9862 0.8636 0.6843 0.4697 0.3943 0.2570 0.2364 
 (0.0337) (0.1011) (0.1273) (0.1435) (0.1442) (0.1407 (0.1317) 
Coeff. of determ. 0.9575 0.6577 0.4319 0.2199 0.1644 0.0807 0.0782 
F-ratio 0.2847 1.4230 4.0122 7.6567 9.8006 15.2113 18.4928 
Accept hypothesis yes yes no no no no no 

Future time horizon in days Independent 
variables 49 56 63 70 77 84 91 

Constant term 2.6048 2.7086 2.7893 2.6624 2.6536 2.5929 2.6242 
 (0.4097) (0.3728) (0.3464) (0.3171) (0.2982) (0.2782) (0.2684) 
Expected 3M Libor 0.2309 0.1975 0.1715 0.2080 0.2084 0.2255 0.2138 
 (0.1227) (0.1120) (0.1042) (0.0956) (0.0901) (0.0842) (0.0814) 
Coeff. of determ. 0.0852 0.0757 0.0665 0.1108 0.1234 0.1588 0.1536 
F-ratio 21.5131 27.6284 33.6554 36.5186 40.6396 44.5484 48.6205 
Accept hypothesis no no no no no no no 

Comments: The dependent variable is observed three-month Libor. Values in parentheses are standard deviations. The size of 
the sample of settlement days is 40. We test the joint hypothesis that the coefficient of the constant term is equal to zero and 
that the coefficient of expected three-month Libor is equal to one. The hypothesis is �accepted� if the F-ratio is less than the 
corresponding critical F-value. The critical one-tailed F-value is equal to 3.2448 for a probability of 95%. 

 

Table 2 

Restricted least-squares regressions 

Future time horizon in days Independent 
variables 1 7 14 21 28 35 42 

Constant term 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
Expected 3M Libor 1.0007 1.0031 1.0055 1.0060 1.0070 1.0084 1.0097 
 (0.0011) (0.0032) (0.0042) (0.0052) (0.0057) (0.0061) (0.0063) 
Partial coeff. of det. 0.9575 0.6577 0.4319 0.2199 0.1644 0.0807 0.0782 
t-ratio 0.6197 0.9685 1.2863 1.1529 1.2285 1.3680 1.5519 
Accept hypothesis yes yes yes yes yes yes yes 

Future time horizon in days Independent 
variables 49 56 63 70 77 84 91 

Constant term 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
Expected 3M Libor 1.0102 1.0097 1.0096 1.0095 1.0086 1.0086 1.0075 
 (0.0063) (0.0062) (0.0061) (0.0060) (0.0059) (0.0058) (0.0058) 
Partial coeff. of det. 0.0852 0.0757 0.0665 0.1108 0.1234 0.1588 0.1536 
t-ratio 1.6137 1.5694 1.5668 1.5892 1.4522 1.4916 1.2812 
Accept hypothesis yes yes yes yes yes yes yes 

Comments: The dependent variable is observed three-month Libor. Values in parentheses are standard deviations. The size of 
the sample of settlement days is 40. We test the hypothesis that the coefficient of expected three-month Libor is equal to one, 
given the restriction that the coefficient of the constant term is equal to zero. The hypothesis is �accepted� if the t-ratio is less 
than the corresponding critical t-value. The critical two-tailed t-value is equal to 2.0244 for a probability of 95%. 
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Figure 5a: 1-day ahead forecast
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Figure 5b: 7-day ahead forecast
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Figure 5c: 84-day ahead forecast
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Figure 5d: 91-day ahead forecast
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