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How Useful are Implied Distributions?
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Abstract

Option prices can be used to construct implied (risk-neutral) distributions, but it remains to

be proven whether these are useful either in relation to forecasting subsequent market

movements or in revealing investor sentiment. We estimate the implied distribution as a

mixture of two lognormals and then test its one-day-ahead forecasting performance, using

1987-97 data on LIFFE’s FTSE-100 index options. We find that the two-lognormal method

is much better than the one-lognormal (Black/Scholes) approach at fitting observed option

prices, but it is only marginally better at predicting out-of-sample prices. A closer analysis of

four “crash” periods confirms that the shape of the implied distribution does not anticipate

such events but merely reflects their passing. Similarly, during three British elections the

implied distributions take on interesting shapes but these are not closely related to prior

information about the likely outcomes. In short, while we cannot reject the hypothesis that

implied distributions reflect market sentiment, we find that sentiment (thus measured) has

little forecasting ability.

Keywords: option pricing, implied distribution, volatility smile, market sentiment, crashes,

elections.
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Introduction

Investors, risk-managers and policy-makers all need to forecast the probability distribution of prices

if they are to take rational decisions. Conventionally, an estimate of the variance is obtained from

recent data on returns. A month of data may give a reasonable estimate of the variance, but

observations over several months are required if the skewness and kurtosis are to be measured

accurately. Another approach is to use options data to construct implied distributions. These are the

so-called risk-neutral distributions (RNDs) which traders are using when they set the prices of the

options and which relate to the period until an option expires. One day’s options can reveal not only

the forecast variance, but also the whole shape of the risk-neutral distribution (including skewness

and kurtosis). Using options is therefore an efficient way in which to forecast the whole distribution.1

Several alternative methods have been suggested for extracting the risk-neutral distribution from

option prices, the main difference between them being the extent to which they constrain its shape. At

one extreme, Longstaff (1995) imposes no constraints but the result can be a rather “badly-behaved”

or spiky distribution. At the other extreme, Rubinstein (1994) and Jackwerth and Rubinstein (1996)

constrain their distributions to be those with the smallest possible deviations from the lognormal.

Somewhere in between these two extremes is the assumption of this paper, which is based on the

work of Ritchey (1990), Melick and Thomas (1997) and Bahra (1997). We assume that the

distribution can take any shape which may be approximated by a mixture of two lognormals.

The first objective of this study is to examine whether an option pricing model, based upon two

lognormal distributions, performs well for equity-index options (having previously been applied only

to oil futures and interest-rates). The performance of the method is determined not only by measuring

the (ex-post) fit of the implied distribution, but also ex-ante by testing how well it forecasts option

prices out-of-sample. We find for LIFFE’s FTSE-100 index options over the 1987-97 period that

although the model fits the data significantly better than the Black/Scholes model, the out-of-sample

performance is only marginally better. This is consistent with work on US index options by Dumas,

Fleming and Whaley (1998), who found that taking account of volatility smiles did not help in

forecasting one-day-ahead option prices.2

If implied distributions are of rather limited use in normal periods, it might still be possible that they

help to forecast market movements during exceptionally turbulent periods. Our second objective is

therefore to examine the performance of the method around crashes (of October 1987, October 1989

and October 1997), British general elections (of May 1987, April 1992 and May 1997), and

                                                          
1 Of course, it is important to remember that these implied distributions are different from directly sampled distributions, as

they reflect risk-neutral processes (see Harrison and Kreps, 1979). In the absence of transactions costs the shapes should
be the same, but the location of the implied distribution reflects only a risk-free rate of  return.

2 There is a one-to-one relationship between the volatility smile and the implied distribution, as demonstrated explicitly by
Shimko (1994), so forecasting with the volatility smile is equivalent to forecasting with the implied distribution.
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extraordinary events (the sterling currency crisis of September 1992). Our chosen periods are more

general than those examined (in a related way) by other researchers. For example, Bates (1991) and

Gemmill (1996) have examined volatility smiles for the US and UK around the 1987 crash and Malz

(1997), Campa and Chang (1995) have examined options on sterling in the ERM crisis of 1992.

Coutant, Jondeau and Rockinger (1998) have examined implied distributions for interest rates at the

time of the snap general election in France in 1997. We find that the method does not help to reveal

the probability of crashes, because increased left-skewness follows rather then preceeds these events.

Nevertheless, the method can help to reveal the divergent expectations which arise immediately after

crashes and during election campaigns. In other words, the method helps to reveal “market

sentiment”, which could be useful for the policy-stance of a central bank (e.g. Federal Reserve, Bank

of England) and for investors who may wish to take positions based upon the difference between

their forecast of the distribution and the consensus of the market.

The paper is written as follows. The next section provides a theoretical presentation of the main

techniques used to derive the implied distribution of future asset prices from option prices. The two-

lognormal mixture distribution method is described, as well as the practical issues of the

implementation (namely the data used and the selection of the studied periods). Section 3 presents the

empirical results from applying the method to FTSE-100 index options, at the same time assessing its

usefulness. Conclusions and suggestions for further research are given in the fourth and final section

of the paper.

2. Theoretical framework

2.1 Review of literature and development of the model

Option prices reflect forward-looking distributions of asset prices. In the absence of market frictions,

it is possible to take a set of option prices, for a single maturity and at various exercise prices, and

imply the underlying risk-neutral distribution (RND). Breeden and Litzenberger (1978) first showed

how the second partial derivative of the call-pricing function with respect to the exercise price is

directly proportional to the RND function. However, since observed option prices are only available

at discretely spaced intervals rather than being continuous, some approximation for the second

derivative is necessary and more than one implied distribution can be implied depending on the

approximation chosen. As Jackwerth and Rubinstein (1996) observe, selecting among the competing

distributions then amounts to a choice of how to interpolate or extrapolate option prices across

exercise prices.

The most direct way of estimating the implied distribution is by simple application of the Breeden

and Litzenberger result to a function relating the call price to exercise prices. This has been done by

Longstaff (1995) and Ait-Sahalia and Lo (1995). The former implements a procedure that attributes a
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probability to an option mid-way between two adjacent exercise prices, then uses this to solve for the

next probability, and so on. Ait-Sahalia and Lo first smooth the pricing function with a set of

polynomials and then proceed in a similar way.

Shimko (1993, 1994) proposes an alternative approach by interpolating in the implied-volatility

domain instead of the call-price domain. He begins by fitting a quadratic relationship between

implied volatility and exercise price. The Black/Scholes formula is then used to invert the smoothed

volatilities into option prices. At this point he has a continuous spectrum of call prices as a function

of the exercise prices and the application of the Breeden and Litzenberger result is straightforward,

generating the implied probability distribution.

The main limitation of the above techniques is the need for a relatively wide range of exercise prices.

This can be overcome by imposing some form of prior structure on the problem. One such prior (used

by Bates (1991, 1996) and Malz (1997)) is to assume a particular stochastic process for the price

dynamics of the underlying asset. In their papers the asset price is assumed to follow a jump-diffusion

process. In other words, the basic probability distribution is lognormal, but it can jump up or down3.

Alternatively, the imposed structure may apply to the distribution of the future asset price itself,

instead of the asset-price dynamics. This approach proves to be more general than making

assumptions about the stochastic process of the underlying asset price, because any given RND

function is consistent with many different stochastic processes, whereas a given stochastic price

process implies a unique RND function (Melick and Thomas, 1997). The approach of Rubinstein

(1994) and Jackwerth and Rubinstein (1996) falls into this category. They employ an optimisation

algorithm to find that RND function which is closest to lognormal, taking account of bid/ask bounds

on the observed option prices.4

The framework used in the current paper follows Ritchey (1990), who notes that a wide variety of

shapes may be approximated with a mixture of lognormal distributions. He assumes that the implied

density function, f(ST), of the underlying asset terminal price, ST, comprises a weighted sum of k

individual  lognormal density functions:
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k
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1

Equation 1

where L(αi, bi, ST) is the ith lognormal density function with parameters αi, bi:
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3 Malz assumes that there is either no jump or just one jump over the life of the option, in which case the terminal RND

function is a mixture of two lognormal distributions (Bahra, 1997)
4 The distance criteria used in the two papers are, respectively, a quadratic difference and a smoothness function.
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a Si i i= + −l n ( / )µ σ τ2 2 and b i i= σ τ Equation 3

In the above equations, S is the spot price of the underlying asset, τ (=T-t) is the time remaining to

maturity and µ and σ are the parameters of the normal RND function of the underlying returns. The

weights  θi are positive and sum to unity.

Melick and Thomas (1997) apply this framework to options on crude oil futures, using a mixture of

three lognormal distributions. Bahra (1997), Butler and Davies (1998) and Soderlund and Svensson

(1997) use a mixture of two lognormals on interest-rate futures. Since our data on FTSE-100 options

cover a limited range of exercise prices for each maturity, it seems more appropriate to use two

lognormals, which require only five parameters: the mean of each lognormal,  α1, α2, the standard

deviation of each lognormal, b1, b2 and the weighting coefficient, θ.

2.2 The two-lognormal mixture distribution method for equity index options

Let the terminal pay-off on a European call maturing at time T be max(ST - X, 0), given terminal asset

price ST and exercise price X. Assuming that the risk-free interest rate r is constant, the life of the

option is τ and the asset price is S, then the price of the call is the discounted expected payoff

(conditional upon finishing in the money) times the probability of finishing in the money:

( )c X e f S S X d Sr

X
T T T, ( ) ( )τ τ= −−

∞

∫ Equation 4

where f(ST) is the risk-neutral probability density function of the terminal asset price at time T.

Similarly, the terminal payoff on a European put is max(X - ST, 0) and its current price is:

p X e f S X S d Sr
X

T T T( , ) ( ) ( )τ τ= −− ∫
0

Equation 5

Under the assumption that the probability density function is a mixture of two lognormals (with

weights θ and (1-θ)), the above equations for call and put prices can be rewritten as:

[ ]c X e L a b S L a b S S X dSr
T T

X
T T( , ) ( , , ) ( ) ( , , ) ( )τ θ θτ= + − −−

∞

∫ 1 1 2 21 Equation 6

[ ]p X e L a b S L a b S X S dSr
T T

X

T T( , ) ( , , ) ( ) ( , , ) ( )τ θ θτ= + − −− ∫ 1 1 2 2
0

1 Equation 7

These equations can be used iteratively to minimise the deviation of estimated prices from observed

prices, a search being made over the five parameters. We use both puts and calls across five exercise

prices and minimise the total sum of squared errors for the ten options:
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where b1, b2 > 0, 0 ≤ θ ≤ 1, subscript i denotes an observation and ^ denotes an estimate.

Bahra (1997) shows that equations 6 and 7 have the following closed-form solutions:
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and
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where
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Equations 9 and 10 have a very simple interpretation: the model prices are just weighted sums of two

Black/Scholes solutions, each having its own mean and variance.

2.3 Data sources

The empirical research in this study is based on the daily settlement prices of FTSE-100 calls and

puts covering up to five exercise prices and four maturities for each day from January 1st 1987 to

December 31st 19975. Our sample contains American-style options for the period to March 1992 and

European-style options thereafter, the switch being made because the latter were only thinly traded

                                                          
5 We gratefully acknowledge LIFFE for financial assistance in collecting some of the data and for providing the other data.
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before then.6 Exercise prices have been chosen such that one is at-the-money, two are in-the-money

and two are out-of-the-money. The interest rates used are UK Sterling 3-month interbank deposit

rates, retrieved from Datastream.

2.4 Hypotheses to be tested

Hypothesis 1: The two-lognormal model performs better than a one-lognormal (Black/Scholes)

model

This paper is primarily a critical examination of the two-lognormal model. On one day per month for

the period 1/87 to 11/97 the distribution is implied and then used to price options on the next day.

This allows us to test the method’s forecasting performance relative to the Black/Scholes model over

quite a long period.7

Hypothesis 2: The option market anticipates crashes

One particularly interesting question is whether option markets have any usefulness in predicting

extreme events, such as stock market crashes. The crash of October 1987, the mini crash of October

1989 and the market turmoil of October 1997 were chosen as examples of such occasional events.

Although other studies have looked at some of these periods (e.g. Bates, 1991, for the US and

Gemmill, 1996, for the UK), the use of the two-lognormal mixture is original. We also examine the

European monetary crisis of September 1992 (when sterling left the Exchange Rate Mechanism

(ERM) and was devalued by more than 10%) as another period of great uncertainty for the British

stockmarket.

Hypothesis 3: A bimodal distribution is appropriate during elections

The two-lognormal mixture may prove particularly useful in periods when a market jump is expected

but the direction of the jump is unknown. Such is the case during political elections. Assuming that

there are only two possible outcomes (for example, Labour victory or Conservative victory) and that

investors prefer one to the other, a stock-index option which matures after an election should reflect a

bimodal underlying distribution. The mixture of two separate lognormal distributions should

therefore fit the observed option prices particularly well at such times. We have included the British

elections of 1987, 1992 and 1997 in our analysis in order to test this hypothesis.

                                                          
6 Strictly speaking the method is only applicable to European options, because we are attributing all of an option’s value to
the terminal distribution and not to early exercise. However, the value of early exercise on these index options is likely to be
small: see Dawson (1994) for an analysis on FTSE-100 options.
7 Dumas, Fleming and Whaley (1998) use a similar approach on S&P 500 options, but based upon the volatility smile

rather than the implied distribution.
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3. Results

3.1 Forecasting Performance over the Whole Period, January 1987-December 1997

The options used in this part of the analysis are chosen on one day per month (from the middle of the

week) such that they have approximately 45 days to maturity. Table 1 gives a summary of the

conventional dispersion and shape statistics of the implied distribution over the whole period. The

results leave no doubt about two features. First, the implied distributions have fatter tails than those

of lognormal distributions, with kurtosis positive in each subperiod and averaging 1.54. This result is

expected, as it is the corollary of the well-known volatility smile which is found for many different

options (e.g. Bahra, 1997, on interest rates, Melick and Thomas, 1997, on crude oil futures, Malz,

1996, on foreign exchange).

Second, and more importantly, the generated distributions exhibit consistently negative skewness

(that is, they have a more pronounced tail to the left) averaging -0.26 over the whole period and

becoming more pronounced over time. Figure 1 plots the monthly results, which indicate that after

March 1991 there is no month in which skewness is positive, although variation is quite large. This

result differentiates equity-index options from options on other underlying assets and is also well

documented from volatility smiles (see e.g. Gemmill, 1996).

The performance of the two-lognormal model can be compared with Black/Scholes in two ways; first,

in how well (ex-post) the two models fit observed option prices within sample, and second, in

forecasting (ex-ante) the price of an option on day t+1. To do the latter we obtain the model

parameters (a1, b1, a2, b2 and θ) that best fit the option prices observed on day t. Then for forecasting

we update the means of the distributions to take account of changes in the stock price.8

a a
S

Si
t

i
t

t

t
+

+

= +1
1

l n Equation 11

Similarly, we update the variances to take account of one day’s less time to maturity:

b bi
t

i
t

t

t
+

+

=1
1τ

τ Equation 12

Table 2 shows the errors obtained by the two-lognormal and Black/Scholes methods, both within

sample (ex-post) and out-of-sample (ex-ante). Results are given separately for 1/87 to 2/92, for which

                                                          
8 Strictly speaking, the adjustment should take account of the change in the forward price, for which the change in spot
price is a good approximation unless an ex-dividend date is straddled (which does not occur in our sample).
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American options were used, and for 3/92 to 11/97, for which European options were used.  The two-

lognormal method has an in-sample performance which is considerably better than that of the

Black/Scholes model,  being 29% better in terms of root-mean-squared error for the American

options in the earlier period and 89% better for the European options in the more recent period.  This

is to be expected since it uses five parameters (a1, b1, a2, b2, θ) as compared with the two parameters

(a, b) of Black/Scholes.9  The out-of-sample (forecasting) test shows a root-mean-squared-error

improvement of only 11% for the American options (54 out of 61 observations show an

improvement), but a more impressive gain of 43% for the European options (all 68 observations show

an improvement).  However, these relatively large RMSE improvements for European options

translate into absolute gains of about 1-2 index points per option, which are small when compared

with a bid/ask spread of at least 2 points.  Hence the method gives a consistent but small

improvement in forecasting performance on average across the eleven year period.

3.2 Market crashes

The crash of 1987

Even if the method gives only small benefits in most periods, it may fit the data and forecast better

than Black/Scholes in periods when there are significant events. On Monday, October 19th 1987 the

FTSE-100 fell by 10.9% to 2052. The following day, after the news from Wall Street convinced

everybody that this was a global crash, there was a further drop of 12.2%. The decline continued and

the index dropped to 1684 on October 26th, 1608 on November 4th and to the 1987 low of 1565 on

November 9th. This represented a fall of 32% in three weeks. The London stock market did not

recover these losses for more than 18 months.

We have divided our analysis of implied distributions around this time into two distinct periods: the

first is the two trading weeks immediately before the crash and the second is the month immediately

after the crash. Results on shape and goodness of fit are summarised in Table 3 (first segment) and

representative implied distributions are plotted in Figure 2.10 It should be noted that in this and

subsequent figures, the first distribution is plotted as estimated but the other distributions have been

adjusted to give the same time to maturity as the first.  Without such an adjustment there would be a

narrowing of the distributions as maturity approached.11 Prior to the crash (13th October in Figure 2)

                                                          
9 In fact, Black/Scholes normally has only one unknown parameter, the volatility of the distribution. However, since we do
not use the forward price of the underlying asset as a parameter in the minimisation procedure but imply it as the mean of the
distribution, the number of B/S parameters is two and the number of additional parameters of the two-lognormal model is
therefore three.
10 Because averaging across distributions tends to remove deviations from lognormality, we have plotted the distribution
on that particular day which has skewness nearest to the period average.
11 The adjustment to the mean takes account of the change in spot price and the size of the contango (forward price less
spot price), treating each distribution separately. We have αI 

*
 = lnS + (αI  - lnS) (t1 / t2 ) , where αI 

*
  is the adjusted value for

the ith mean, t1  is the maturity observed and t2 is the maturity required for purposes of comparison. Each variance is
adjusted as in Equation 12.
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the distribution is unimodal, with fat tails and slightly positive skewness. The means of the two

component distributions are close together (a1≈a2), but there is a large difference in their standard

deviations (b1, b2) which generates the fat tails. Option prices on the three trading days from October

19th to October 21st have been excluded, because both methods lead to huge errors when fitted.12 The

two lognormal distributions thereafter move apart and, on some days, give a bimodal composite, as

illustrated for November 6th in the middle segment of Figure 2. The representative distribution for

the whole month after the crash, as shown by November 26th in Figure 2, is not bimodal but does

show quite widely separate means for the two component distributions (a1 ≠ a2). In this period the

mode of the composite function exhibits great instability, jumping regularly between 1300 and 1600

which reflects the difficulty which investors had in reaching a new consensus.

From before to after the crash, average volatility jumps from 20.8% to 50.7%13 and skewness falls

from positive (0.36) to negative (-0.26). However, kurtosis falls compared to the pre-crash period

(from 1.74 to 0.02). Finally, it is interesting to note that the mean of the implied distribution is below

the spot price for much of this period, consistent with the observed backwardation in the futures

market.

The mini crash of 1989

On October 16th 1989, two years after the 1987 crash, the FTSE-100 dropped by 74 points (3.3%) to

2163. This was the most dramatic plunge of the index for more than a year, but this time the market

reacted in a more muted way than in 1987, avoiding panic and quickly recovering its prior level. Our

analysis is divided into a before-crash period of September 11th to October 15th and an after-crash

period of October 16th to November 10th.14 There are only slight changes in the implied distributions

from the first to the second period (see Table 3, second segment, and Figure 3), which is in stark

contrast to what happened in 1987. Volatility increases from 19.3% to 27.8%, but that is a small

change relative to events in October 1987. Left-skewness increases from -0.26 to -0.35, but there is a

reduction in kurtosis just as in 1987 (from 1.74 to 0.02). In both the pre-crash and post-crash periods

the two component distributions move closely together, preserving the unimodal nature of the

composite RND function.

The ERM crisis of 1992

The period of our study is mid-August to mid-October 1992. During the second and third quarter of

1992 a number of European currencies – including sterling – were subject to strong pressures which

                                                                                                                                                                                    
An alternative to such an approach would have been to do the analysis with options of two maturities and then synthesise

an implied distribution for a constant maturity. This is discussed by Butler and Davies (1998).
12 Both methods give large fitting errors from October 22nd to October 28th (daily MSE in the range 3 to 8), but these
results are included as the period is particularly  important.
13 Volatility is measured empirically by integrating across the composite distribution.
14 November index options were used for the analysis.
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eventually pushed them to the ERM floor. The British government tried to hold sterling’s value

against the D-Mark through a series of interest rates increases. As rates rose, so the stockmarket fell

by about 15% from early May to late August. The last effort to defend sterling was an unprecedented

5 percentage point rise in interest rates, announced in two steps, on September 16th 1992. Before the

end of that day sterling had left the ERM and the second of the two interest rate rises did not come

into effect. The devaluation of sterling and lower expected interest rates then pushed the FTSE-100

up by 7.7% over two days.

Despite the rise in share prices, the shape of the implied distribution is only mildly changed from

before to after the devaluation, becoming almost bimodal (see Table 3, third segment, and Figure 4).

Average volatility and kurtosis both increase slightly (volatility from 22.9% to 23.5%, kurtosis from

1.61 to 2.50). Skewness, which is extremely negative in both cases, moves from -0.60 to -0.74. It

seems that exit from the ERM, an upward “shock” for the stockmarket, had a very muted impact on

the implied distribution, which contrasts with the impact of the downward shocks in 1987 and 1989

which increased left-skewness and volatility. This result is consistent with time-series models of

volatility (such as EGARCH) which find significant asymmetry: volatility rises by much more when

the market falls than it does when the market rises (see, for example, Crouhy and Rockinger, 1993).

The Asian crash of 1997

Our analysis covers 59 trading days, from 9/9/97 to 28/11/97, and is based on options maturing in

December. In the five weeks before the 20th October volatility is relatively high (19.6% – see Table

3, fourth segment). The implied distribution is highly skewed to the left (–0.81) but its kurtosis is of

lognormal size (0.03). After October 20th, volatility almost doubles (34.9%) and kurtosis increases

significantly (1.05). The implied distribution is still skewed to the left, but on average less so than

before (-0.56). The representative plots in Figure 5 show how the distribution changes from being

almost bimodal on 16th September, to being stretched and clearly bimodal on 29th October. This

suggests that investors hold widely difference views about the potential level of the index at this time.

Our analysis of crashes can be summarised as follows. The largest effect is simply an asymmetric

impact on volatility, which responds more to a market fall than to a market rise. Left-skewness rises

hugely after the 1987 crash, but does not change much when smaller shocks occur. There is no

consistent pattern in kurtosis during these events, but there is a tendency for a bimodal distribution to

appear after the event. Finally, there is no pattern in the results to suggest that any of these four

events was anticipated by participants in the options market.
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3.3 British Elections

The 1987 election

The 1987 election was called on May 11th and held one month later on June 11th. During the whole

campaign the Conservatives maintained a clear lead in the opinion polls over Labour and the

stockmarket rose by 5.5%. Investors were said to be awaiting a “Japanese wall of money” which

would arrive after a Conservative victory (Financial Times, May 30th 1987).

Our study covers 30 trading days from 12/5/87 to 23/6/87 and is based on the prices of the July

(American-style) options. During the campaign the distribution is volatile, averaging 26.5% as given

in Table 4, and quite left-skewed, averaging -0.62. The representative distribution plotted for 20th

May in Figure 6 indicates a nearly bimodal distribution. Taking account of the information available

at the time (see Gemmill, 1992) it is reasonable to assert that the mode at 2010 represents a Labour

win while the mode at 2300 represents a Conservative win. Relative to the average futures price for

this period, these represent an anticipated 3.4% rise if the Conservatives win and a 9.6% fall if

Labour wins. After the election the distribution resumes its familiar shape, becoming unimodal and

with a more modest dispersion (volatility=21.9%) and skewness (–0.09).

The two-lognormal model proves to be useful during the election campaign in revealing the market’s

sentiment, confirming that two distinct outcomes are perceived to be possible. However, that

perception is itself difficult to explain, given the extremely high probability of a Conservative win

which the opinion polls forecast throughout this period (see Gemmill, 1992) and the absence of any

upward movement in the market after the Conservative win. The method appears to have captured

market sentiment in advance of a known event, but that sentiment also appears to have been a rather

misleading forecast of the election outcome.

The 1992 election

The 1992 general election was called on March 11th and held four weeks later, on April 9th. Unlike

the previous election, when the Conservatives had been the strong favourites, the outcome of this

election was very uncertain. The opinion polls gave Labour a narrow lead over the Conservatives,

which, if confirmed on election day, might have led to a hung parliament. Therefore, the possible

scenarios were three: a Labour government, a Labour-Liberal Democrat coalition and a Conservative

government.

Just as in the previous election, the market’s disposition in favour of Conservatives was often heard

and the prospect of a change in government caused the stock market to slide. The index eventually

fell to its 1992 low a few days before the election. On the day of the election, the index gained

considerable ground, since a published opinion poll created “last-minute hopes” for a Conservative
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victory. The following day the Conservatives returned to power once again and the stock market

gained 136 points (5.4%) in one session.

Our analysis covers the period from March 12th to April 30th 1992 and is based on the May

(American-style) options. During the campaign volatility is 23%, skewness –0.20 and kurtosis 1.96

(see Table 4). This time we do not observe a bimodal pattern (see Figure 7), even though the polls

indicate that the final winner is less clear than in 1987. After the election volatility falls (to 17%),

skewness becomes less negative (–0.12) and kurtosis rises to 5.53. In sum, the Conservative win

brings forth a smile rather than a sneer, but the options do not forecast that the market will rise on a

Conservative victory.

The 1997 election

The election was announced on March 17th and held six weeks later, on May 1st. During the

unusually long campaign, the Labour party maintained an estimated lead over the Conservatives

which ranged from 28% at the start to 5% a week before voting. Unlike 1992, this time the actual

outcome confirmed the predictions of the opinion polls and Tony Blair became the first Labour prime

minister in 18 years.

Our analysis covers 50 trading days, from 18/3/97 to 30/5/97, and is based on the June (European-

style) options. During the campaign the implied distribution is skewed to the left (–0.53, see Table 4)

and kurtotic (+0.53). After the election, volatility decreases (from 15.4% to 13.0%) and both kurtosis

and skewness decline (skewness=–0.45, kurtosis=0.29). The representative distributions for 24th

April and 15th May in Figure 8 are very similar in shape. In sum, the 1997 election is almost a “non-

event” for the index-options market.

What has been learnt from the study of election periods? In principle, they provide an ideal test of the

informational content of implied distributions, since a known event is certain to occur on a specific

date but its impact has to be forecast. The two-lognormal method gives much smaller root-mean-

squared errors (in sample) than does the Black/Scholes model, particularly in 1997. It reveals a rather

bimodal distribution in 1987, but not in 1992 or 1997 when such a distribution would have seemed

more plausible given the more balanced contests. In sum, the analysis helps to “tell a story” about

investors’ expectations, but it is not a story which is supported by subsequent outcomes: if investors’

expectations are revealed by the implied distributions during election campaigns then those

expectations do not seem to have much forecasting power.

4. Conclusions

In this study we have examined whether implied distributions are informative with respect to

subsequent stockmarket moves and to what extent they may be used to reveal investor sentiment. To

do this we have applied the mixture-of-two-lognormals technique to London’s FTSE-100 index
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options and critically examined the in-sample and out-of-sample performance of this model in a

variety of periods.

The analysis was intended to test three general hypotheses: 1) the two-lognormal model performs

better than Black/Scholes; 2) implied distributions indicate that the option market anticipates crashes;

and 3) the method is particularly useful in periods when a bimodal distribution is to be expected.

We accept the first hypothesis (better than Black/Scholes), but with reservations. The method gives a

better in-sample fit to observed option prices and its forecasting performance out-of-sample over

1987 to 1997 is also better but not by enough to be economically useful.

We reject hypothesis 2 (that the options market anticipates crashes). Neither before the large crash of

1987 nor before the much smaller crashes of 1989 and 1997 did the options market become more left-

skewed. The upward adjustment of the stockmarket after sterling left the ERM in September 1992

was also not anticipated. Generally, we can say that the index-option market reacts to crucial events

such as stock market crashes, it does not predict them.

We weakly accept hypothesis 3: the method does help to reveal market sentiment during elections. In

particular, during the 1987 election the method allows us to reveal the development of a bimodal

distribution, reflecting widely different potential outcomes. Nevertheless, while this may help in

telling a “market story”, it is not one which is consistent with rational expectations: in 1992 and 1997

the election outcome was much more uncertain than in 1987, but a bimodal shape failed to appear. In

particular, the market rose on the unexpected Conservative win in 1992, but the options had not

shown that a jump was at all likely.

In sum, implied distributions (recovered by using the two-lognormal mixture technique) provide some

potential insight into stockmarket sentiment, but their forecasting performance is not markedly better

than that of Black/Scholes. Similar conclusions were reached for the US market (using different

methods) by Dumas, Fleming and Whaley (1998). These empirical results cast doubt on the view that

the shape of the implied distribution is a rational expectation. Fundamentally, what has to be

explained is why the implied distribution is so left-skewed and why its shape changes so frequently?

The most plausible explanation is portfolio-insuring behaviour (see Grossman and Zhou, 1996) and

that does not require implied distributions to be good forecasts: they just need to reflect recent moves

in the stockmarket and particular investor preferences.
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Table 1: Dispersion and shape statistics of implied distributions for the period 1987-1997

Period Volatility
(%)

skewness kurtosis

1987-89 22.6 -0.075 1.970
1990-91 21.9 -0.064 2.710
1992-93 17.0 -0.252 1.261
1994-95 15.6 -0.353 0.417
1996-97 14.5 -0.652 1.134
All years 18.7 -0.257 1.544

Notes:

The data are for one day per month, averaged over the periods shown. Data up to (and including) 1993 are for
American options, thereafter for European options.  The skewness and kurtosis have been measured by
deducting the appropriate values for a lognormal distribution, hence the null hypothesis for each is zero. Data
run until November of 1997 only.

Table 2: Root-mean-squared errors of the two-lognormal and the Black/Scholes models

Fitting (ex-post) Forecasting (ex-ante)
Period Two-lognormal Black/Scholes Two-lognormal Black/Scholes

1/87-2/92
(American-style

options)

2.15 3.02 4.39 4.94

3/92-11/97
(European-style

options)

0.28 2.46 1.83 3.22

Notes:
The root-mean-squared errors are measured in index points for the option prices.  The data are for
one day per month, averaged over the periods shown.
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Table 3: Period average statistics on implied distributions for four crash periods

Event Trading
Dates

No.  of trading days change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative to
lognormal

kurtosis relative to
lognormal

crash of 1987 1/10/87-16/10/87 12 - 0.208 2.20 2.00 0.363 1.736
22/10/87-10/11/87 28 -28.2% 0.507 3.72 3.14 -0.263 0.020

mini-crash of
1989

11/9/89-13/10/89 25 - 0.193 3.65 2.58 -0.264 3.695

16/10/89-10/11/89 20 -7.0% 0.278 4.33 2.19 -0.350 1.762

Event Trading
Dates

No of trading days change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative to
lognormal

kurtosis relative to
lognormal

ERM crisis of
1992

24/8/92-15/9/92 16 - 0.229 2.91 0.70 -0.601 1.615

16/9/92-15/10/92 22 +9.0% 0.234 2.81 0.75 -0.735 2.504

Asian crash of
1997

9/9/97-17/10/97 29 - 0.196 4.13 0.26 -0.814 0.025

20/10/97-28/11/97 30 -5.9% 0.349 5.55 0.86 -0.556 1.050

Notes:
Data up to (and including) 2/92 are for American options, thereafter for European options. The skewness and kurtosis have been measured by deducting the appropriate values
for a lognormal distribution, hence the null hypothesis for each is zero.
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Table 4: Period average statistics on implied distributions for three election periods

Election Trading
Dates

No of
trading

days

change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative
to lognormal

kurtosis relative to
lognormal

1987 12/5/87-11/6/87 22 +4.4% 0.265 3.63 2.14 -0.606 0.620

12/6/87-23/6/87 8 +4.1% 0.219 2.83 1.38 -0.090 0.893

1992 12/3/92-9/4/92 21 -4.1% 0.234 2.80 1.77 -0.200 1.960

10/4/92-30/4/92 13 +7.6% 0.168 3.84 3.27 -0.118 5.527

1997 18/3/97-1/5/97 31 -1.9% 0.154 4.59 0.16 -0.532 0.527

2/5/97-30/5/97 19 +7.5% 0.130 2.86 0.29 -0.445 0.295

Notes:
Data up to (and including) 2/92 are for American options, thereafter for European options. The skewness and kurtosis have been measured by deducting the appropriate values
for a lognormal distribution, hence the null hypothesis for each is zero.
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Figure 1 Skewness of the Implied Distributions
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Figure 2 Implied Distributions Around the Crash of 1987
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Figure 3 Implied Distributions Around the Crash of 1989
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Figure 4 Implied Distributions Around the Sterling Crisis of 1992
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Figure 5 Implied Distributions Around the Asian Crash of 1997
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Figure 6 Implied Distributions Around the Election of 1987
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Figure 7 Implied Distributions Around the Election of 1992
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Figure 8 Implied Distributions Around the Election of 1997
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Discussion of Gemmill and Saflekos paper
“How Useful are Implied Distributions?

Evidence from Stock-Index Options”

Discussant: Shigenori Shiratsuka

The purpose of this paper is to estimate implied probability distributions (IPDs) as a mixture of two

lognormal distributions by using British stock price index option data. It also empirically tests (1) the

performance of pricing formula, (2) the forecastability of crashes, and (3) the revelation of market

sentiments. The conclusions are as follows: (1) the two-lognormal method is better than the Black-

Scholes model in fitting observed option prices (in-sample estimation), but there is no significant

difference in predicting out-of-sample prices; (2) the shape of the IPDs does not indicate the

forecastability of market crashes; and (3) the IPDs help to reveal changes in market sentiment.

Since I think that these conclusions are reasonable, I will make comments with a view to improving

their robustness. My comments are divided into two parts: one is concerned with the technical issue of

empirical procedures and the other is concerned with the more general issue of the case study

methodology used to infer market sentiment from the IPDs.

Empirical Procedures

Regarding empirical procedures, I would like to point out two problems in this paper.  First, I

recommend that the authors use data of whole trading days in the forecasting exercise to compare the

performance of different pricing formulas. The current estimations are done with data of one day in

each month, probably because of the possible problem of autocorrelation caused by overlapping

sample periods. However, considering that a standard method of adjusting for the effects of

autocorrelation is available, I think it would be better to test forecasting power by using a larger

sample of whole trading days.1

Second, I am wondering if the methodology used for estimating the IPDs to examine the

forecastability of crashes is appropriate. According to this paper, we can see large estimation errors in

market turbulence, suggesting that the approximation of the IPDs by a mixture of two lognormal

distributions might be too rigid a restriction for the period of market stress, which is thought to be an

important time for case studies. Therefore, I am not sure that the estimation methodology of the IPDs

                                                
1 See Newey and West (1987) for details of how to estimate autocorrelation-heteroskedasticity robust standard
errors.
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is appropriately selected for examining whether the IPDs might be useful for anticipating crashes and

gauging market sentiment? In this case, it might be that a simpler but less restricted methodology

would be better for examining market sentiment during the stress period.

Case Study Method

Let me turn next to the method of case studies used in examining market sentiment. Here, I would like

to propose another way of deriving market sentiment or expectations from the estimated IPDs, based

on my own recent research (Nakamura and Shiratsuka, 1999).

It is important to recognize that there is a risk of misreading the estimation errors as indicators of

changes in market expectations, if we look at the shape of the IPD on a specific date. Alternatively, we

can avoid this risk by observing the general trend of changes in each summary statistic that is shown

by the distribution shape, and focus on examining the relationship between asset price movements and

changes in distribution shape.2 In this case, I would like to emphasize the effectiveness of a time-series

plot of summary statistics for the estimated IPDs in the case studies for examining the changes in

market sentiment over time.

We estimated the IPDs for the Nikkei 225 Stock Price Index Option from mid-1989 to 1996 on a daily

basis (see Figure 1). By observing the time-series movements of underlying asset prices and summary

statistics of IPDs, we found the typical patterns in linking large fluctuations of asset prices and

response in the shape of IPDs as follows (see also Figure 2):

(1) The standard deviation rises during a period of sharp decline in stock prices (high positive

correlation with lagged absolute changes in stock prices), and a shift in level occurred at the end of

1989.

(2) The skewness moves in the opposite direction to changes in market level, reflecting lags in the

adjustment of market participants’ confidence to the market levels (high negative correlation with

simultaneous and lagged changes in stock prices).

(3) The excess kurtosis jumps in the case of extreme price changes (positive correlation with

simultaneous absolute changes in stock prices).

By comparing the actual movement of summary statistics with the aforementioned their typical

patterns in response to the market fluctuations, the estimated IPDs provide us with a lot of information

on the market sentiments and expectations. For example, the magnitude of changes in summary

                                                
2 This paper computed summary statistics on original strike prices, and standardized summary statistics of IPDs for
comparison. However, in our paper (Nakamura and Shiratsuka, 1999), we computed summary statistics on log-transformed
strike prices, and did not need to standardize computed summary statistics for evaluating the divergence from normal
position.
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statistics tells us of the impact of external shocks.  The length of adjustment periods provides us with

information on the smoothness of adjustment of market expectations. Through the case studies of

various episodes in Japanese financial markets during the period from 1989 to 1996, we have shown

such usefulness of the IPDs as an information variable for monetary policy.

Conclusions

In summary, market participants’ expectations are too diverse and informative to be captured merely

by using a single summary statistic, i.e., the mean, because the same mean value implies different

market expectations and policy implications, depending on the shape of the probability distribution of

the expected outcome. In particular, since market participants’ confidence in stock prices differs

substantially depending on timing, we can expect to capture more market information, both in quality

and in quantity, by carefully examining the changes in market participants’ expectations that lie behind

stock price fluctuations.

In this sense, as the papers and discussions contributed to this workshop suggest, the implied

probability distributions extracted from option prices will provide useful information for the conduct

of monetary policy.  However, studies on how to make use of the information extracted from option

prices in policy judgments have only just begun, and further research is necessary in this area.
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Figure 1.  Stock Prices and Market expectations (Overview)
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Figure 2. Dynamic Cross-Correlation
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Discussion of
“How useful are implied distributions ? Evidence from stock-index options”

by G. Gemmill and A. Saflekos
Discussant: Raf Wouters

It is a pleasure for me to discuss this paper.  The paper covers several different topics :

- the estimation method of the implied distribution ;

- the test of the information content of the implied distribution ;

- the effect of specific events on the implied distribution.

This diversity of topics makes it somewhat easier to discuss the paper as I can choose the topics that

look most interesting to me. Since the estimation technique was discussed during the morning session,

I will concentrate my remarks on the test of the information content of the implied distribution (i.d.).

The authors use an out-of-sample pricing prediction to test the information quality of the estimated i.d.

This is a strong test for the i.d. as it depends on the whole structure of the distribution.

Traditional tests of the information content of option prices have concentrated on the test of the

volatility measure only: they analysed whether the implied volatility was an unbiased predictor of the

ex-post realisation of the average volatility over the option maturity. The general conclusion was that

the implied volatility is a biased estimator because systematically overpredicting the realised volatility.

On the other hand, the relation between implied volatility and the realised volatility was proved to be

very significant and the implied volatility outperformed the forecasts of time-series based volatility

measures such as Garch estimation techniques.

The out of sample pricing test used in this paper is a more general test : by pricing the whole range of

options, the error will depend on both the volatility forecast but also on the higher moments describing

the whole shape of the i.d.

The authors summarise these results by the RMSE of the forecast and compare this figure with the in

sample errors. The mixture of two-lognormals delivers a strong improvement both in sample (but

without correction for the number of parameters in the model) and out of sample compared to the B.S.

model. These statistical gains are impressive at least for the period where European options are used

(indicating perhaps that the method as applied here is not well suited for American style options).

This is a strong result and confirms similar conclusions in the literature (e.g. Dumas a.o. JF 1998).

However, the authors minimise this finding: the improvement in value terms is not economic

meaningful as it falls within the typical bid/ask spread in the market. They conclude from this that the

forecasting performance is not markedly better than B.S. and that these results cast doubt on the

hypothesis that the shape of the i.d. is a rational expectation.
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In my opinion this conclusion is drawn somewhat to quickly : I would like to see more detailed results

and add more tests:

- the average RMSE is too general: I would suggest for instance some statistic on the number

of cases and the size of improvements in the fit in excess of the bid/ask spread (the outcome of some

investment strategy would even be more conclusive). I would like to add here that by minimising the

sample size to 10 observations, one probably makes it more difficult to find important improvements :

so why not take the whole set of available prices into account?

- I wonder whether the errors are systematically related to strike prices and whether such

systematic errors are higher / lower compared to the B.S. model

- I would also prefer to see predictions over a longer horizon: this can increase the possibility

to find economic significant improvements;

- I would also compare the pricing error to a third model, for instance a simple approach based

on a martingale assumption in which the pricing in the forecast is based on the observed volatility

smile of the previous day.

Whatever the answers to these remarks, the important question remains as to why the prediction error

is so much bigger out-of-sample as compared to the in-sample estimation error:

- a first explanation is the misspecification of the model based on the mixture of two-lognormals.

However the small in-sample errors, typical for methods based on option prices of one maturity and at

one point in time,  provide not much hope that further improvements can be achieved within this

approach;

- a second answer is the arrival of new information that changes not only the price of the underlying

asset but also the volatility and the whole shape of the distribution.  Under this hypothesis one can still

test whether the forecast is unbiased and rational, but it will be statistically more difficult to find the

answer.  But more important, under this hypothesis the implied volatility and the i.d. can no longer be

considered as constant and one should go in the direction of modelling the behaviour of these variables

over time (Examples like Ait-Sahalia JF 1998 give promising results in this respect). But if one

accepts that volatility is non-constant over time and that this variability is very important, one arrives

quickly at the limit of methods based on a specification of the terminal distribution or other “non-

structural” methods to estimate the option pricing function. These methods can never explain the

economic logic behind the changes in the volatility or in the higher moments of the distribution,

neither can they explain, in economic terms, the observed negative skewness and high kurtosis.

Therefore one should move to structural approaches that model explicitly the dynamic process of the

asset price and the volatility process.  Within such a framework one can look for alternative

explanations for these observations in the direction of  :
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- the role of the leverage effect;

- the role of non-normally distributed shocks;

- the variable risk-aversion, etc;

The test of such a model typically covers a broad range of option prices both cross-section and over

time. The existence of higher in-sample errors in such application leaves more room to find economic

significant differences in and out of sample;

- a third alternative explanation for the high prediction errors can be found in specific factors or

characteristics of the option market.  For instance  through the existence of :

- bid-ask spreads that generate pricing errors;

- important liquidity problems due to the lower number of transactions in far out or in the

money options;

- specific exposure or insurance arguments in the option market that distort the option prices.

This last type of explanations for the pricing errors make the use of the i.d. to investigate their

information content problematic.  Such distortions make the i.d. less useful or at least more difficult to

interpret. Only option investors would still be interested to study these effects.

Now perhaps it is too strong to separate these different explanations underlying high prediction errors :

if option market behaviour has a feedback to the underlying asset market, as one should expect in a

general equilibrium framework, the different explanations can no longer be separated, and the

interpretation becomes difficult in any case.

As long as our knowledge on the mechanisms that drive the movements in the distribution remains

limited, we should be careful in using this information, and indeed consider it, as the authors suggest,

only as some indication of market sentiment:

- simple volatility measures can be used to give an indication of the uncertainty of investors

outlook. The use of implied volatility for analysing credibility of monetary policy typically falls in this

category ;

- but the interpretation of the higher moments should be made very cautiously.

This conclusion also follows from the review in the paper of the i.d. behaviour around specific events.

The i.d. does not show any systematic behaviour during these periods. But the exercises, and in

particular the in-sample statistics, illustrate that the mixture of two lognormals does a reasonable job in

describing the information of option prices during periods of high negative skewness, high kurtosis or

bimodal distribution.




