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This paper sets forth a simple method for estimating the credit risk economic capital associated
with securitization exposures, which are defined as credit exposures created by repackaging the
cash flows from a pool of assets into various tranches or asset-backed securities. Our approach is
motivated by the need for an effective and easily implemented regulatory capital rule for securiti-
zation exposures. Consequently, it is designed to be fully compatible with the model underpinning
the Basel Committee’s (2001) proposed Internal Ratings-Based Approach (“IRBA”) to regulatory
capital requirements against whole loans and other bank assets. Cost-effective application to a
wide variety of securitizations and participating institutions dictates that our approach be parsi-
monious, in the sense of using minimal information on the contents of the securitized pool and on
the contractual design of the securitization, as well as computationally tractable.

The role played by securitizations in unraveling the 1988 Capital Accord demonstrates the need
for a regulatory capital regime that is based on an internally consistent approach to quantifying
portfolio credit risk. Since 1988, securitizations have become a major funding vehicle and port-
folio risk management tool for banks. Concurrently, however, banks also have learned to exploit
inconsistencies within the current Accord, under which credit risks assumed through securitization
transactions often entail much lower regulatory capital charges than similar risks assumed through
traditional loan portfolios (see Jones 2000). Curtailing such regulatory arbitrage, while at the same
time encouraging the effective hedging of credit risks through securitization and other techniques,
are primary objectives behind the Basel Committee’s efforts to revamp the Accord.

The model foundation for the IRBA is a special case of the class of credit-VaR risk models
exemplified by CreditMetrics (Gupton, Finger and Bhatia 1997) and KMVs Portfolio Manager
(Kealhofer and Bohn 2001). Economic capital is set to cover total mark-to-market credit losses
over a one-year horizon with probability q.1 It is assumed (1) that the credit portfolio is infinitely
fine-grained in the sense that any single obligor represents a negligible share of the portfolio’s total
exposure, and (2) that a single, common systematic risk factor drives all dependence across credit

∗The opinions expressed here are those of the authors, and do not reflect the views of the Board of Governors or
its staff. We thank Erik Heitfield and William Perraudin for helpful comments.

1In this context, credit losses reflect valuation changes that result from credit quality migrations or defaults by
obligors, but exclude valuation changes arising from general movements of interest rates and the market price of risk.
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losses in the portfolio.
An important implication of this asymptotic single risk-factor (“ASRF”) framework is that the

economic capital requirement for the portfolio equals the portfolio’s expected loss conditional on
the systematic risk factor taking a value equal to the qth percentile of its probability distribution.
Given the linearity of the expectation operator, this result implies that economic capital for each
instrument in the portfolio (whether that instrument is a whole loan or a tranche of a securitization)
is its own expected loss conditional on the qth percentile of the systematic risk factor, and thus is
independent of the composition of the rest of its portfolio.2 When applied to securitizations, the
ASRF framework – and the model developed herein – implies “capital neutrality” in the sense that
the sum of the economic capital charges for the individual tranches of a securitization equals the
economic capital for the underlying collateral pool (denoted Kirb).

Importantly, our approach does not require that the securitized asset pool itself be infinitely
fine-grained. Rather, a sufficient condition is that the bank’s total exposure to each securitized pool
(that is, through the tranches held by the bank) be small relative to the bank’s overall portfolio.
Thus, our model can be applied to securitizations of pools ranging from a single loan to infinitely-
many loans.

This paper’s main innovation is adapting the ARSF framework to permit the economic capi-
tal for an individual securitization tranche to be estimated using a relatively simple closed-form
expression and parsimonious set of inputs. Computational ease and informational parsimony are
especially important practical considerations when attempting to develop a cost-effective regulatory
capital treatment for securitizations. The distribution of payouts to participants in a securization
(often termed the cash-flow “waterfall”) can be quite complex and deal-specific, depending, for
example, on the time-profiles of the pool’s defaults, recoveries, and principal and interest payments
on the underlying loans. For regulatory capital purposes, it is not practical to attempt to account
for the myriad of possible deal-specific attributes of the waterfall.

Pykhtin and Dev (2002, forthcoming) propose to cut through these complexities by assuming
that, for a particular tranche, the waterfall can be summarized in terms of the tranche’s par value
or thickness (T ) and its credit enhancement level (ζ), defined as the sum of the par values of all
more-junior tranches. In practice, such information is readily available to market participants.
Pykhtin and Dev also assume that economic losses experienced by the pool over the model horizon
are allocated deterministically according to a strict loss prioritization (“SLP”) rule, that is, the
tranche absorbs pool losses only in excess of ζ, up to a maximum of T . However, when embedded
in the ASRF framework, these assumptions imply an unsatisfactory knife-edge property: for an
infinitely fine-grained pool, a tranche’s economic capital requirement is dollar-for-dollar (100%) if
ζ + T is less than or equal to Kirb, and zero if ζ exceeds Kirb. Pykhtin and Dev circumvent this
problem by assuming pool losses are driven by a systematic risk factor that is correlated imperfectly
with the dominant risk factor driving losses on the remainder of the bank’s portfolio.

2See Gordy (2002) for a derivation of this result under minimal restrictions on the portfolio and very general
modeling assumptions.
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In contrast, our model retains the basic ASRF setup for characterizing the pool’s loss distri-
bution, while assuming that the pool’s economic losses over the horizon are distributed among
tranches according to a generalized version of SLP that is subject to random errors (referred to as
the Uncertainty in Loss Prioritization, or ULP, model). A divergence from the strict prioritization
of economic credit losses over the analysis horizon can arise from at least two sources. First, few
securitizations actually call for strict prioritization of all cash flows, as subordinated tranches typi-
cally are entitled to some cash payouts prior to more-senior investors being paid out in full. Second,
even with strict prioritization of cash flows over the life of a securitization, the credit enhancement
level ζ generally understates the ability of more-junior tranches to absorb economic losses to the
extent their contractual yield is higher than the rate of interest on the underlying loans in the
pool.3

It should be emphasized that we are not suggesting that there is operational or legal risk in the
execution of securitization contracts. The new source of uncertainty introduced in this paper instead
reflects the potential gap between the accounting representation of the tranche (i.e., its position
and thickness relative to other holders of principal) and its vulnerability to economic loss. We draw
our intuition from the long vein of econometrics literature on models with hidden parameters.4

The details of the contractual cash flow waterfall are material but unobservable parameters in the
“true” model of the securitization. From the perspective of the econometrician (in our case, the
regulator), such parameters act as sources of random error that must be “integrated out” rather
than ignored. Were one to have unimpeded access to all details of the securitization contract, a
“full information” model such as Duffie and Garleanu (2001) would naturally be preferred.

For a homogeneous pool of one-year loans (equivalent to the simple default-mode structure
used by Pykhtin and Dev), the ULP model implies that a tranche’s economic capital is closely
approximated by a function of six inputs: the economic capital for the pool as a whole (Kirb); the
number of loans in the pool (n); the expected loss-rate-given-default for these loans (LGD); the
tranche’s nominal credit enhancement level (ζ) and thickness (T ); and a parameter τ that represents
the magnitude of uncertainty in loss prioritization. For regulatory capital purposes, the first five
parameters would be supplied by a bank, while the τ parameter would be set by supervisors. In
addition to its regulatory capital applications, the model also might be used by banks for internal
economic capital assessment in situations where an institution’s aggregate securitization exposures
represent a relatively small fraction of its overall credit portfolio and it would not be cost-effective
to develop highly customized models to handle the specific details of each transactions.

Section 1 develops the ULP model under very general assumptions similar to those in Gordy
(2002). A general methodology for simplifying computation of capital charges is set forth in Section

3Consider a homogeneous $100 pool of 8% one-year loans. Suppose the most-junior tranche has an initial value
of $20 and pays 20%, while the $80 senior tranche pays 5%. From the perspective of the senior tranche, ζ = 20
and T = 80. However, suppose that 22% of the loans default, implying a total cash flow available for distribution
of $84.24. In this case, the senior tranche still would be paid in full even though the pool’s loss exceeds ζ. Excess
spread accounts, which often are seen in securitizations of credit card receivables, create a similar effect.

4We also take inspiration from the literature on the potential misalignment of accounting with economic measures
(e.g., Fisher and McGowan 1983).
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2. The model specification is completed in Section 3, where we impose the specific functional forms
and distributional assumptions to which the IRBA is calibrated. This ensures full consistency
between the IRBA and our proposed treatment of securitization exposures. We also test the
robustness of our simplified computational method, and find it highly accurate across a very broad
range of possible pool characteristics. We conclude in Section 4 with discussion of maturity effects
and other aspects of application in practice.

1 ULP model

As under the treatment of whole loans, we seek to have capital sufficient to cover credit loss up to
some percentile q of the loss distribution. We assume that both the loan originator and tranche
investor have asymptotically fine-grained portfolios even when exposure to the securitized borrowers
is excluded. The pool itself need not be assumed to be asymptotically fine-grained, but we do require
that the tranches held by originator and investor represent trivial shares of their respective total
portfolios. We also assume a single systematic risk-factor X. Let L be book-value (or “default-
mode”) losses incurred within the pool as a share of total pool exposure, and let Hq(·) be the cdf
of L conditional on X = xq. We need make only very weak restrictions on the underlying model of
portfolio risk. For example, it could make any of a wide variety of distributional assumptions on
X and on recovery risk. The technical requirements are those set forth in Gordy (2002).

The pool is securitized into a set of prioritized tranches 1, . . . ,m, where tranche 1 is most
junior, tranche 2 is next most junior, and so on. Let S = (S1, . . . , Sm) denote the ownership
shares of the tranches (so summing to one). In the standard treatment of securitizations, we take
S as specified by contract and fixed ex-ante. In our approach, we recognize that securitization
structures are highly complex, and that economic notions of exposure share and priority may not
fully align with the legal notions. Therefore, we treat S as a random vector. A natural choice
of multivariate distribution for S is the Dirichlet distribution. Let ω1, . . . , ωm be the notional
stakes of the tranches. We assume that the share vector S is distributed Dirichlet with parameters
(τω1, . . . , τωm), where τ > 0 is a chosen precision parameter, which implies that the expected value
of share Sj is simply ωj. By making the Dirichlet assumption, we permit the realized share vector
to “wiggle” around the expected value (ω1, . . . , ωm) and yet still always sum to one. As τ → ∞,
the wiggle room disappears, and the distribution of S becomes degenerate at (ω1, . . . , ωm).

Let Gq(z) be the cumulative capital charge (as a share of total pool exposure) on the juniormost
share z of the structure. Under the ASRF assumptions, this is given by

Gq(z) =
∫ 1

0
min{z, L} dHq(L) = z −

∫ z

0
Hq(L)dL (1)

where the second equality follows from integration-by-parts. When tranche shares are taken as fixed,
this function is sufficient to characterize the allocation of capital across tranches. For notational
convenience, let Z = (Z1, . . . , Zm) be the cumulative shares defined by Zj =

∑
i≤j Si, and let
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ζ = (ζ1, . . . , ζm) be the cumulative expected shares defined by ζj =
∑

i≤j ωi. In the case of strict
loss prioritization (“SLP”), the capital on tranche j is given by

Kj = Gq(Zj) − Gq(Zj−1) = Gq(ζj) − Gq(ζj−1). (2)

When S is stochastic and independent of all other risk-factors in the portfolio, the appropriate
capital charge is5

Kj = E [Gq(Zj)] − E [Gq(Zj−1)] . (3)

The linear nature of the expectation operator is extremely convenient here, because it implies that
we need only worry about the marginal distributions of the Zj and not the entire joint distribution.
The marginal distribution of Zj is Beta with parameters (τζj , τ(1 − ζj)), which implies that

E [Gq(Zj)] = E [Zj ] − E
[∫ z

0
Hq(L)dL

]

= ζj −
∫ 1

0

zτζj−1(1 − z)τ(1−ζj )−1

B(τζj, τ(1 − ζj))
dz

∫ z

0
Hq(L)dL

= ζj −
∫ 1

0
(1 − B(z; τζj, τ(1 − ζj)))Hq(z)dz

where the function B(y; a, b) is the Beta(a, b) cdf evaluated at y.6 As this expression does not
depend on any tranche division point other than ζj, we can write the cumulative capital function
as a smooth function of the cumulative nominal share ζ:

K(ζ) ≡ E [Gq(Z)|E [Z] = ζ] = ζ −
∫ 1

0
(1 − B(z; τζ, τ(1 − ζ)))Hq(z)dz (4)

Intuitively, the stochastic version of the model smooths over all possible share values Z in the
SLP model. Equation (4) embeds the SLP rule of equation (1) as a limiting case. As τ → ∞, the
beta distribution for Z becomes degenerate at ζ, so

lim
τ→∞

∫ 1

0
(1 − B(z; τζ, τ(1 − ζ)))Hq(z)dz =

∫ 1

0
1z<ζHq(z)dz =

∫ ζ

0
Hq(z)dz.

If the securitized pool is itself asymptotically fine-grained, as is a reasonable characterization
of most retail securitizations, then equation (4) has a simple analytic solution. In the asymptotic

5Here is where we need the assumption that the tranche (or set of tranches of securitizations of the same underlying
pool) constitutes a trivial share of the super-portfolio. If this is not the case, the idiosyncratic risk in S would not
be diversified away, and thus would demand capital of its own.

6The final expression is obtained using integration by parts, where the “du” part is the beta pdf and the “v” part
is the integral over Hq.
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case, Hq(z) = 1z≥E[L|xq], so

∫ ζ

0
Hq(z)dz = max{0, ζ − E [L|xq]}.

Integrating over the distribution of Z for any fixed ζ, we find

K(ζ) = ζ · B(E [L|xq] ; τζ + 1, τ(1 − ζ)) + E [L|xq] (1 − B(E [L|xq] ; τζ, τ(1 − ζ))). (5)

Note that the expression E [L|xq] is Kirb as specified in the New Basel Accord (Basel Committee
on Bank Supervision 2001).

As under the SLP case, total required capital sums to Kirb across the tranches, that is, K(1) =
E [L|xq]. In the SLP case, any tranche of a securitization of an asymptotically fine-grained pool that
is senior to the Kirb threshold requires zero capital, and any tranche of such a securitization that
is strictly junior to the Kirb threshold requires dollar-for-dollar capital. In this model, such senior
tranches always require some capital because of the possibility that the “realized” exposure of the
senior tranches exceeds 1−Kirb, and such junior tranches require less than dollar-for-dollar capital
because of the possibility that their realized exposure is less than Kirb. Thus, the extended model
unambiguously increases capital for tranches senior to Kirb, and unambiguously reduces capital for
tranches junior to Kirb. For tranches that straddle this breakpoint, the effect is ambiguous but
typically small.

Observe that τ is the only additional parameter added by this extension to the standard model.
The effect of τ is best understood by examining equation (5). As τ → ∞, uncertainty in the
division of risk vanishes, and we find

lim
τ→∞K(ζ) = ζ1E[L|xq]≥ζ + E [L|xq] (1 − 1E[L|xq]≥ζ) = min{ζ,E [L|xq]} = Gq(ζ),

which is the result of the SLP model for an asymptotic portfolio. As τ → 0, the contractual
exposure shares become less and less informative of the actual division of risk, and we find

lim
τ→0

K(ζ) = E [L|xq] ζ,

which implies a proportional sharing of Kirb across the tranches (i.e., the tranches are treated as
pari passu). Intermediate values of τ correspond to greater or lesser degrees of smoothing between
these extremes.

For less fine-grained pools, uncertainty in Z has a smaller effect. Figure 1 shows the effect
of τ and n using the model specification set forth in Section 3. The case of n = ∞ is shown in
the bottom panels. When τ = ∞, marginal capital is dollar-for-dollar up to Kirb and then zero
thereafter. Setting τ = 1000 provides a modest degree of smoothing, and much lower values of
τ a much greater degree of smoothing. For a portfolio of n = 128 (middle row of panels), which
is representative of the concentration typically seen in CDO pools, undiversified idiosyncratic risk
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is sufficient to smooth away the cliff effect at Kirb. In this case, the capital and marginal capital
curves for τ = 1000 are indistinguishable from those of τ = ∞. Uncertainty in Z has no material
effect on capital unless τ is below, say, 100. When n = 4 (upper row of panels), idiosyncratic risk
within the pool has a dominant effect on the distribution of losses across tranches, and τ must be
extremely low (on the order of 10) for uncertainty in Z to have any additional smoothing effect.

Figure 1: Effect of τ on capital and marginal capital
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2 Fitting a simple functional form to K(ζ)

Unless we restrict ourselves to analysis of securitizations of asymptotically fine-grained pools, the
conditional loss distribution Hq(z) is likely to be analytically intractable, and the solution for K(ζ)
in equation (4) requires numerical integration or simulation.7 For regulatory purposes, a simpler
and more transparent functional solution is required, even if it comes at slight expense of precision.

We define the fitting function F (·) by

F (ζ) = 1 − K ′(ζ)
K ′(0)

. (6)

This definition is useful because lets us exploit three known properties of the first derivative of
K(ζ): K ′(ζ) is nonincreasing on the unit interval, and we have K ′(1) = 0 and K ′(0) = 1−Hq(0).8

From these properties, we see that F (ζ) is nondecreasing on the unit interval and that F (0) = 0
and F (1) = 1. Thus, F behaves like a cumulative distribution function for a random variable with
support on the unit interval. Although this cdf is typically of intractable form, we might expect
that it can be closely approximation by the cdf of a simple distribution such as the beta. In this
section, we derive the mean (µ) and standard deviation (σ) of F .

To get the mean parameter, we rearrange equation (6) as K ′(ζ) = K ′(0)(1−F (ζ)), and integrate
to get

K(ζ) = K ′(0)
∫ ζ

0
(1 − F (y))dy.

At ζ = 1, we can integrate by parts to get

∫ 1

0
F (y)dy = 1 −

∫ 1

0
yf(y)dy = 1 − µ,

which implies that

µ =
K(1)
K ′(0)

=
E [L|xq]

1 − Hq(0)
. (7)

The variance of F is more challenging. By definition,

σ2 =
∫ 1

0
y2f(y)dy − µ2 =

−1
K ′(0)

∫ 1

0
y2K ′′(y)dy − µ2 (8)

7Monte Carlo simulation of K(ζ) is straightforward but computationally intensive. Since K(ζ) = E [min{Z, L}|xq ]
for Z ∼ B(τζ, τ (1 − ζ)), we need only draw a sample of {z1, . . . , zT } for Z and a sample of {`1, . . . , `T } for L (from
the Hq distribution). K(ζ) is estimated by (1/T )

P
min{zi, `i}. A fresh sample of the zi must be drawn for each

value of ζ.
8To obtain the derivative of K(ζ) at ζ = 0, note that the expression (1−B(z; τζ, τ (1−ζ))) in equation (4) behaves

like a step function at ζ in the neighborhood of ζ = 0. Therefore, its derivative with respect to ζ at ζ = 0 is the
Dirac delta function δ0(z).
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In Appendix A, we apply integration by parts to arrive at

σ2 =
1

K ′(0)

(
1 − 2

∫ 1

0
Ξτ (z)Hq(z)dz

)
− µ2 (9)

where the function Ξτ (z) is defined by

Ξτ (z) ≡
∫ 1

0
B(z; τy, τ(1 − y))dy. (10)

The Ξτ function can be understood as the unconditional cdf of a random variable Z that has
conditional distribution Z|(Y = y) ∼ Beta(τy, τ(1 − y)), where Y ∼ U [0, 1].

The difficulty remains in the integral over Ξτ (z)Hq(z). In the special case of τ = ∞ we have
Ξ∞(z) = z and the integral can be solved analytically:

∫ 1

0
Ξτ (z)Hq(z)dz =

[1

0

1
2
z2Hq(z)dz −

∫ 1

0
z2hq(z)dz

=
1
2
(1 − E

[
L2|xq

]
) =

1
2
(1 − (V[L|xq] + E [L|xq]

2))

where V[L|xq] is the conditional variance of pool loss. In this case, equation (9) simplifies to

σ2 =
1

K ′(0)
(V[L|xq] + E [L|xq]

2) − µ2. (11)

For our purposes, the limiting case of τ = ∞ is not terribly interesting because it eliminates
uncertainty in loss prioritization. The ULP model collapses back to the SLP model, and we again
have a cliff effect at Kirb when n = ∞.9 For large but finite values of τ , the Ξτ (z) function is close
to z, but the difference cannot be ignored. Figure 2 shows how Ξτ (z) varies with τ .

For finite τ , the Ξτ (z) function does not have an analytical solution. Nonetheless, as shown in
Appendix B, it can be closely approximated by

Ξ̂τ (z) = z + ξ

(
1
2
− z

)
(z(1 − z))α−1

B(α,α)
(12)

where

α =
3(τ2 + 6τ + 6)
3τ2 + 13τ + 18

and ξ =
2α + 1

3(τ + 1)
.

The approximation is exact at both τ = 0 and τ = ∞, and extremely precise at any τ in between.
For reasonably large values of τ , say τ = 100 or larger, we have α ≈ 1 and ξ ≈ 1/τ . If we

9Note that when n = ∞, we have Hq(0) = 0, so K′(0) = 1, so µ = E [L|xq ]. By the law of large numbers, we also
have V[L|xq] = 0. Thus, equation (11) yields σ2 = 0.
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Figure 2: Dependence of Ξτ (z) on τ
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impose these approximations, equation (12) simplifies to

Ξ̂τ (z) = z +
1
τ

(
1
2
− z

)
. (13)

Applying integration by parts, we find

2
∫ 1

0
Ξ̂τ (z)Hq(z)dz = 1 −

∫ 1

0

(
z2 +

1
τ
(z − z2)

)
hq(z)dz

= 1 −
(

V[L|xq] + E [L|xq]
2 +

1
τ
(E [L|xq] (1 − E [L|xq]) − V[L|xq])

)
.

This approximation leads to a closed-form solution for σ2:

σ2 =
1

K ′(0)

(
V[L|xq] + E [L|xq]

2
)
− µ2 +

1
τ

1
K ′(0)

(E [L|xq] (1 − E [L|xq]) − V[L|xq]) . (14)

The expression for σ2 has been arranged to show that it naturally decomposes into two components:
The first is the contribution of undiversified idiosyncratic risk in the underlying pool (i.e., the impact
of pool granularity), and equals the formula for σ2 when τ = ∞ (equation 11). The second is the
contribution of uncertainty in loss prioritization and is inversely proportional to τ .

From an operational point of view, equation (14) is no more complicated than equation (11).
Thus, so long as the uncertainty in loss prioritization is fairly small (i.e., so long as τ is reasonably
large), we can accurately and conveniently capture its contribution in the variance of the fitting
function.

The calculations simplify further in the special case of n = ∞, which includes most securiti-
zations of retail pools. When n = ∞, K ′(0) = 1 and V[L|xq] = 0, so we have µ = E [L|xq] and
σ2 = (1/τ)E [L|xq] (1 − E [L|xq]).

3 A Complete Specification

We thus far have not needed to specify a model for portfolio loss or to choose a cumulative distribu-
tion function to assign to the fitting function. In order to arrive at an implementable formulation,
we now complete our specification.

We assume that the securitized pool is homogeneous and that the conditional loss distribution
Hq comes from a single-factor default-mode model with idiosyncratic recovery risk. This implies
that the number of defaults in a portfolio of n loans is distributed Binomial(pq , n), where pq is
the conditional probability (given X = xq) of default for a single loan in the pool. If LGD for a
single default has a continuous distribution, then Hq is continuous on unit interval support, except
that there is probability mass at L = 0. The probability of zero loss is the probability that every
borrower performs, so Hq(0) = (1− pq)n. If LGD has mean ELGD and standard deviation VLGD,
then the mean and variance of the conditional loss distribution are given by E [L|xq] = ELGD · pq

11



and

V[L|xq] =
1
n

(
ELGD2pq(1 − pq) + pqVLGD2

)
(15)

To retain consistency with the IRB treatment of whole loans, we adopt the CreditMetrics
model of obligor dependence and LGD volatility. That is, we assume that X has standard normal
distribution, that the conditional probability of default is given by

pq = Φ
(

Φ−1(PD) + Φ−1(q)
√

ρ√
1 − ρ

)
(16)

where Φ is the standard normal cdf and ρ is the correlation in asset returns (see Gordy (2000) for a
derivation of pq from the CreditMetrics model). Loss rates given default are drawn as independent
beta random variables. Following the convention in CreditMetrics and KMV Portfolio Manager,
we assume the variance of loss given default is given by

VLGD2 = γ · ELGD · (1 − ELGD) (17)

where γ is a parameter in [0, 1]. Special cases include γ = 0, which corresponds to fixed LGD rates
(no recovery risk), and γ = 1, which arises when LGD is distributed Bernoulli (i.e., 100% LGD
with probability ELGD, zero LGD otherwise).

A variety of two-parameter distributions for approximating the fitting function would lead to
a closed-form solution for the capital function. The beta distribution would be a natural choice
given its unit interval support, and we have found that it provides excellent fit as well under a wide
range of parameter values.10 Let θ be the precision of F defined by

θ ≡ µ(1 − µ)
σ2

− 1.

The parameter θ measures the precision of F in the same manner as τ measures the precision of
the distribution for tranche cutoff Z.

To distinguish between the “true” fitting function, which is of intractable form, and our ap-
proximation based on the beta cdf, let F̂ denote the approximation. Similarly, let K̂ denote the
approximation implied by F̂ to the true K function. The solution to K̂(ζ) is given by

K̂(ζ) =
∫ ζ

0
K̂ ′(y)dy = K ′(0)

∫ ζ

0
(1 − F̂ (y))dy

= (1 − Hq(0)) · (ζ · (1 − B(ζ; θµ, θ(1− µ))) + µ · B(ζ; θµ + 1, θ(1 − µ))) . (18)
10If we ignore the upper bound on loss at ζ = 1, then the gamma and lognormal distributions also are reasonable

choices and yield closed-form K(ζ). However, the beta provides much the best fit overall.
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Note that when n = ∞, we have θ = τ − 1 and K̂(ζ) simplifies to

K̂(ζ) = ζ · (1 − B(ζ; (τ − 1)Kirb, (τ − 1)(1 − Kirb)))

+ Kirb · B(ζ; (τ − 1)Kirb + 1, (τ − 1)(1 − Kirb)). (19)

We have examined the robustness of our fitted K̂(ζ) to the “true” K(ζ) given by equation (4).
For each combination of parameters (n,PD,LGD, ρ, τ), we calculate the theoretical K function by
Monte Carlo and the fitted K̂ function by equation (18). Throughout the exercise, we fix constant
the VaR target quantile q at 0.999, and set the recovery risk parameter to γ = 0.25. We then
measure the relative root-mean-squared-error as

RMSE =
1

Kirb

√∫ 1

0

(
K(ζ) − K̂(ζ)

)2
dζ.

We performed these calculations for each combination of

n ∈ {1, 4, 16, 64, 256,∞}
PD ∈ {0.1, 0.2, 0.5, 1, 2, 4, 6, 10, 15} (in percentage points)

LGD ∈ {0.05, 0.20, 0.35, 0.5, 0.65, 0.8, 0.95}
ρ ∈ {0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32} (asset correlation), and

τ ∈ {100, 200, 400, 600, 800, 1000, 1600, 3200}.

In total, this exercise covered 24,192 parameter combinations.
We find that the fitted K̂ function performs extremely well nearly everywhere in the parameter

space. The only exception arises when the pool is comprised of a single loan to an investment
grade borrower with expected LGD of 5% and asset-correlation under 12%. In this case, relative
RMSE reaches as high as 10.3% of Kirb. For loans with very low PD and very low expected LGD,
simulation noise is of large relative magnitude, so the high RMSE may be due in part to error
in estimating K rather than in K̂. Furthermore, Kirb is always quite small in these cases (under
0.005), so a fitting error of 10% has a negligible impact on absolute capital requirements. Perhaps
most importantly, this peculiar combination of parameters does not arise under the proposed New
Basel Accord. Low PD borrowers cannot be assigned low asset-correlations unless they are retail
or small corporate borrowers, in which case the loans are invariably far too small to comprise an
entire securitized pool.

Excluding the exceptional case, the median relative RMSE is 0.15%. That is, at the median,
root-mean-squared error is less than one-sixth of one percent of Kirb for the parameter combination.
The maximum relative RMSE is under 5.5% of Kirb. The performance of the fitting function is
shown in Figure 3 for four very different underlying pools. Kirb varies across these examples by a
factor of six, and n varies from one to infinity, yet in each case the fit is excellent. Indeed, in the
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bottom two panels, it is impossible to distinguish the two curves. Figure 4 shows the Monte Carlo
and fitted marginal capital curves (K ′(ζ)) for the same four examples. The simulations produce
somewhat jagged estimates of marginal capital, so the fitted function may indeed provide the more
accurate curve.

Figure 3: Performance of fitted K̂(ζ)
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Note: Monte Carlo K(ζ) and fitted K̂(ζ) are plotted with a solid line and a dashed line, respectively. In each
panel, we set τ = 1000.

4 Application to Regulatory Capital Treatment

The ULP capital charge implied by equation (18) on a tranche with credit enhancement level ζ

and thickness T is (K̂(ζ + T ) − K̂(ζ))/T per dollar of tranche par value. The calculations make
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Figure 4: Performance of fitted marginal capital
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use of a number of intermediate quantities, such as Kirb, that depend ultimately on the underlying
pool parameters n, PD, ELGD and asset-correlation ρ, as well as on regulatory parameters τ and
γ. Further simplification can be obtained by noting that PD and ρ enter the calculations only via
pq, and that pq = Kirb/ELGD. Thus, a sufficient set of pool parameters is n, Kirb and ELGD.
These are the pool-level inputs to the K function in the Basel Committee’s (2002) Second Working
Paper on Securitisation. In Appendix C, we show how the ULP model (equation (18) specifically)
is embedded in the proposed Supervisory Formula Approach.

As a practical matter, parameterization of the ULP in terms of Kirb compensates for some of
the limitations of the model’s default-mode notion of credit loss.11 Strictly speaking, the model
assumes that the underlying assets are of one-year maturity. If the pool were of longer maturity,
there would be no mechanism in the model for recognition of economic losses in the pool due to
rating migrations short of default. Absence of arbitrage implies that economic losses in the pool
must be equaled by the sum of economic losses to the tranches.12 Under the IRBA, capital charges
for the underlying pool incorporate maturity effects, so parameterization in terms of Kirb may be
more robust than parameterization in terms of PD and ρ.

In a similar vein, the model also assumes that the pool contains only simple whole loans or
bonds. In practice, it is now not uncommon for securitized pools to include, for example, tranches
of other securitizations. Modeling the performance of such pool assets requires more than the
simple CreditMetrics-based function of PD, ELGD and asset-correlation. However, Kirb can be
obtained for a wide variety of assets, so we can avoid the hazardous task of assigning PD and
asset-correlation parameters to complex asset types.13

By parameterizing the ULP model in terms of the Kirb of the underlying pool, we at least
impose the appropriate total economic capital requirement on the securitization as a whole. An
open question, and topic of ongoing research, is whether this convenient approach to extending
the applicability of the model can lead to significant misallocation of economic capital across the
tranches.

11Pykhtin and Dev’s (2002, forthcoming) model suffers from the same limitations.
12Much as a decline in the asset value of a firm will be spread among shareholders and bondholders, a decline in

the value of the pool will not be allocated by strict prioritization, but rather will be spread to some degree across all
tranches.

13The problem of assigning ELGD remains, but the effect of this parameter is of secondary order when Kirb is held
fixed. Setting ELGD to 0.5 maximizes VLGD, and so yields a conservative treatment.
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A Variance of the fitting function

In order to obtain the variance σ2 of the fitting function, we need to solve the integral
∫ 1
0 y2K ′′(y)dy.

We apply integration-by-parts twice:

∫ 1

0
y2K ′′(y)dy =

[1

0
y2K ′(y) − 2

∫ 1

0
yK ′(y)dy

= (0 − 0) − 2
([1

0
yK(y) −

∫ 1

0
K(y)dy

)

= −2
(

K(1) −
∫ 1

0
K(y)dy

)
.

Drawing on equation (4) and again integrating by parts, we get

∫ 1

0
K(y)dy =

∫ 1

0

(
y −

∫ 1

0
(1 − B(z; τy, τ(1 − y)))Hq(z)dz

)

=
1
2
−

∫ 1

0
Hq(z)dz +

∫ 1

0
B(z; τy, τ(1 − y))Hq(z)dz

=
1
2
− (1 − K(1)) +

∫ 1

0

(∫ 1

0
B(z; τy, τ(1 − y))dy

)
Hq(z)dz

= K(1) −
(

1
2
−

∫ 1

0
Ξτ (z)Hq(z)dz

)

We combine these results are substitute into equation (8) to get equation (9).

B Approximation of Ξτ (z)

In order to obtain a reasonably simple expression for the variance of the fitting function, we need
to be able to provide a simple approximation to the function Ξτ (z) defined by

Ξτ (z) ≡
∫ 1

0
B(z; τy, τ(1 − y))dy. (20)

This function itself does not have a tractable analytical solution, except at τ = 0 and τ = ∞. For
all z ∈ (0, 1) and y ∈ (0, 1), we have limτ→0 B(z; τy, τ(1 − y)) = 1

2 , so Ξ0(z) = 1/2. We also have
limτ→∞ B(z; τy, τ(1− y)) = 1z≥y, which implies Ξ∞(z) = z. It is desirable that our approximation
to Ξτ take on the same limiting forms.

For positive finite τ , Ξτ (z) weaves around the 45◦ line in a regular symmetric pattern. As shown
in Figure 5, the function Ξτ (z) − z starts at zero, rises sharply, levels off quickly, then becomes
linear with negative slope and hits zero at z = 1/2. The pattern above z = 1/2 is the mirror image
of the pattern below z = 1/2; i.e., the function displays rotational symmetry around z = 1/2.

A simple function that displays the same properties is (1/2 − z)(z(1 − z))(α−1) for α ≥ 1.
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Figure 5: Cyclical component of Ξτ (z)
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Therefore, we propose to approximate Ξτ (z) by

Ξ̂τ (z) ≡ z + ξ

(
1
2
− z

)
(z(1 − z))α−1

B(α,α)
, (21)

where the coefficients ξ and α are functions of τ .14 As noted in Section 2, Ξτ (z) can be treated as
a cdf of a random variable on the unit interval. The approximation Ξ̂τ (z) equals zero at z = 0, one
at z = 1, and is increasing in between, so also can be treated as a cdf on the unit interval. In each
case, the “mean” is 1/2. We solve for coefficients ξ and α such that the second and fourth moments
of these distributions match. (Due to the rotational symmetry of Ξ and Ξ̂, the third moments add
no new information.)

As Ξτ is a compounded beta distribution, its moments are easily obtained. The jth uncentered
moment is given by

λj ≡ 1
(τ)j

∫ 1

0
(τy)jdy

where (a)k is Pochhammer’s notation, i.e., (a)0 =1, (a)1 =a, (a)k =(a)k−1(a+ k− 1). The function
(τy)j is merely a jth order polynomial in y, so λj has a simple closed form solution for any j.

The corresponding moments for Ξ̂τ also have closed-form solution:

λ̂j ≡ 1
j + 1

+ ξ
j(j − 1)

2
(α)j−1

(2α)j
.

We set λj = λ̂j for j = 2 and j = 4, and solve for ξ and α:

α =
3(τ2 + 6τ + 6)
3τ2 + 13τ + 18

and ξ =
2α + 1

3(τ + 1)
.

The approximation is extraordinarily precise over the entire range of τ values. In the four
panels of Figure 6, we plot Ξτ (z)−z and Ξ̂τ (z)−z for τ = (1, 8, 64, 512). Subtracting out the linear
component serves to heighten the visual differences between Ξ and our approximation, yet in each
case the fit is nearly perfect. The approximation also satisfies the desired limiting behavior. When
τ = 0, α = ξ = 1, so Ξ̂τ (z) = 1/2. When τ = ∞, ξ = 0 and α = 1, so Ξ̂τ (z) = z.

In Section 3, it is suggested that for reasonably large values of τ , we can obtain a highly tractable
form for σ2 if we approximate α = 1 and ξ = 1/τ . Figure 7 shows how α and ξ vary with τ . In the
upper panel, we see that α(τ) is nonlinear for low values of τ , but asymptotes to one as τ heads
towards infinity (note the log-scale on the τ axis). In the lower panel, we see that ξ(τ) converges
quite closely to 1/τ by τ = 100 (log-scale on both axes).

14Weighting (z(1 − z))α−1 by the beta function is natural as it transforms the last piece of Ξ̂τ into a beta pdf.
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Figure 6: Cyclical components of Ξτ (z) and Ξ̂τ (z)
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Figure 7: Coefficients α and ξ as functions of τ
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C The function K[L] in the Supervisory Formula Approach

The proposed Supervisory Formula Approach (“SFA”) specifies capital for a tranche of credit
enhancement level L and thickness T as (S[L+T ]−S[L]) times the notional size of the underlying
pool. The function S[L] is based on another function K[L] plus certain supervisory overrides (i.e.,
dollar-for-dollar capital up to Kirb and a floor level of marginal capital). In this appendix, we show
how the function K[L] is grounded in the ULP model.

In the Second Working Paper on Securitisation (Basel Committee on Bank Supervision 2002,
Annex 3, ¶574), the function K[L] is specified as

K[L] = (1 − h) · ((1 − Beta[L; a, b])L + Beta[L; a, b]c) (22)

where

h = (1 − Kirb/LGD)N

c = Kirb/(1 − h)

ν =
1
N

((LGD − Kirb)Kirb + 0.25(1 − LGD)Kirb)

f =
(

ν + K2
irb

1 − h
− c2

)
+

(1 − Kirb)Kirb − ν

(1 − h)τ

g =
(1 − c)c

f
− 1

a = g · c
b = g · (1 − c).

Some translation of notation is needed. The SFA credit enhancement level L is represented as ζ

in this paper. The SFA effective number of loans N is here denoted n, and the SFA expected loss
given default LGD is denoted ELGD in this paper. The beta cumulative distribution function
(Beta in equation 22) is the function B(ζ; ·, ·).

The SFA parameters h and c correspond to Hq(0) and µ, respectively. When recovery risk is
assumed to be idiosyncratic to the obligor, we have Kirb = ELGD ·pq. Therefore, if Kirb and ELGD
are observed, we can set pq = Kirb/ELGD. In a default-mode setting, Hq(0) = (1 − pq)n. Thus, in
terms of the SFA notation, we have h = (1−Kirb/LGD)N . By equation (7), µ = E [L|xq] /(1−Hq(0).
As Kirb = E [L|xq], we have c = Kirb/(1 − h) in the SFA notation.

The SFA parameter ν is equal to V[L|xq] as given in equation (15). If we apply the assumed
functional form in equation (17) for VLGD, we can reorder terms to get

V[L|xq] =
1
n

ELGD · pq · ((ELGD − ELGD · pq) + γ(1 − ELGD)) .

Substitute Kirb for ELGD · pq and set γ = 0.25 to get the SFA ν. By a similar sequence of
substitutions, we can show that the SFA parameter f is our σ as given by equation (14). Finally,
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SFA parameters g, a and b correspond in a straightforward manner to θ, θµ and θ(1−µ), respectively.
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