
Online Appendix to “Mortgage Risk and the Yield Curve”

This online appendix contains all the proofs omitted in the main part of the paper and some ad-
ditional empirical robustness results. Appendix C.1 provides some preliminary results needed
for the proofs given in Appendix C.2. Appendix C.3 provides an extension of our baseline
model that jointly prices nominal and real bonds. Appendix C.4 outlines a model with time-
varying convexity. Appendix D provides some additional robustness checks for our empirical
analysis.

Appendix C Proofs and model extensions

Appendix C.1 Preliminary results

Appendix C.1.1 Properties of useful functions

This appendix introduces three functions necessary to derive our main results and studies their
properties.

Lemma 2. For any τ > 0, the function F (x) ≡ 1−e−xτ

xτ
for all x 6= 0 and F (0) ≡ 1 is positive,

decreasing, and convex for all x ∈ R. Moreover, for arbitrary x, y ∈ R, x 6= y,

1− e−xτ

xτ
−

1− e−xτ − xτe−xτ

x2τ
(y − x) <

1− e−yτ

yτ
. (A-1)

Proof. The derivative of F is given by

F ′ (x) = −
1− e−xτ − xτe−xτ

x2τ
, (A-2)

which has the opposite sign as F1 (x) ≡ 1 − e−xτ − xτe−xτ . But limx→0 F1 (x) = 0, and
F ′
1 (x) = xτ2e−xτ , which is negative for x < 0 and positive for x > 0. Hence, F1 (x) ≥ 0 for all

x ∈ R, and F ′ (x) ≤ 0 for all x ∈ R; F is a decreasing function. However, the limit of F when
x → ∞ is limx→∞ F (x) = 0. Since F is a decreasing function and it converges to zero when
x → ∞, it must be that F (x) > 0 for all x ∈ R.

Regarding convexity, (A-2) implies

F ′′ (x) =
2e−xτ

x3τ

[

exτ −

(

1 + xτ +
x2τ2

2

)]

,

but 1 + z + z2

2 are the first three terms of the power series of ez , and it is well-known that

1 + z + z2

2 < ez for z > 0 and 1 + z + x2

2 > ez for z < 0. Therefore, F ′′ (x) > 0 and thus F is
convex.

Finally, convexity of F is equivalent to the function lying above all of its tangents. From
(A-2), (A-1) is describing exactly this inequality for the point of tangency x and an arbitrary
y: F (x) + F ′ (x) (y − x) < F (y).

Lemma 3. For any τ > 0, the function

G (x, y) ≡
F (x)− F (y)

x− y
=

1−e−xτ

xτ
− 1−e−yτ

yτ

x− y
, (A-3)
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x, y ∈ R, is symmetric, negative, and increasing in both arguments. Moreover, if x < x′ < y′ <
y while x+ y = x′ + y′, G (x, y) < G (x′, y′).

Proof. Lemma 2 implies that the numerator of G is positive if and only if x < y, hence
G (x, y) < 0 for all x, y ∈ R. Symmetry, i.e. G (x, y) = G (y, x), is obvious, and thus for G
being increasing, we only need to show that ∂G

∂x
> 0 for a fixed y. Differentiating (A-3) w.r.t.

x, we have

∂G

∂x
= −

1

(x− y)2

[

1− e−xτ

xτ
−

1− e−xτ − xτe−xτ

x2τ
(y − x)−

1− e−yτ

yτ

]

.

Lemma 2 also implies that the term inside the bracket is negative, and hence G is increasing
in x and y. Moreover, for an arbitrary constant y we have limx→∞G (x, y) = 0, so if G is
increasing in x, it must be that for all x, y ∈ R, G (x, y) < 0.

Notice that the last claim of the Lemma is equivalent to showing that fixing z ≡
x+y
2 ,

G (x, y) = G (x, 2z − x) is increasing in x whenever x < z. Differentiating with respect to x
we obtain

dG (x, 2z − x)

dx
=

d

dx

F (x)− F (2z − x)

x− (2z − x)
=

[F ′ (x) + F ′ (2z − x)] (x− z)− [F (x)− F (2z − x)]

2 (x− z)2

=
2

y − x

[

F (y)− F (x)

y − x
−

F ′ (x) + F ′ (y)

2

]

,

where in the last equality we substituted y back. Therefore, G (x, 2z − x) is increasing in x if
and only if

F (y)− F (x)

y − x
−

F ′ (x) + F ′ (y)

2
> 0 (A-4)

for all x < y. Since F is twice differentiable everywhere (see Lemma 2), we can write

F (y)− F (x) =

y
∫

x

F ′ (t) dt =

y
∫

x



F ′ (x) +

t
∫

x

F ′′ (w) dw



 dt = F ′ (x) (y − x) +

y
∫

x

t
∫

x

F ′′ (w) dwdt

= F ′ (x) (y − x) +

y
∫

x

y
∫

w

F ′′ (w) dtdw = F ′ (x) (y − x) +

y
∫

x

F ′′ (w) (y − w) dw, (A-5)

where the fourth equality is an application of Fubini’s theorem. From Lemma 2 we know
F ′′ (x) > 0 for all x ∈ R; moreover, the third derivative of F is simply

F ′′′ (x) =
dF ′′ (x)

dx
= −

6e−xτ

x4τ

[

exτ −

(

1 + xτ +
x2τ2

2
+

x3τ3

6

)]

< 0 (A-6)

for all x ∈ R, thus F ′′ (x) is a positive decreasing function. Therefore, we can write

y
∫

x

F ′′ (w) (y − w) dw >

y
∫

x

F ′′ (x) (y −w) dw = F ′′ (x)

y
∫

x

(y −w) dw = F ′′ (x)
(y − x)2

2
. (A-7)
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Combining (A-5) and (A-7), we obtain

F (y)− F (x)

y − x
−

F ′ (x) + F ′ (y)

2
=

1

y − x



F ′ (x) (y − x) +

y
∫

x

F ′′ (w) (y − w) dw



 −
F ′ (x) + F ′ (y)

2

>
1

y − x

[

F ′ (x) (y − x) + F ′′ (x)
(y − x)2

2

]

−
F ′ (x) + F ′ (y)

2
=

1

2

[

F ′ (x) + F ′′ (x) (y − x)− F ′ (y)
]

.

But (A-6) also means that F ′ is a concave function, i.e., it lies below all its tangents. Therefore,
F ′ (x)+F ′′ (x) (y − x)−F ′ (y) > 0, which implies (A-4) and concludes the proof of the lemma.

Lemma 4. Fix τ > 0. The function

H (x, y) =
1− e−xτ

x
+

x (y − x)

y

(

−
1− e−xτ − xτe−xτ

x2

)

−
1− e−yτ

y
, (A-8)

x, y ∈ R+, satisfies H (x, y) = 0 if x = y and H (x, y) > 0 whenever x 6= y.

Proof. If x = y, the first and last terms of H are equivalent and the middle one is zero, hence
H (x, y) = 0. Next we differentiate H with respect to y while keeping x fixed to obtain

dH (x, y)

dy
=

(1− e−yτ − yτe−yτ )− (1− e−xτ − xτe−xτ )

y2
=

F1 (y)− F1 (x)

y2
,

where F1 is defined in the proof of Lemma 2. As shown there, F1 is increasing on R+, so
0 < x < y implies the numerator is positive and thus dH(x,y)

dy
> 0. On the other hand,

0 < y < x implies the numerator is negative and dH(x,y)
dy

< 0. Therefore, H is decreasing in y
before x, reaches zero, then increasing, i.e., is positive for all y 6= x.

Appendix C.1.2 Covariance and autocovariance of D and r

In this appendix we derive the unconditional variance-covariance matrix and the autocovariance
of (Dt, rt)

⊤ under P from (1) and (11). Following the standard technique, applying Itô’s lemma
to eκtrt and combining it with (1), we obtain

d
(

eκtrt
)

=
[

κeκtrt + eκtκ (θ − rt)
]

dt+ eκtσdBt = eκtκθdt+ eκtσdBt.

Integrating both sides between t and s > t, and rearranging gives

rs = θ
(

1− e−κ(s−t)
)

+ rte
−κ(s−t) + σe−κ(s−t)

s
∫

t

eκ(v−t)dBv. (A-9)

Next we want to obtain a similar form for duration. Defining

D̄t = Dt +
δr

δD − κ
rt, (A-10)

we have

dD̄t = dDt +
δr

δD − κ
drt = δD

(

θ̄D − D̄t

)

dt+ σ̄DdBt,
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where in the last step we use (15) and introduce the notation

θ̄D = θD +
δr

δD − κ
θ and σ̄D = ηyσ

τ̄
y +

δr
δD − κ

σ = δD
ηyσ

τ̄
y

δD − κ
=

δD
δD − κ

δrσ

κ
.

That is, D̄t is a Vasicek process with a speed of mean reversion δD. Applying the same steps
as for the short rate, we obtain

D̄s = θ̄D

(

1− e−δD(s−t)
)

+ D̄te
−δD(s−t) + σ̄De

−δD(s−t)

s
∫

t

eδD(v−t)dBv, (A-11)

where, importantly, the Brownian increments dBv are the same as in (A-9).

In what follows, from (A-9) and (A-11) we compute conditional variances and covariances
of our random variables. From (A-9), we have

V art [rs] = σ2e−2κsEt









s
∫

t

eκvdBv





2

 = σ2e−2κs

s
∫

t

e2κvdv =
σ2

2κ

(

1− e−2κ(s−t)
)

, (A-12)

where we use that dBv ∼ N (0, dv) i.i.d. over time. Similarly, from (A-11) we obtain

V art
[

D̄s

]

= σ̄2
De

−2δDsEt









s
∫

t

eδDvdBv





2

 = σ̄2
De

−2δDs

s
∫

t

e2δDvdv =
σ̄2
D

2δD

(

1− e−2δD(s−t)
)

.

(A-13)
Finally, for the covariance, we have

Covt
[

rs, D̄s

]

= σσ̄De
−(κ+δD)sEt





s
∫

t

eκvdBv

s
∫

t

eδDvdBv



 (A-14)

= σσ̄De
−(κ+δD)s

s
∫

t

e(κ+δD)vdv =
σσ̄D

κ+ δD

(

1− e−(κ+δD)(s−t)
)

.

From (A-10), (A-12), and (A-14) we get

Covt [rs,Ds] = Covt
[

rs, D̄s

]

−
δr

δD − κ
V art [rs] (A-15)

=
σσ̄D

κ+ δD

(

1− e−(κ+δD)(s−t)
)

−
δr

δD − κ

σ2

2κ

(

1− e−2κ(s−t)
)

,

and (A-10), (A-12), (A-13), and (A-15) together yield

V art [Ds] = V art
[

D̄s

]

− 2
δr

δD − κ
Covt [rs,Ds]−

(

δr
δD − κ

)2

V art [rs] =
σ̄2
D

2δD

(

1− e−2δD(s−t)
)

− 2
δr

δD − κ

σσ̄D
κ+ δD

(

1− e−(κ+δD)(s−t)
)

+

(

δr
δD − κ

)2 σ2

2κ

(

1− e−2κ(s−t)
)

. (A-16)

53



A notable special case that we use to determine the coefficients of the predictive regressions
is the unconditional variance-covariance matrix of (Dt, rt)

⊤. Taking the limit (s− t) → ∞ in
(A-12), (A-15), and (A-16) yields

V =

(

δ2rσ
2

2κ2(κ+δD)
δrσ

2

2κ(κ+δD)
δrσ

2

2κ(κ+δD)
σ2

2κ

)

, (A-17)

implying that in general when δD 6= 0 the two factors are not collinear.

Finally, to obtain the unconditional covariance between variables at t and s > t, using
(A-10)-(A-11) we write

Cov [Dt,Ds] = Cov
[

Dt, D̄s

]

−
δr

δD − κ
Cov [Dt, rs] =

(

V ar [Dt] +
δr

δD − κ
Cov [Dt, rt]

)

e−δD(s−t)

−
δr

δD − κ
e−κ(s−t)Cov [Dt, rt] =

δ2rσ
2

2κ2 (κ+ δD)

δDe
−δD(s−t) − κe−κ(s−t)

δD − κ
(A-18)

and

Cov [rt,Ds] = Cov
[

rt, D̄s

]

−
δr

δD − κ
Cov [rt, rs] =

(

Cov [rt,Dt] +
δr

δD − κ
V ar [rt]

)

e−δD(s−t)

−
δr

δD − κ
e−κ(s−t)V ar [rt] =

δrσ
2

2κ (κ+ δD)

2δDe
−δD(s−t) − (κ+ δD) e

−κ(s−t)

δD − κ
. (A-19)

Appendix C.1.3 Covariance matrix of D, r and r*

For our extended model, presented in Appendix C.3, we also extend the above result to the
variance-covariance matrix of (Dt, rt, r

∗
t )

⊤ under P from (1), (11), and (18). Similarly to (A-9),
we get

r∗s = θ∗
(

1− e−κ∗(s−t)
)

+ r∗t e
−κ∗(s−t) + σ∗e−κ∗s

s
∫

t

eκ
∗vdB∗

v . (A-20)

From here, we obtain the conditional variance

V art [r
∗
s ] = (σ∗)2 e−2κ∗sEt









s
∫

t

eκ
∗vdB∗

v





2

 = (σ∗)2 e−2κ∗s

s
∫

t

e2κ
∗vdv =

(σ∗)2

2κ∗

(

1− e−2κ∗(s−t)
)

.

(A-21)
Next, (A-9) and (A-20), together with dBtdB

∗
t = ρdt, imply

Covt [rs, r
∗
s ] = σσ∗e−(κ+κ∗)sE0





s
∫

t

eκvdBv

s
∫

t

eκ
∗vdB∗

v



 = ρσσ∗e−(κ+κ∗)s

s
∫

t

e(κ+κ∗)vdv

=
ρσσ∗

κ+ κ∗

(

1− e−(κ+κ∗)(s−t)
)

. (A-22)
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Finally, from (A-11) and (A-20), we get

Covt
[

D̄s, r
∗
s

]

= σ̄Dσ
∗e−(κ∗+δD)sEt





s
∫

t

eδDvdBv

s
∫

t

eκ
∗vdB∗

v



 (A-23)

= ρσ̄Dσ
∗e−(κ∗+δD)s

s
∫

t

e(κ
∗+δD)vdv =

ρσ̄Dσ
∗

κ∗ + δD

(

1− e−(κ∗+δD)(s−t)
)

.

Using (A-11) and (A-22), (A-23) then implies

Covt [Ds, r
∗
s ] =

ρσ̄Dσ
∗

κ∗ + δD

(

1− e−(κ∗+δD)(s−t)
)

−
δr

δD − κ

ρσσ∗

κ+ κ∗

(

1− e−(κ+κ∗)(s−t)
)

(A-24)

=
ρσσ∗δr

κ (δD − κ)

[

δD
κ∗ + δD

(

1− e−(κ∗+δD)(s−t)
)

−
κ

κ+ κ∗

(

1− e−(κ+κ∗)(s−t)
)

]

,

where in the second step we use (15) and the definition of σ̄D. After taking the limit
(s− t) → ∞, we can combine the above results with (A-17) to obtain the unconditional
variance-covariance matrix of (Dt, rt, r

∗
t )

⊤:

V ∗ =









δ2rσ
2

2κ2(κ+δD)
δrσ

2

2κ(κ+δD)
ρκ∗σ∗

(κ+κ∗)
δrσ

κ(κ∗+δD)
δrσ

2

2κ(κ+δD)
σ2

2κ
ρσσ∗

κ+κ∗

ρκ∗σ∗

(κ+κ∗)
δrσ

κ(κ∗+δD)
ρσσ∗

κ+κ∗

(σ∗)2

2κ∗









. (A-25)

Finally, to obtain the unconditional covariance between r∗t and Ds, we write

Cov [r∗t ,Ds] = Cov
[

r∗t , D̄s

]

−
δr

δD − κ
Cov [r∗t , rs] =

(

Cov [r∗t ,Dt] +
δr

δD − κ
Cov [r∗t , rt]

)

e−δD(s−t)

−
δr

δD − κ
e−κ(s−t)Cov [r∗t , rt] =

δrρσσ
∗

κ (δD − κ)

(

δDe
−δD(s−t)

κ∗ + δD
−

κe−κ(s−t)

κ+ κ∗

)

.

Appendix C.2 Proofs and derivations

Proof of Lemma 1. For notational simplicity let us write bond prices in the form

dΛτ
t

Λτ
t

= µτ
t dt− στ

t dBt. (A-26)

Substituting (A-26) into intermediaries’ budget constraint, (2), we get

dWt =

[

rtWt +

∫ T

0
xτtΛ

τ
t (µ

τ
t − rt) dτ

]

dt−

[∫ T

0
xτtΛ

τ
t σ

τ
t dτ

]

dBt,

therefore (3) simplifies to

max
{xτ

t }τ∈(0,T ]

∫ T

0
xτtΛ

τ
t (µ

τ
t − rt) dτ −

α

2

[
∫ T

0
xτtΛ

τ
t σ

τ
t dτ

]2

. (A-27)
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Because markets are complete, by no-arbitrage, there exists a unique market price of interest
rate risk across all bonds that satisfies

λt =
Et

(

dΛτ
t

Λτ
t

)

/dt− rt

1
Λτ
t

dΛτ
t

drt
σ

=
µτ
t − rt
−στ

t

, (A-28)

and introducing

xt =
d
(

∫ T

0 xτtΛ
τ
t dτ
)

drt
=

T
∫

0

xτt
dΛτ

t

drt
dτ = −

1

σ

T
∫

0

xτtΛ
τ
t σ

τ
t dτ , (A-29)

for the total exposure of interest rate risk borne by intermediaries, their maximization problem
(A-27) reduces to

max
xt

λtxt −
ασ

2
x2t . (A-30)

The first order condition of (A-30) together with the market clearing condition (4) determine
the equilibrium market price of risk and provides (5).

Proof of Theorem 1. We conjecture that equilibrium yields in the model defined by (12) and
(13) are in the form (14), i.e., bond prices are

Λτ
t = e−[τA(τ)+τB(τ)rt+τC(τ)Dt]. (A-31)

Applying Itô’s Lemma to (A-31), substituting in (12) and (13), and imposing the condition
that the bond price drift under Q must be rtΛ

τ
t dt, we obtain an equation affine in the factors

rt and Dt. Collecting the rt, Dt, and constant terms, respectively, we get a set of ODEs:

1 = τB′ (τ) + B (τ) + κτB (τ) + δrτC (τ) , (A-32)

0 = τC′ (τ) + C (τ) + δQDτC (τ)− ασστ̄
y τB (τ) , and (A-33)

0 = τA′ (τ) +A (τ)− κθτB (τ)− δ0τC (τ) +
1

2
σ2τ2B2 (τ) +

1

2
η2y
(

στ̄
y

)2
τ2C (τ)2 , (A-34)

with terminal conditions A (0) = C (0) = 0 and B (0) = 1. Combining (A-32) and (A-33), we
write the following second order ODE for C:

0 = τC′′ (τ) + 2C′ (τ) +
(

κ+ δQD

)

(

τC′ (τ) + C (τ)
)

+
(

κδQD + ασστ̄
y δr

)

τC (τ)− ασστ̄
y . (A-35)

Solving (A-35) for C, from there deriving B and A, and applying the terminal conditions, yields
the following solution:

C (τ) = −
ασστ̄

y

(κ+ ε)−
(

δQD − ε
)





1− e−(κ+ε)τ

(κ+ ε) τ
−

1− e−(δ
Q
D
−ε)τ

(

δQD − ε
)

τ



 , (A-36)

B (τ) =
1− e−(κ+ε)τ

(κ+ ε) τ
−

ε

(κ+ ε)−
(

δQD − ε
)





1− e−(κ+ε)τ

(κ+ ε) τ
−

1− e−(δ
Q

D
−ε)τ

(

δQD − ε
)

τ



 , (A-37)
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and

A (τ) =
1

(κ+ ε)



κθ
(κ+ ε)− δQD

(κ+ ε)−
(

δQD − ε
) − δ0

ασστ̄
y

(κ+ ε)−
(

δQD − ε
)



ω ((κ+ ε) τ) (A-38)

+
1

(

δQD − ε
)



κθ
ε

(κ+ ε)−
(

δQD − ε
) + δ0

ασστ̄
y

(κ+ ε)−
(

δQD − ε
)



ω
((

δQD − ε
)

τ
)

+
1

2
σ2

[

(κ+ ε)− δQD

]2
+
[

αηy
(

στ̄
y

)2
]2

(κ+ ε)2
[

(κ+ ε)−
(

δQD − ε
)]2

[

1

2
ω (2 (κ+ ε) τ)− ω ((κ+ ε) τ)

]

+
1

2
σ2

ε2 +
[

αηy
(

στ̄
y

)2
]2

(

δQD − ε
)2 [

(κ+ ε)−
(

δQD − ε
)]2

[

1

2
ω
(

2
(

δQD − ε
)

τ
)

− ω
((

δQD − ε
)

τ
)

]

+ σ2

[

(κ+ ε)− δQD

]

ε−
[

αηy
(

στ̄
y

)2
]2

(κ+ ε)
(

δQD − ε
) [

(κ+ ε)−
(

δQD − ε
)]2

[

ω
((

κ+ δQD

)

τ
)

− ω ((κ+ ε) τ)− ω
((

δQD − ε
)

τ
)]

,

where the function ω (.) is defined as ω (x) = 1− 1−e−x

x
for all x 6= 0 and ω (0) = 0, and where

ε =
δQD − κ−

√

(

δQD − κ
)2

− 4ασστ̄
y δr

2
(A-39)

as long as it exists, i.e., the determinant is positive.

Next we pin down the endogenous parameters of the model. First, from (1), (11), and (14)
the volatility of the reference yield has to solve

στ̄
y = B (τ̄)σ + C (τ̄) ηyσ

τ̄
y . (A-40)

Moreover, again from (14), we have

dyτ̄t = B (τ̄) drt + C (τ̄) dDt. (A-41)

Plugging (A-41) into (11) and using (1), we get

dDt = κD (θD −Dt) dt+ B (τ̄) ηy [κ (θ − rt) dt+ σdBt] + C (τ̄) ηydDt,

and collecting all dDt terms on the LHS yields

[1− ηyC (τ̄)] dDt = [κD (θD −Dt) + κηyB (τ̄) (θ − rt)] dt+ B (τ̄) σdBt. (A-42)

Matching the rt, Dt, and constant terms in the drift of dDt from (A-42) with those in (11), we
obtain (15).

We make use of the following result:
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Lemma 5. As long as ε exists, we have (i) κ+ε < δQD−ε always; and (ii) ε has the same sign

as δQD − κ. Finally, (iii) κ+ ε and δQD − ε are always “between” κ and δQD. That is, if κ < δQD,
we have

κ < κ+ ε <
κ+ δQD

2
< δQD − ε < δQD; (A-43)

if κ > δQD, we have

δQD < κ+ ε <
κ+ δQD

2
< δQD − ε < κ. (A-44)

Proof. First, notice that (A-39) and (15) together imply ε can be rewritten as

ε =

(

δQD − κ
)

−

√

(

δQD − κ
)2

− 4καηy
(

στ̄
y

)2

2
. (A-45)

From (A-45), we have

κ+ ε =
δQD + κ−

√

(

δQD − κ
)2

− 4καηy
(

στ̄
y

)2

2

and

δQD − ε =
δQD + κ+

√

(

δQD − κ
)2

− 4καηy
(

στ̄
y

)2

2
,

and since the square-root is non-negative, we always have

κ+ ε <
κ+ δQD

2
< δQD − ε.

Second, revisiting (A-45), if κ > δQD, both components of the RHS are negative and thus

ε < 0. On the other hand, since 4καηy
(

στ̄
y

)2
> 0, we have

∣

∣

∣δ
Q
D − κ

∣

∣

∣ >

√

(

δQD − κ
)2

− 4καηy
(

στ̄
y

)2
.

Therefore, if δQD > κ, the first component of ε is positive and greater than the second, and thus
ε > 0.

Third, we can write

κ+ ε− δQD =
−
(

δQD − κ
)

−

√

(

δQD − κ
)2

− 4καηy
(

στ̄
y

)2

2
,

and with similar reasoning as above, κ > δQD implies κ − δQD + ε > 0, i.e. δQD < κ + ε and

δQD − ε < κ. Combining the three results gives inequalities (A-43) and (A-44).

To complete the proof of the Theorem, we need to provide sufficient conditions such that
the set of equations given by (15) has a solution. First, we show that all meaningful στ̄

y
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solutions of (A-40) are non-negative. Notice that with the help of (A-3), (A-37) and (A-36)
can be written as

C (τ) = −ασστ̄
y G

(

κ+ ε, δQD − ε
)

and (A-46)

B (τ) = −





e−(κ+ε)τ − e−(δ
Q

D
−ε)τ

(κ+ ε)−
(

δQD − ε
) + δQD G

(

κ+ ε, δQD − ε
)



 . (A-47)

Lemma 3 and (A-46) together imply that C (τ) and στ̄
y have the same sign; therefore, the second

term of the RHS of (A-40) is always non-negative. Regarding (A-47), as the function x 7→ e−x

is decreasing, the first term inside the bracket is negative. On the other hand, according to
Lemma 3, the second term has the opposite sign as δQD. But δQD must be positive, otherwise
the duration process under Q, (13), would explode. Hence, both terms inside the bracket are
negative, i.e., B (τ) ≥ 0. Going back to (A-40), we have shown that both components of the
RHS are non-negative, and thus in all meaningful solutions στ̄

y ≥ 0. Notice that this also
implies C (τ) ≥ 0 for all τ ≥ 0, and from (15) it also means 0 < 1− ηyC (τ̄) ≤ 1.

Second, a sufficient condition for the existence of a solution to (A-40) is that its LHS is
smaller than the RHS for στ̄

y = 0 but greater than the RHS when στ̄
y is large enough. It is easy

to see that στ̄
y = 0 leads to C (τ) = 0 for all τ ≥ 0, and yields

B (τ) =
1− e−κτ

κτ
.

Therefore, the RHS of (A-40) is zero while the LHS equals

B (τ̄)σ + C (τ̄) ηyσ
τ̄
y =

1− e−κτ̄

κτ̄
σ > 0.

For inequality in the other direction, notice that Lemmas 3 and 5 together imply

G
(

κ, δQD

)

< G
(

κ+ ε, δQD − ε
)

< 0, (A-48)

regardless of the order of κ and δQD. Further, Lemma 3 states that G is increasing in both
arguments, therefore

G
(

κ, κQD

)

< G
(

κ, δQD

)

< 0, (A-49)

where κQD ≡ κD − αηy
(

στ̄
y

)2
≤ δQD always, because κD ≤ δD holds due to (15) and C (τ) ≥ 0.

Combining (A-46), (A-48), and (A-49), we obtain

0 < C (τ) < −ασστ̄
yG
(

κ, κQD

)

. (A-50)

We also approximate B (τ) from above with the help of Lemma 3. First, if we assume
κ < δQD, which also implies ε > 0 and κ < δQD − ε according to Lemma 5, since G is negative
and increasing in both arguments, we have

G (κ+ ε, κ) < G
(

κ+ ε, δQD − ε
)

< 0.
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Rearranging and using (A-37), we obtain

B (τ) =
1− e−(κ+ε)τ

(κ+ ε) τ
− εG

(

κ+ ε, δQD − ε
)

<
1− e−κτ

κτ
. (A-51)

If, on the other hand, δQD < κ, we rewrite (A-37) as

B (τ) =
1− e−(δ

Q
D
−ε)τ

(

δQD − ε
)

τ
+
(

κ+ ε− δQD

)

G
(

κ+ ε, δQD − ε
)

.

Notice that Lemma 5 in this case yields κ+ ε− δQD > 0, and since G is negative, we get

B (τ) <
1− e−(δ

Q
D
−ε)τ

(

δQD − ε
)

τ
<

1− e−δ
Q
D
τ

δQDτ
≤

1− e−κ
Q
D
τ

κQDτ
, (A-52)

where in the last two steps we use δQD−ε > δQD ≥ κQD. Combining (A-51) and (A-52), we obtain
that under any circumstances we have

B (τ) < max

{

1− e−κτ

κτ
,
1− e−κ

Q

D
τ

κQDτ

}

, (A-53)

and, together with (A-50),

B (τ) σ + C (τ) ηyσ
τ̄
y <

[

max

{

1− e−κτ

κτ
,
1− e−κ

Q
D
τ

κQDτ

}

− αηy
(

στ̄
y

)2
G
(

κ, κQD

)

]

σ. (A-54)

We want to give a sufficient condition for the LHS of (A-40) to be larger than the RHS

when στ̄
y is large enough to make κQD = 0, that is,

(

στ̄
y

)2
= κD

αηy
. For this it is sufficient if we

make στ̄
y larger than the RHS of (A-54), which, after some algebra, is equivalent to

στ̄
y >

[

1−
κD
κ

(

1− e−κτ

κτ
− 1

)]

σ,

because κQD = 0 makes the RHS of (A-52) equal to 1. Taking squares of both sides and using
(

στ̄
y

)2
= κD

αηy
again, after some algebra we obtain

α <
κD

ηy

(

κ+κD

κ
− κD

κ
1−e−κτ̄

κτ̄

)2
σ2

. (A-55)

Defining ᾱ as the RHS of (A-55), which is certainly positive, (A-40) has at least one solution
whenever 0 ≤ α < ᾱ.

Corollary 1. Bond return volatility, στ
t , is positive and increasing in maturity: dστ

t /dτ > 0.

Proof. Applying Itô’s lemma to (A-31) and using (1), (11), and (A-26), we obtain that bond
return volatility is given by satisfies

στ
t = στB (τ) + ηyσ

τ̄
y τC (τ) . (A-56)
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On the other hand, (15) and (A-32) together yield

1 = τB′ (τ) + B (τ) +
κ

σ

[

στB (τ) + ηyσ
τ̄
y τC (τ)

]

.

Combining it with (A-56) we obtain

στ
t =

σ

κ

(

1−
[

τB′ (τ) + B (τ)
])

,

and differentiating w.r.t. τ we get

dστ
t

dτ
= −

σ

κ

d

dτ

[

τB′ (τ) + B (τ)
]

= −
σ

κ

[

τB′′ (τ) + 2B′ (τ)
]

.

Bond return volatility is increasing in maturity if we show that the terms in brackets are
negative. Differentiating (A-36) twice, after some algebra we obtain

d

dτ

[

τB′ (τ) + B (τ)
]

= −

[

κ−
(

δQD − ε
)]

(κ+ ε)

(κ+ ε)−
(

δQD − ε
)

[

e−(κ+ε)τ − e−(δ
Q
D
−ε)τ

]

− κe−(δ
Q
D
−ε)τ .

Since κ < κ+ ε < δQD − ε, we have e−(κ+ε)τ − e−(δ
Q
D
−ε)τ > 0, and the coefficient of this term is

also positive. Therefore, the total RHS is negative, and we conclude that
dστ

t

dτ
> 0. Moreover,

it is easy to confirm that σ0
t = 0. Thus, bond return volatility is positive and increasing across

maturities.

Proof of Propositions 1 and 2. The excess return over horizon (t, t+ h) on a maturity-τ bond
is

rxτt,t+h = log Λτ−h
t+h − log Λτ

t + log Λh
t . (A-57)

To express the RHS, we start by applying Itô’s lemma to log Λτ
t and using (A-26) to obtain

d log Λτ
t =

[

µτ
t −

1

2
(στ

t )
2

]

dt− στ
t dBt. (A-58)

Next we consider the change in the log price of a bond, which at time t has time to maturity
τ , over a horizon of h. The price of this bond at time s ∈ [t, t+ h] is given by Λt+τ−s

s , hence
(A-58) implies

log Λτ−h
t+h − log Λτ

t =

t+h
∫

t

d log Λt+τ−s
s =

t+h
∫

t

[

µτ−(s−t)
s −

1

2

(

στ−(s−t)
s

)2
]

ds−

t+h
∫

t

στ−(s−t)
s dBs.

(A-59)
Similarly, setting τ = h in (A-59), we obtain

− log Λh
t = log Λ0

t+h − log Λh
t =

t+h
∫

t

[

µh−(s−t)
s −

1

2

(

σh−(s−t)
s

)2
]

ds−

t+h
∫

t

σh−(s−t)
s dBs.
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Substituting the last two expressions into (A-57), the excess return on the bond over a horizon
h becomes

rxτt,t+h =

t+h
∫

t

(

µτ−(s−t)
s − µh−(s−t)

s

)

ds+
1

2

t+h
∫

t

(

σh−(s−t)
s

)2
ds −

1

2

t+h
∫

t

(

στ−(s−t)
s

)2
ds

+

t+h
∫

t

σh−(s−t)
s dBs −

t+h
∫

t

στ−(s−t)
s dBs. (A-60)

We want to examine the regression coefficients when we regress rxτt,t+h on state variables rt

and Dt. As the volatilities σt+τ−s
s and σt+h−s

s expressions do not depend on rt or Dt, and the
Brownian increments dBs, s ∈ [t, t+ h], are independent of state variables at time t, we can
ignore the last four terms in (A-60). On the other hand, using (10) and (A-28) we have

µτ−(s−t)
s = rs + αστ̄

yσ
τ−(s−t)
s Ds and µh−(s−t)

s = rs + αστ̄
yσ

h−(s−t)
s Ds,

which implies

t+h
∫

t

(

µτ−(s−t)
s − µh−(s−t)

s

)

ds = αστ̄
y

t+h
∫

t

(

στ−(s−t)
s − σh−(s−t)

s

)

Dsds. (A-61)

When running a multivariate regression of rxt,t+h,τ on Dt and rt in the form

rxτt,t+h = βτ,h
0,D,r +

(

βτ,h
1 , βτ,h

2

)

(Dt, rt)
⊤ + ǫt+h,

the vector of theoretical coefficients becomes
(

βτ,h
1 , βτ,h

2

)⊤
= V −1Cov

[

rxτt,t+h, (Dt, rt)
⊤
]

,

where V is given in (A-17). Combining (A-17)-(A-19) with (A-60), (A-61), and the discussion
in between, after some algebra we obtain

βτ,h
1 = αστ̄

y

t+h
∫

t

(

στ−(s−t)
s − σh−(s−t)

s

)

e−δD(s−t)ds and (A-62)

βτ,h
2 = −

δr
δD − κ

αστ̄
y

t+h
∫

t

(

στ−(s−t)
s − σh−(s−t)

s

)(

e−κ(s−t) − e−δD(s−t)
)

ds. (A-63)

We use the Leibniz integral rule to express how βτ,h
1 and βτ,h

2 change as a function of τ :

dβτ,h
1

dτ
= αστ̄

y

t+h
∫

t

dσ
τ−(s−t)
s

dτ
e−δD(s−t)ds and (A-64)

dβτ,h
2

dτ
= δrασ

τ̄
y

t+h
∫

t

dσ
τ−(s−t)
s

dτ

e−κ(s−t) − e−δD(s−t)

κ− δD
ds. (A-65)

Corollary 1 implies that dσ
τ−(s−t)
s /dτ > 0, and 0 < e−δD(s−t) trivially. Therefore, each term of

the integral in (A-64) is positive, which implies dβτ,h
1 /dτ > 0. Similarly, e−κ(s−t) > e−δD(s−t)
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if and only if κ < δD. Thus, the integral in (A-65) is negative, and dβτ,h
2 /dτ < 0. On the

other hand, when τ = h, we have βh,h
1 = βh,h

2 = 0. Thus, βτ,h
1 is positive and increasing across

maturities, and βτ,h
2 is negative and decreasing across maturities.

Next we turn to a univariate regression of rxτt,t+h on Dt in the form rxτt,t+h = βτ,h
0,D +

βτ,hDt+ ǫt+h. Similarly to (A-62) and (A-63), from (A-17) and (A-61), after some algebra, we
obtain

βτ,h =
Cov

[

rxτt,t+h,Dt

]

V ar [Dt]
= αστ̄

y

t+h
∫

t

(

στ−(s−t)
s − σh−(s−t)

s

) δDe
−δD(s−t) − κe−κ(s−t)

δD − κ
ds. (A-66)

Applying the Leibniz rule, we get

dβτ,h

dτ
= αστ̄

y

t+h
∫

t

dσ
τ−(s−t)
s

dτ

δDe
−δD(s−t) − κe−κ(s−t)

δD − κ
ds.

Corollary 1 implies dσ
τ−(s−t)
s /dτ > 0, and it is easy to confirm that δDe−δDx−κe−κx

δD−κ
≥ 0 iff

0 ≤ x ≤ h̄ ≡ log δD−log κ
δD−κ

. Therefore, as long as h is sufficiently small such that h ≤ h̄, each

term in the integral of the RHS is positive, and dβτ,h/dτ > 0. On the other hand, setting
τ = h we get βh,h = 0. Thus, βτ,h is positive and increasing across maturities.

Finally, from (14), the effect of duration on yields is given by C (τ). From the Proof of
Theorem 1, C (τ) ≥ 0 . Moreover, from (A-36) it is easy to show that

lim
τ→0

C (τ) = lim
τ→∞

C (τ) = 0,

with C (τ) increasing for small but decreasing for large τ values, which implies that the effect
is either increasing across maturities if T is small, or first increasing then decreasing if T is
sufficiently large. This completes the proof.

Proof of Proposition 3. This time we look at how regression betas βτ,h and βτ,h
1 change when

we alter the horizon h. We start by βτ,h
1 . From (A-62), after some algebra, the Leibniz rule

yields

dβτ,h
1

dh
= αστ̄

y



στ−h
s e−δDh −

t+h
∫

t

dσ
h−(s−t)
s

dh
e−δD(s−t)ds



 . (A-67)

To save space, instead of studying the exact value of the RHS of (A-67), we find tractable
upper and lower thresholds for it, and analyze how those behave. All our statements can be
shown analyically, or be confirmed numerically.

Since dσ
h−(s−t)
s /dh > 0 and 0 < e−δDh < e−δD(s−t) for all s ∈ (t, t+ h), it can be confirmed

that (A-67) implies

dβτ,h
1

dh
< αστ̄

y



στ−h
s e−δDh − e−δDh

t+h
∫

t

dσ
h−(s−t)
s

dh
ds



 = αστ̄
ye

−δDh
(

στ−h
s − σh

s

)

. (A-68)
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On the other hand, we also have e−δD(s−t) ≤ 1 for all for all s ∈ (t, t+ h), thus

dβτ,h
1

dh
> αστ̄

y



στ−h
s e−δDh −

t+h
∫

t

dσ
h−(s−t)
s

dh
ds



 = αστ̄
y

(

στ−h
s e−δDh − σh

s

)

. (A-69)

But the RHSs of (A-68) and (A-69) both converge to στ
t > 0 when h → 0 and to −στ

t when
h → τ , and change continuously and monotonically in between because στ−h

s and e−δDh both
decrease in h while σh

s increases. Thus, dβτ,h
1 /dh > 0 for small h, then becomes negative

for large h values. In particular, it is easy to confirm that ∃! ĥ ∈ (0, τ/2) that satisfies

e−δD ĥστ−ĥ
s = σĥ

s , which, together with (A-68) and (A-69), implies
dβ

τ,h
1
dh

> 0 for all h ∈
[

0, ĥ
)

and
dβ

τ,h
1
dh

< 0 for all h ∈ (τ/2, τ ]. Since (A-62) also implies βτ,0
1 = βτ,τ

1 = 0, we conclude that

βτ,h
1 is positive and hump-shaped in h. With similar argument we could also show that βτ,h

2

goes from zero to zero and is negative and U-shaped in between.

Finally we study βτ,h. From (A-66), after some algebra, the Leibniz rule yields

dβτ,h

dh
=

αστ̄
y

δD − κ



στ−h
s

(

δDe
−δDh − κe−κh

)

−

t+h
∫

t

dσ
h−(s−t)
s

dh

(

δDe
−δD(s−t) − κe−κ(s−t)

)

ds





=
δD

δD − κ

dβτ,h
1

dh
−

κ

δD − κ
αστ̄

y



στ−h
s e−κh −

t+h
∫

t

dσ
h−(s−t)
s

dh
e−κ(s−t)ds



 ,

where the term in the last bracket is similar to that in (A-67) but κ replacing δD. As (A-68)
and (A-69) imply

αστ̄
y

(

e−δDhστ−h
t − σh

t

)

<
dβτ,h

1

dh
< αστ̄

ye
−δDh

(

στ−h
t − σh

t

)

,

analogously, we also must have

e−κhστ−h
t − σh

t < στ−h
s e−κh −

t+h
∫

t

dσ
h−(s−t)
s

dh
e−κ(s−t)ds < e−κh

(

στ−h
t − σh

t

)

.

The last two results together imply

δDe
−δDh − κe−κh

δD − κ
στ−h
t −

δD − κe−κh

δD − κ
σh
t <

1

αστ̄
y

dβτ,h

dh
<

δDe
−δDh − κe−κh

δD − κ
στ−h
t −

δDe
−δDh − κ

δD − κ
σh
t .

Taking the limit h → 0, both the LHS and RHS of the above inequality converge to στ
t , which

means we must have limh→0 dβ
τ,h/dh = αστ̄

yσ
τ
t > 0. By a continuity argument, then there

exists h̄ ∈ (0, τ/2) (which actually satisfies h̄ < ĥ) such that dβτ,h

dh
> 0 for all h ∈

(

0, h̄
)

.
Thus, βτ,h increases in h for small h, and after that it decreases. Since (A-66) also implies
βτ,0 = βτ,τ = 0, we conclude that βτ,h is hump-shaped in h.

We conclude our proof with noting that the term “hump-shaped” is not exact in the sense
that βτ,h is not necessarily positive for all h. In fact, while βτ,h starts out as positive and
increasing in h, and goes to zero when h → τ , numerical examples show that it can go negative
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when h is sufficiently close to τ . The reason for this is that, as we argue above, βτ,h is the
difference of two hump-shaped functions that take the value of zero at both extremes. Thus,
depending on the position of these two humps compared to each other, the overall effect can
be either hump-shaped or wave-formed.

Proof of Proposition 4. From (14), (A-36), and (A-37), bond yield volatility is given by

στ
y = B (τ)σ + C (τ) ηyσ

τ̄
y (A-70)

=
1− e−(κ+ε)τ

(κ+ ε) τ
σ −

ε+ αηy
(

στ̄
y

)2

(κ+ ε)−
(

δQD − ε
)





1− e−(κ+ε)τ

(κ+ ε) τ
−

1− e−(δ
Q
D
−ε)τ

(

δQD − ε
)

τ



σ.

Due to the complexity the feedback mechanism introduces into the endogenous parameters, we
cannot compute the exact effect of convexity −ηy on yield volatilities in closed form. Instead,
we derive its effect by considering (A-70) around α = 0. From (A-70) we write στ

y ≈ h0 (τ) +
αηyh1 (τ), where

h0 (τ) ≡
(

B (τ) σ + C (τ) ηyσ
τ̄
y

)

|α=0 and h1 (τ) ≡
1

ηy

d
(

B (τ)σ + C (τ) ηyσ
τ̄
y

)

dα
|α=0.

We start with h0. It is straightforward from (A-39) and (15) that taking the limit α → 0
yields

lim
α→0

ε = 0 and lim
α→0

δQD = lim
α→0

δD = κD, (A-71)

hence

h0 (τ) =
1− e−κτ

κτ
σ. (A-72)

and as a special case, the volatility of the reference-maturity yield is

lim
α→0

στ̄
y = h0 (τ̄) =

1− e−κτ̄

κτ̄
σ. (A-73)

Second, differentiating (A-70) with respect to α, we get

1

σ

dστ
y

dα
= −

d (κ+ ε)

dα

1− e−(κ+ε)τ − (κ+ ε) τe−(κ+ε)τ

(κ+ ε)2 τ
(A-74)

−
(

ε+ αηy
(

στ̄
y

)2
) d

dα









1−e−(κ+ε)τ

(κ+ε)τ − 1−e
−(δQD−ε)τ

(δQD−ε)τ

(κ+ ε)−
(

δQD − ε
)









−

(

dε

dα
+ ηy

(

στ̄
y

)2
+ 2αηyσ

τ̄
y

dστ̄
y

dα

)

1−e−(κ+ε)τ

(κ+ε)τ − 1−e
−(δQD−ε)τ

(δQD−ε)τ

(κ+ ε)−
(

δQD − ε
) .

As
d (κ+ ε)

dα
=

dε

dα
=

ε

(κ+ ε)−
(

δQD − ε
)

dδQD
dα

−
κηy

(

στ̄
y

)2

(κ+ ε)−
(

δQD − ε
) ,
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we get

lim
α→0

d (κ+ ε)

dα
= lim

α→0

dε

dα
=

κηy
κD − κ

lim
α→0

(

στ̄
y

)2
=

κηyσ
2

κD − κ

(

1− e−κτ̄

κτ̄

)2

, (A-75)

where in the last step we used (A-73). Hence, after some algebra, (A-74) yields

1

σ
lim
α→0

dστ
y

dα
=

κDηyσ
2

(κD − κ)2

(

1− e−κτ̄

κτ̄

)2 [
1− e−κτ

κτ
−

κD − κ

κD

1− e−κτ − κτe−κτ

κτ
−

1− e−κDτ

κDτ

]

=
κDηyσ

2

(κD − κ)2

(

1− e−κτ̄

κτ̄
σ

)2

H (κ, κD) ,

and thus

h1 (τ) =
κDσ

3

(κD − κ)2

(

1− e−κτ̄

κτ̄

)2

H (κ, κD) ,

where H is defined in (A-8). But H ≥ 0 always according to Lemma 4, hence h1 (τ) ≥ 0,

which implies that bond yield volatilities are increasing in negative convexity:
dστ

y

dηy
> 0.

Third, we trivially verify that

lim
τ→0

στ
y = σ and lim

τ→∞
στ
y = 0,

independent of ηy. Therefore, the effect of negative convexity on yield volatilities tends to zero
at very short and very long maturities, and hence it must be hump-shaped.

Regarding bond return volatilities, given by στ
yτ , we have limτ→0 σ

τ
yτ = 0 and

lim
τ→∞

στ
y τ =

δD

(κ+ ε)
(

δQD − ε
)σ =

σ

κ
,

again independent of ηy, where the last equality is due to (A-39). Hence, the effect of negative
convexity on bond return volatilities tends to zero at very short and very long maturities.
However, as ηy increases σ

τ
y , it also increases σ

τ
yτ , and thus the effect must be hump-shaped.

Corollary 2 (Background calculations for Section 5.3). The theoretical R2s of univariate
regressions of the duration factor Dt on the short rate factor rt, the long-term yield yτ̄t , and
the slope yτ̄t − rt are given by

R2
D,r = 1−

δD
κ+ δD

, (A-76)

R2
D,y = 1−

δD

κ
(

1 + C(τ̄ )
B(τ̄)

δr
κ

)2
+ δD

, and (A-77)

R2
D,y−r = 1−

δD

κ
(

1 + C(τ̄ )
B(τ̄)−1

δr
κ

)2
+ δD

. (A-78)
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Proof. When running a linear regression in the form Yt = α + γXt + ǫt, the theoretical slope
coefficient is simply γ = Cov [Xt, Yt] /V ar[Xt], whereas the R2 of the regression is

R2 =
γ2V ar[Xt]

V ar[Yt]
=

Cov2 [Xt, Yt]

V ar[Xt]V ar[Yt]
. (A-79)

Applying this to Yt = Dt and Xt = rt and using (A-17) yields (A-76). Applying (A-79) to
Yt = Dt and Xt = yτ̄t and combining it with (14), we obtain

R2
D,y =

Cov2 [yτ̄t ,Dt]

V ar[yτ̄t ]V ar[Dt]
=

(B (τ̄)Cov [rt,Dt] + C (τ̄)V ar [Dt])
2

(B2 (τ̄)V ar[rt] + 2B (τ̄) C (τ̄)Cov[rt,Dt] + C2 (τ̄)V ar[Dt])V ar[Dt]
.

Equation (A-17) and rearranging gives (A-77). Finally, applying (A-79) to Yt = Dt and
Xt = yτ̄t − rt and combining it with (14), we obtain

R2
D,y−r =

((B (τ̄)− 1)Cov [rt,Dt] + C (τ̄)V ar [Dt])
2

(

(B (τ̄)− 1)2 V ar[rt] + 2 (B (τ̄)− 1) C (τ̄)Cov[rt,Dt] + C2 (τ̄)V ar[Dt]
)

V ar[Dt]
.

Using (A-17) and rearranging gives (A-78).

Appendix C.3 Extended model with nominal and real bonds

In this Appendix we present an extension of the baseline model of Section 1 that allows for the
pricing of real bonds. At each date t, there exist a continuum of zero-coupon nominal and real
bonds with time to maturity τ ∈ (0, T ]. We assume that nominal bonds with time to maturity
τ are in a total net supply of sτt , and real bonds, for simplicity, are in zero net supply.

As before, Λτ
t denotes the time-t price of a zero-coupon nominal bond paying one dollar

at maturity t + τ , with yield yτt = − 1
τ
log Λτ

t . Analogously, Λτ∗
t denotes the time-t price of a

zero-coupon real bond paying off at maturity t + τ , with yield yτ∗t = − 1
τ
log Λτ∗

t . We assume
that the dynamics of the nominal short rate rt under the physical probability measure is given
by (1). In addition, we assume there is an exogenously given real short rate that under P

follows (18), and the evolution of the inflation index is given by (19), with instantaneous
correlations dBtdB

∗
t = ρdt, dBtdB

π
t = ρπdt, and dBπ

t dB
∗
t = ρπ∗dt. While we fix the diffusion

of It exogenously, we derive its drift endogenously so that in the equilibrium of the model there
are no arbitrage opportunities between real and nominal bonds. We also assume that there
exist two money-market accounts, a nominal and a real one, whose dynamics are given by

dMt = rtMtdt and dM∗
t = r∗tM

∗
t dt. (A-80)

Further, we write nominal bond prices in the form (A-26), and we assume (and later confirm)
that under P real bond prices follow

dΛτ∗
t

Λτ∗
t

= µτ∗
t dt− στ∗

t dBt − στ∗
t∗ dB

∗
t . (A-81)

Bonds are held by financial institutions who are competitive and have mean-variance pref-
erences over the instantaneous change in the value of their bond portfolio given by (3). If xτt
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denotes the quantity they hold in maturity-τ nominal bonds and xτ∗t denotes the quantity of
maturity-τ real bonds at time t, investors’ budget constraint becomes

dWt = rt



Wt −

T
∫

0

xτtΛ
τ
t dτ −

T
∫

0

xτ∗t ItΛ
τ∗
t dτ



 dt+

T
∫

0

xτtΛ
τ
t

dΛτ
t

Λτ
t

dτ +

T
∫

0

xτ∗t ItΛ
τ∗
t

d (ItΛ
τ∗
t )

ItΛ
τ∗
t

dτ .

(A-82)
Equation (A-82), for simplicity, assumes that the amount institutions do not spend on bonds
are invested in the nominal money market account—this is without loss of generality as in
equilibrium they would be indifferent between investing in the real and nominal riskless assets.

We solve for an equilibrium of the model in three steps. First, we determine the drifts of
our random processes under the risk-neutral measure in general. Second, we solve financial
institutions’ optimization problems to determine the equilibrium market prices of risks. Finally,
we conjecture and verify equilibrium bond prices.

Because markets are complete, by no-arbitrage, there exist unique market prices of the
three types of risk, and it must be the case that Λτ

t /Mt, ItM
∗
t /Mt, and ItΛ

τ∗
t /Mt are all

martingales under Q for all τ . For this, analogously to (A-26), (A-81) and (19) we write

dΛτ
t

Λτ
t

= µτQ
t dt− στ

t dB
Q
t , (A-83)

dΛτ∗
t

Λτ∗
t

= µτ∗Q
t dt− στ∗

t dBQ
t − στ∗

t∗ dB
∗Q
t , and (A-84)

dIt
It

= µπQ
t dt− σπdBπQ

t . (A-85)

First,
Λτ
t

Mt
being a martingale simply means that µτQ

t = rt. Second, combining (A-85) with
(A-80), we obtain

d
(

ItM
∗

t

Mt

)

ItM
∗
t

Mt

=
(

µπQ
t + r∗t − rt

)

dt− σπdBπQ
t ,

which is a martingale if and only if
µπQ
t = rt − r∗t , (A-86)

i.e., the ex-ante Fisher relation holds in the model. Finally, using (A-80), (A-84), and (A-85),
we get

d
(

ItΛτ∗
t

Mt

)

ItΛτ∗
t

Mt

=
[

µτ∗Q
t + µπQ

t + ρπσ
τ∗
t σπ + ρπ∗σ

τ∗
t∗ σ

π − rt

]

dt− στ∗
t dBQ

t − στ∗
t∗ dB

∗Q
t − σπdBπQ

t .

ItΛ
τ∗
t /Mt is a martingale if and only if its drift under Q is zero, which together with (A-86)

implies
µτ∗Q
t + ρπσ

τ∗
t σπ + ρπ∗σ

τ∗
t∗ σ

π = r∗t . (A-87)
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Next we return to institutions’ optimization problems. Using Itô’s Lemma and substituting
(A-26), (19), and (A-81 ) into intermediaries’ budget constraint, (A-82), we get

dWt =



rtWt +

T
∫

0

xτtΛ
τ
t (µ

τ
t − rt) dτ +

T
∫

0

xτ∗t ItΛ
τ∗
t (µτ∗

t + µπ
t + ρπσ

τ∗
t σπ + ρπ∗σ

τ∗
t∗ σ

π − rt) dτ



 dt

−





T
∫

0

xτtΛ
τ
t σ

τ
t dτ +

T
∫

0

xτ∗t ItΛ
τ∗
t στ∗

t dτ



 dBt −





T
∫

0

xτ∗t ItΛ
τ∗
t στ∗

t∗ dτ



 dB∗
t −





T
∫

0

xτ∗t ItΛ
τ∗
t σπdτ



 dBπ
t .

Substituting it into (3) and differentiating with respect to xτt and xτ∗t for all τ , we obtain the
first-order conditions that optimal demands have to satisfy. Finally, imposing market clearing
in the nominal and real bond markets, i.e., setting xτt = sτt and xτ∗t = sτ∗t = 0 for all τ ∈ (0, T ],
we obtain the following relationships that must hold in equilibrium:

µτ
t − rt = αστ

t

∫ T

0
sτtΛ

τ
t σ

τ
t dτ

and

µτ∗
t + µπ

t + ρπσ
τ∗
t σπ + ρπ∗σ

τ∗
t∗ σ

π − rt = α (στ∗
t + ρστ∗

t∗ + ρπσ
π)

∫ T

0
sτtΛ

τ
t σ

τ
t dτ ,

that is, the market prices of the nominal, real, and inflation risks are given by

λt = −α

∫ T

0
sτtΛ

τ
t σ

τ
t dτ , λt∗ = −α

T
∫

0

sτ∗t ItΛ
τ∗
t στ∗

t∗ dτ = 0, and λπt = −α

T
∫

0

sτ∗t ItΛ
τ∗
t σπdτ = 0,

and we have

µτ
t −rt = (−στ

t )λt and µτ∗
t +µπ

t +ρπσ
τ∗
t σπ+ρπ∗σ

τ∗
t∗ σ

π−rt = − (στ∗
t + ρστ∗

t∗ + ρπσ
π)λt. (A-88)

The total amount of interest rate risk is the same as before due to

d





T
∫

0

sτtΛ
τ
t dτ +

T
∫

0

sτ∗t ItΛ
τ∗
t dτ



 =





T
∫

0

sτtΛ
τ
t µ

τ
t dτ



 dt−





T
∫

0

sτtΛ
τ
t σ

τ
t dτ



 dBt,

therefore the market price of (nominal) interest rate risk are all determined by its total quantity,
and (5) holds. As our focus is on changes in interest rate risk induced by the interest rate risk
inherent in MBS, using the same argument as in the main part of Section 1, we obtain that the
market price of nominal interest rate risk is given by (10). Therefore, under the risk-neutral
measure, the dynamics of the nominal interest rate, the duration factor, and the real interest
rate are given by (12), (13), and, from (18), by

dr∗t =
[

κ∗ (θ∗ − r∗t ) + ασ∗στ̄
yDt

]

dt+ σ∗dB∗Q
t , (A-89)

respectively.

Finally, we look to determine equilibrium bond prices. Because the nominal short rate
and the market price of risk are the same as in the baseline model, nominal yields are affine
in the nominal short rate and duration: (15) holds with the functions A (τ), B (τ), and C (τ)
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determined in the proof of Theorem 1. Notice that this implies the endogenous parameters
στ̄
y , δr, δD, and δ0 are all as given in (15).

Next, we conjecture that equilibrium yields on real bonds in the model defined by (12),
(13) and (A-89) are in the form

yτ∗t = E (τ) + F (τ) r∗t + G (τ)Dt +H (τ) rt, (A-90)

i.e., prices of real bonds are

Λτ∗
t = e−[τE(τ)+τF(τ)r∗t+τG(τ)Dt+τH(τ)rt]. (A-91)

Applying Itô’s Lemma to (A-91), substituting in (12), (13), and (A-89) and imposing condition
(A-87) on the relationship between the drift and volatility of real bonds under Q, we obtain
an equation affine in the factors r∗t , Dt, and rt. Collecting the r∗t , Dt, rt, and constant terms,
respectively, we get the following set of ODEs:

1 = τF ′ (τ) + F (τ) + κ∗τF (τ) , (A-92)

0 = τG′ (τ) + G (τ) + δQDτG (τ)− ασ∗στ̄
yτF (τ)− ασστ̄

y τH (τ) , (A-93)

0 = τH′ (τ) +H (τ) + κτH (τ) + δrτG (τ) , (A-94)

and

0 = τE ′ (τ) + E (τ)− τF (τ)κ∗θ∗ − τG (τ) δ0 − τH (τ)κθ +
1

2
τ2F2 (τ) (σ∗)2 (A-95)

+
1

2
τ2G2 (τ)

(

ηyσ
τ̄
y

)2
+

1

2
τ2H2 (τ)σ2 + τ2F (τ)G (τ) ρσ∗ηyσ

τ̄
y + τ2F (τ)H (τ) ρσ∗σ

+ τ2G (τ)H (τ)σηyσ
τ̄
y ,

with terminal conditions E (0) = G (0) = H (0) = 0 and F (0) = 1. From (A-92) it is imminent
that

F (τ) =
1− e−κ∗τ

κ∗τ
. (A-96)

Combining (A-93) and (A-94), we write the following second-order ODE for G:

0 = τG′′ (τ) + 2G′ (τ) +
(

κ+ δQD

)

τG′ (τ) +
(

κ+ δQD

)

G (τ) + κδDτG (τ) (A-97)

− ασ∗στ̄
y

[

τF ′ (τ) + F (τ) + κτF (τ)
]

.

Solving (A-97) for G, then from (A-94) derivingH, and applying the terminal conditions, yields
the following solution:

G (τ) =
ρσ∗

σ
C (τ) + (κ∗ − κ)

ρασ∗στ̄
y

[

F (τ)− 1−e−(κ+ε)τ

(κ+ε)τ + κ∗−(κn+ε)
ασστ̄

y
C (τ)

]

κ
(

δQD − δD

)

+ (κ∗ − κ)
(

δQD − κ∗
) (A-98)
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and

H (τ) =
ρσ∗

σ
[B (τ)−F (τ)]+(κ∗ − κ)

ρσ∗
(

δQD − κ∗
)

[

F (τ)− 1−e−(κ+ε)τ

(κ+ε)τ + ε[κ∗−(κn+ε)]

ασστ̄
y (δ

Q

D
−κ∗)

C (τ)

]

σ
[

κ
(

δQD − δD

)

+ (κ∗ − κ)
(

δQD − κ∗
)] .

(A-99)
Finally, (A-95) together with (A-96)-(A-99) would yield E (τ), but we omit the exact solution
here as it is not essential for the results that follow.

Notice that in the special case when the speed of mean reversion for the nominal and real
short rates are very close to each other, κ ≈ κ∗, (A-98) and (A-99) simplify to

G (τ) ≈
ρσ∗

σ
C (τ) and H (τ) ≈

ρσ∗

σ
[B (τ)−F (τ)] . (A-100)

Proof of Proposition 5. The excess return over horizon (t, t+ h) on a maturity-τ real bond is

rxτ∗t,t+h = log Λτ−h∗
t+h − log Λτ∗

t + log Λh∗
t . (A-101)

To express the RHS, we follow the same steps as in the nominal bond case. Applying Itô’s
lemma to log Λτ∗

t and using (A-81) we obtain

d log Λτ∗
t =

[

µτ∗
t −

1

2
(στ∗

t )2 −
1

2
(στ∗

t∗ )
2
− ρστ∗

t στ∗
t∗

]

dt− στ∗
t dBt − στ∗

t∗ dB
∗
t . (A-102)

Next we consider the change in the log price of a real bond, which at time t has time to maturity
τ , over a horizon of h. The price of this bond at time s ∈ [t, t+ h] is given by Λt+τ−s∗

s , hence
integrating (A-102) implies

log Λτ−h∗
t+h − log Λτ∗

t =

t+h
∫

t

d log Λτ−(s−t)∗
s =

t+h
∫

t

µτ−(s−t)∗
s ds−

t+h
∫

t

ρστ−(s−t)∗
s σ

τ−(s−t)∗
s∗ ds

−

t+h
∫

t

[

1

2

(

σ
τ−(s−t)∗
s∗

)2
+

1

2

(

στ−(s−t)∗
s

)2
]

ds−

t+h
∫

t

στ−(s−t)∗
s dBs −

t+h
∫

t

σ
τ−(s−t)∗
s∗ dB∗

s

and

− log Λh∗
t =

t+h
∫

t

[

µh−(s−t)∗
s −

1

2

(

σh−(s−t)∗
s

)2
−

1

2

(

σ
h−(s−t)∗
s∗

)2
− ρσh−(s−t)∗

s σ
h−(s−t)∗
s∗

]

ds

−

t+h
∫

t

σh−(s−t)∗
s dBs −

t+h
∫

t

σ
h−(s−t)∗
s∗ dB∗

s ,
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where we used log Λ0∗
t = 0. Substituting the last two expressions into (A-101), the excess

return on the bond over a horizon h becomes

rxτ∗t,t+h =

t+h
∫

t

(

µτ−(s−t)∗
s − µh−(s−t)∗

s

)

ds+

t+h
∫

t

[

1

2

(

σh−(s−t)∗
s

)2
−

1

2

(

στ−(s−t)∗
s

)2
]

ds (A-103)

+

t+h
∫

t

[

1

2

(

σ
h−(s−t)∗
s∗

)2
−

1

2

(

σ
τ−(s−t)∗
s∗

)2
+ ρσh−(s−t)∗

s σ
h−(s−t)∗
s∗ − ρστ−(s−t)∗

s σ
τ−(s−t)∗
s∗

]

ds

−

t+h
∫

t

στ−(s−t)∗
s dBs +

t+h
∫

t

σh−(s−t)∗
s dBs −

t+h
∫

t

σ
τ−(s−t)∗
s∗ dB∗

s +

t+h
∫

t

σ
h−(s−t)∗
s∗ dB∗

s .

We want to examine the regression coefficients when we regress rxτt,t+h on state variables Dt,
rt and r∗t . As the volatility expressions do not depend on any of these state variables, and the
Brownian increments dBs, s ∈ [t, t+ h], are independent of state variables at time t, we can
ignore all the non-µ terms in (A-103). On the other hand, using (10) and (A-88) we have

µτ∗
t = r∗t + (στ∗

t + ρστ∗
t∗ + ρπσ

π)αστ̄
t Dt − ρπσ

τ∗
t σπ − ρπ∗σ

τ∗
t∗ σ

π. (A-104)

Applying (A-104) to τ − (s− t) and h− (s− t) implies

t+h
∫

t

(

µτ−(s−t)∗
s − µh−(s−t)∗

s

)

ds = αστ̄
t

t+h
∫

t

∆σs−t∗
s Dsds+ const, (A-105)

where the last term collects the volatility adjustments that depend on maturities but not on

the real rate or duration, and ∆σs−t∗
s ≡ σ

τ−(s−t)∗
t + ρσ

τ−(s−t)∗
t∗ − σ

h−(s−t)∗
t − ρσ

h−(s−t)∗
t∗ .

We consider three regressions in this theoretical model. First, when we regress rxτ∗t,t+h on
Dt and rt in the form

rxτ∗t,t+h = βτ,h∗
0,D,r +

(

βτ,h∗
1 , βτ,h∗

2

)

(Dt, rt)
⊤ + ǫt+h,

the vector of coefficients is
(

βτ,h∗
1 , βτ,h∗

2

)⊤
= V −1Cov

[

rxτ∗t,t+h, (Dt, rt)
⊤
]

, where V is given by

(A-17). Combining (A-17), (A-22), (A-24) (A-103), (A-105), and the discussion in between,
after some algebra we obtain

βτ,h∗
1 = αστ̄

y

t+h
∫

t

∆σs−t∗
s e−δD(s−t)ds and (A-106)

βτ,h∗
2 = −

δr
δD − κ

αστ̄
y

t+h
∫

t

∆σs−t∗
s

(

e−κ(s−t) − e−δD(s−t)
)

ds, (A-107)

analogously to (A-62)-(A-63) since Cov
[

Ds, (Dt, rt)
⊤
]

is the same as in the basic model.
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Second, we run a multivariate regression of rxτ∗t,t+h on Dt, rt, and r∗t in the form

rxτ∗t,t+h = βτ,h∗
0,D,r,r∗ +

(

γτ,h∗1 , γτ,h∗2 , γτ,h∗3

)

(Dt, rt, r
∗
t )

⊤ + ǫt+h,

which yields
(

γτ,h∗1 , γτ,h∗2 , γτ,h∗3

)⊤
= (V ∗)−1Cov

[

rxτ∗t,t+h, (Dt, rt, r
∗
t )

⊤
]

, where V ∗ is given by

(A-25). Following the same steps as in the bivariate regression case, after some algebra we

obtain the following relationship between the regression coefficients: γτ,h∗1 = βτ,h∗
1 , γτ,h∗2 =

βτ,h∗
2 , and γτ,h∗3 = 0.

Finally, we run the univariate regression on duration only:

rxτ∗t,t+h = βτ,h∗
0,D + βτ,h∗Dt + ǫt+h,

where the regression coefficient is βτ,h∗ = Cov
[

rxτ∗t,t+h,Dt

]

/V ar [Dt]. From (A-103), after

some algebra, this coefficient simplifies to

βτ,h∗ = αστ̄
y

t+h
∫

t

∆σs−t∗
s

δDe
−δD(s−t) − κe−κ(s−t)

δD − κ
ds. (A-108)

Proving that in general βτ,h∗
1 and βτ,h∗ are positive and increasing across maturity τ , while

possible, would be much more cumbersome than in the case of nominal excess returns. Hence,
to save space, and motivated by the calibrated parameters, we only provide the proof for
the special case when the speed of mean reversion of the real and nominal short rates are
approximately close to each other, i.e., κ ≈ κ∗. For this, we first apply Itô’s Lemma to (A-91)
and contrast it with (A-81) to obtain the general formulas for real bond return volatilities

στ∗
t = τG (τ) ηyσ

τ̄
y + τH (τ) σ and στ∗

t∗ = τF (τ)σ∗.

Substituting (A-100) into these formulas, after some algebra we get that in the case κ ≈ κ∗

στ∗
t + ρστ∗

t∗ = τG (τ) ηyσ
τ̄
y + τH (τ)σ + ρτF (τ) σ∗ ≈

ρσ∗

σ
στ
t .

Thus, ∆σs−t∗
s simplifies to ρσ∗

σ

(

σ
τ−(s−t)
t − σ

h−(s−t)
t

)

, which in turn leads to

βτ,h∗
1 ≈

ρσ∗

σ
βτ,h
1 , βτ,h∗

2 ≈
ρσ∗

σ
βτ,h
2 , and βτ,h∗ ≈

ρσ∗

σ
βτ,h.

Since βτ,h
1 and βτ,h are positive and increasing across maturities, βτ,h∗

1 and βτ,h∗ must also
be positive and increasing across maturities; moreover, the corresponding real and nominal
regression coefficients are proportional to each other by a multiplier of ρσ∗

σ
. This concludes the

proof of Proposition 5 and the statements thereafter.

Appendix C.4 Time-varying convexity

Here we present a tractable way to relax the assumption of constant MBS convexity and capture
the non-linearities inherent to the prepayment option. This version of the model allows for an
additional degree of freedom and provides a better statistical description of MBS duration and
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convexity series. However, the qualitative implications of the model are identical to the ones
outlined in Section 1. More precisely, we allow the sensitivity of outstanding MBS to the short
rate to be quadratic:

dMBSt

drt
= zt + φz2t , and (A-109)

dzt = −κQz ztdt+ σzdB
Q
t . (A-110)

In the data, when interest rates and MBS duration decrease, the negative convexity of MBS
increases. In other words MBS duration has negative skewness. The skewness of the monthly
series of MBS duration in our sample is equal to −1.32 compared to the 10 year yield which
displays only a moderate skewness of −0.06. The parameter φ can be calibrated to match this
feature of the data. From an economic point of view negative skewness corresponds to the
asymmetry in MBS duration response to changes in interest rates: it reacts more to falling
than to rising interest rates.

In the model described by (1), (9), and (A-109)-(A-110) yields are given by

yτt = Az (τ) + Bz (τ) rt + Cz (τ) zt +Dz (τ) z
2
t ,

The key to quadratic closed form solution is that while quadratic terms appear under Q in the
dynamics of rt, zt is still affine under Q (and therefore not affine under P); see also Cheng and
Scaillet (2007). Bond prices are given by

Λτ
t = e−[Az(τ)+Bz(τ)rt+Cz(τ)zt+Dz(τ)z2t ],

where Az (τ) ≡ τAz (τ), Bz (τ) ≡ τBz (τ), Cz (τ) ≡ τCz (τ), and Dz (τ) ≡ τDz (τ). No-
arbitrage pricing of bonds results in the following system of ODEs (where we remove the
time-dependence to simplify the notation):

0 = A′
z − κθBz +

1

2
σ2B2

z +
1

2
σ2
z

(

C2
z − 2Dz

)

+ σσzBzCz,

1 = B′
z + κBz,

0 = C ′
z +

(

κQz + 2σ2
zDz

)

Cz − ασ2Bz + 2σσzBzDz, and

0 = D′
z + 2κQz Dz + 2σ2

zD
2
z − ασ2φBz,

together with the boundary conditions Az (0) = Bz (0) = Cz (0) = Dz (0) = 0. The solution to
the system above can be written in terms of J- and Y -type Bessel functions. To simplify, we can
also solve for Az (τ), Bz (τ), Cz (τ), and Dz (τ) recursively using a discrete time approximation
of the dynamics of the state variables.

By Itô’s lemma the second order dollar sensitivity of outstanding MBS to short rate shocks
(d

2MBSt

dr2t
≡ −γ) is equal to:

σz + 2φσzzt,

implying time-varying convexity. The instantaneous volatility of maturity-τ yield is given by

Bz (τ) σ + Cz (τ) σz + 2Dz (τ)σzt.

The code that calculates Az (τ), Bz (τ), Cz (τ), and Dz (τ) and allows to verify Propositions 1
and 4 in the context of stochastic convexity is available upon request.
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Appendix D Robustness results

Other measures: Since our MBS duration and convexity measures are provided by Barclays,
one might suspect that our results could be driven by model misspecification. To address
this issue, we re-run our benchmark regressions using the Bank of America MBS indices. The
results in Table 9 are qualitatively in line with those reported earlier using the Barclays indices.
MBS dollar duration is highly significant in particular for longer maturities. Similarly, for the
bond yield volatility regressions, we find MBS dollar convexity to be significant.

Real bonds: In the main analysis of the paper, we use real yields data which has been adjusted
for liquidity because a large literature documents a significant liquidity premium in the TIPS
market which (i) varies a lot over time and (ii) is found to be particularly high during the
2008 financial crisis (see, e.g., D’Amico, Kim, and Wei (2014) and Pflueger and Viceira (2015),
among others). For example, Pflueger and Viceira (2015) emphasize that in order to understand
the predictability of real bond returns, it is important to disentangle the predictability due to
liquidity and the predictability due to cash flow risks.

To illustrate this point, the upper panel of Figure 7 plots the 10-year TIPS yield (bold
line) and two real yields adjusted for liquidity from Pflueger and Viceira (2015) and D’Amico,
Kim, and Wei (2014), respectively.31 In the lower panel, we plot the difference between the
TIPS yield and the liquidity adjusted yields and note the large spike at the beginning of 2008,
indicating a large liquidity premium in the TIPS market.

It is therefore a natural question to ask how and whether this affects our results. To address
these concerns we present in Table 10 real bond return predictability results using different
real yields. The first column reveals that regressing the actual 10-year TIPS on dollar duration
in the 1999-2013 sample produces a slope coefficient that is positive but not significant. At the
same time the second and third columns show that using either Pflueger and Viceira (2015)
or D’Amico, Kim, and Wei (2014) real yields leads to positive and significant coefficients of
comparable magnitude. In order to gauge the effect of the liquidity dry-up during the 2008-
2009 financial crisis, we can run regressions from annual bond returns from TIPS and control
for a crisis dummy. We note that the estimated coefficient on duration (fourth column) is
quantitatively in line with the ones for liquidity-adjusted yields and statistically significant.

Interest rate swaps: Interest rate risk is primarily hedged in either the Treasury or interest rate
swap market and the main focus in the previous section has been on Treasury data. The reason
for this is twofold. First, interest rate swap data contain a considerable credit risk component
(see Feldhütter and Lando (2008)) which is outside the scope of our paper to explain. Second,
after the Lehman default in 2008, prices of interest rate swaps (especially at longer maturities)
got possibly distorted due to a decline in arbitrage capital (see Krishnamurthy (2010)). In
particular, our data sample also covers the time period where the swap spread, defined as the
difference between the fixed rate on a fixed-for-floating 10-year swap and 10-year Treasury rate,
turned negative. Nevertheless, for robustness reasons, we also run bond risk premia regressions
using swap rather than Treasury data and we report estimated coefficients in Table 11.32

We note that the size and significance of the estimated coefficients are almost identical to

31Pflueger and Viceira (2015) estimate the liquidity premium using an approach consisting of regress-
ing breakeven inflation onto bond market liquidity proxies while controlling for inflation expectations.
D’Amico, Kim, and Wei (2014) on the other hand use a no-arbitrage term structure model.

32We bootstrap a zero-coupon curve from swap rates and calculate excess returns that are directly
comparable to the Treasury excess returns we use in the benchmark results.
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Table 9

Bond risk premia and volatility regressions: Alternative measures

The upper panel reports estimated coefficients from regressing annual bond excess re-
turns onto BoA MBS dollar duration and the level of interest rates. The lower panel
presents coefficients from regressing yield volatilities onto BoA MBS dollar convexity. t-
Statistics are calculated either using Newey and West (1987) (in parentheses) or Hansen
and Hodrick (1980) (in brackets). Data is monthly and runs from December 1989 to
December 2012 (bond excess returns) and January 1997 to December 2012 (bond yield
volatilities).

Panel A: Bond excess returns

2y 3y 4y 5y 6y 7y 8y 9y 10y
constant -0.0028 -0.1112 -0.3609 -0.7291 -1.1951 -1.7381 -2.3380 -2.9776 -3.6439

(-0.01) (-0.17) (-0.36) (-0.56) (-0.74) (-0.91) (-1.07) (-1.22) (-1.37)
[-0.01] [-0.17] [-0.37] [-0.56] [-0.74] [-0.91] [-1.06] [-1.20] [-1.33]

duration 0.0534 0.1166 0.1864 0.2594 0.3332 0.4062 0.4776 0.5468 0.6137
(2.63) (3.32) (3.94) (4.34) (4.50) (4.52) (4.47) (4.40) (4.34)
[3.44] [4.54] [5.48] [5.75] [5.47] [5.03] [4.66] [4.38] [4.17]

Adj. R2 6.09% 8.35% 10.97% 13.53% 15.84% 17.81% 19.46% 20.83% 22.00%

constant -0.0454 -0.0708 -0.1764 -0.3721 -0.6547 -1.0140 -1.4369 -1.9108 -2.4253
(-0.14) (-0.11) (-0.19) (-0.30) (-0.43) (-0.57) (-0.70) (-0.83) (-0.96)
[-0.16] [-0.12] [-0.19] [-0.30] [-0.42] [-0.54] [-0.65] [-0.77] [-0.88]

duration 0.0467 0.1230 0.2156 0.3158 0.4185 0.5206 0.6200 0.7153 0.8062
(2.02) (2.99) (4.04) (4.94) (5.49) (5.69) (5.71) (5.65) (5.57)
[2.19] [3.48] [5.24] [6.94] [7.58] [7.27] [6.73] [6.28] [5.95]

level 0.0471 -0.0447 -0.2042 -0.3950 -0.5981 -0.8014 -0.9973 -1.1806 -1.3485
(0.46) (-0.25) (-0.85) (-1.36) (-1.75) (-2.04) (-2.24) (-2.37) (-2.46)
[0.56] [-0.32] [-1.18] [-1.96] [-2.54] [-2.89] [-3.07] [-3.15] [-3.17]

Adj. R2 6.70% 8.54% 12.64% 17.46% 22.20% 26.43% 29.98% 32.87% 35.16%

Panel B: Bond yield volatilities

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
constant -3.9255 -2.0995 0.0209 1.3622 2.1274 2.5320 2.7141 2.7640 2.7413 2.6835

(-1.44) (-0.85) (0.01) (0.77) (1.40) (1.88) (2.23) (2.48) (2.66) (2.79)
[-1.29] [-0.77] [0.01] [0.70] [1.27] [1.71] [2.04] [2.27] [2.43] [2.55]

convexity 0.1038 0.1017 0.0798 0.0616 0.0491 0.0406 0.0349 0.0310 0.0282 0.0262
(4.95) (6.82) (7.43) (7.41) (7.02) (6.48) (5.96) (5.54) (5.22) (5.00)
[4.43] [6.21] [6.99] [7.15] [6.86] [6.33] [5.78] [5.32] [4.98] [4.74]

Adj. R2 28.95% 27.55% 24.84% 22.43% 20.16% 18.20% 16.62% 15.42% 14.55% 13.94%

those reported for Treasuries. Adding explanatory factors such as the level of yields does not
deteriorate the significance of MBS dollar duration.
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Figure 7. Real yields, 1999 - 2013

The upper panel plots the 10-year TIPS yield and liquidity adjusted yields from D’Amico,
Kim, and Wei (2014) and Pflueger and Viceira (2015). The lower panel plots the differ-
ence between the 10-year TIPS yield and the two liquidity adjusted yields.
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Table 10

Real bond risk premia regressions

This table reports estimated coefficients from regressing annual real bond excess returns,
rx10y∗

t,t+1y, onto MBS dollar duration:

rx10y∗
t,t+1y = β10y

0 + β10y
1 durationt + β10y

2 durationt × d2008t + ǫ10yt+1y,

where rx10y∗
t,t+1y is the annual bond return calculated from TIPS (first and fourth column),

liquidity adjusted yields from Pflueger and Viceira (2015) (PV) and D’Amico, Kim, and
Wei (2014) (DKW). d2008t is a dummy which takes a value of one during 2008 and 2009
and zero otherwise. t-Statistics are calculated using Newey and West (1987). Data is
monthly and runs from March 1999 through December 2012.

TIPS PV DKW TIPS
constant -4.918 -11.245 -8.241 -10.43

(-0.69) (-1.88) (-2.58) (-1.21)
duration 0.022 0.034 0.028 0.030

(1.37) (2.40) (3.45) (1.78)
interaction no no no yes

Adj. R2 4.88% 12.72% 16.13% 11.00%
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Table 11

Bond risk premia regressions: swaps

This table reports estimated coefficients from regressing annual bond excess returns
constructed from interest rate swaps, rxswτ

t+1y, onto a set of variables:

rxswτ
t+1y = βτ

0 + βτ
1durationt + βτ

2 levelt + ǫτt+1y ,

where durationt is MBS dollar duration and levelt is the one-year yield. t-Statistics are
calculated either using Newey and West (1987) (in parentheses) or Hansen and Hodrick
(1980) (in brackets). Data is monthly and runs from December 1989 to December 2012

2y 3y 4y 5y 6y 7y 8y 9y 10y
constant -1.8231 -3.6439 -6.0636 -9.0721 -12.4627 -16.0119 -19.7017 -23.4686 -27.1796

(-1.76) (-1.79) (-2.15) (-2.62) (-3.11) (-3.56) (-3.94) (-4.26) (-4.56)
[-1.54] [-1.53] [-1.82] [-2.22] [-2.65] [-3.04] [-3.38] [-3.68] [-3.95]

duration 0.0058 0.0118 0.0186 0.0264 0.0347 0.0433 0.0521 0.0610 0.0696
(2.38) (2.61) (3.04) (3.59) (4.15) (4.66) (5.10) (5.45) (5.77)
[2.04] [2.20] [2.55] [3.02] [3.49] [3.94] [4.33] [4.66] [4.96]

Adj. R2 6.82% 7.62% 10.00% 13.03% 16.00% 18.80% 21.44% 23.93% 26.18%

constant -1.5139 -3.3676 -5.9083 -9.0704 -12.6109 -16.2879 -20.0893 -23.9528 -27.7451
(-1.56) (-1.67) (-2.08) (-2.58) (-3.07) (-3.54) (-3.93) (-4.26) (-4.56)
[-1.39] [-1.46] [-1.81] [-2.25] [-2.70] [-3.12] [-3.48] [-3.80] [-4.09]

duration 0.0038 0.0100 0.0175 0.0263 0.0357 0.0451 0.0546 0.0642 0.0733
(1.75) (2.18) (2.67) (3.21) (3.70) (4.17) (4.59) (4.95) (5.25)
[1.62] [1.98] [2.41] [2.89] [3.35] [3.79] [4.19] [4.54] [4.85]

level 0.1739 0.1554 0.0874 0.0009 -0.0833 -0.1553 -0.2180 -0.2724 -0.3181
(2.17) (0.97) (0.39) (0.00) (-0.26) (-0.43) (-0.55) (-0.64) (-0.70)
[2.11] [0.92] [0.37] [0.00] [-0.25] [-0.42] [-0.55] [-0.64] [-0.72]

Adj. R2 14.77% 9.37% 10.32% 13.07% 16.18% 19.18% 22.00% 24.63% 26.98%
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