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In the past decade, we have witnessed an unparalleled development in high throughput
technologies. One of the most exciting developments is in microarray technology. Microarrays
have been extensively used in biomedical, particularly cancer, studies. Microarrays make it
possible to measure the expressions of thousands of genes simultaneously and detect genomic
markers that are associated with cancer development and progression. In this article, we will
focus mainly on cancer microarray studies, although many issues and techniques discussed
are also applicable to other high throughput (eg epigenetic, proteomic) measurements, and to
other diseases or phenotypes (eg diabetes, cardiovascular diseases).

Cancer microarray study

Cancer is a heterogeneous class of diseases caused by the abnormal proliferation of cells
in the body. On a cellular level, cancer development and progression can result from genetic
mutations and defects. For cancer research, the development of microarray technologies opens
the possibility for transcriptional fingerprinting, as the collection of transcriptional activated genes
and the levels of mRNA can be a more accurate definition of the state of the cell than the simple
genetics or histology. Massive applications of microarrays in cancer research started in the late
1990s. Significant successes have been achieved since then (Knudsen (2006)). As an example,
gene signatures obtained from microarray studies have already had a direct impact on breast
cancer and lymphoma clinical practice.

Based on their specific scientific goals, cancer microarray studies can be categorised as
follows: (1) studies designed to understand cancer biology. For example, multiple studies have
been conducted to investigate whether patients with homogeneous histologies can be further
categorised into different subtypes with different genomic patterns; (2) studies designed to
identify diagnosis markers. Studies have been conducted comparing expressions of tumour
versus normal tissues, with the goal of identifying genes whose expressions are linked with an
increased risk of developing cancer; (3) studies designed to identify prognosis markers. Studies
have been conducted to identify genes whose expressions are linked with shortened disease-
free or overall survival in cancer patients; and (4) studies designed to identify predictive markers,
where the goal is to identify genes whose expressions are linked with a positive response to
treatment. We note that the above categorisation is based on our own experiences and is
subjective. In addition, there may exist studies that belong to multiple categories.

In the following sections of the paper, we will focus on the studies in categories (2)–(4). A
common characteristic of such studies is that a cancer clinical outcome (or phenotype) is
measured along with the gene expressions. The cancer clinical outcome can be the categorical
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cancer status or response to treatment, censored cancer survival, or a continuous marker.
Supervised statistical methodologies are needed to identify the genes associated with the
outcomes. In contrast, statistical analyses of studies in category (1) are often unsupervised.
Although studies in category (1) can be of great importance, they often demand statistical
techniques that are significantly different from those for studies in other categories, and hence
will not be discussed here.

Although significant success has been achieved, cancer gene signatures identified from
microarray studies often suffer from low reproducibility. For example, the breast cancer
prognosis signatures identified in van’t Veer et al (2002) andWang et al (2005) contain 70 and 76
genes, respectively, with only 3 genes in common. Although more reproducible gene signatures
exist, in general, the reproducibility of cancer microarray gene signatures is of concern.

Several factors may have contributed to the low reproducibility. First, different studies may
contain patients with different demographic characteristics (age, gender, race), clinical risk
factors (tumour type and stage) and treatment regimes. Such differences naturally raise
concerns regarding the comparability of different studies. The low reproducibility caused by
such differences can be improved by properly adjusting for relevant risk factors in the regression
analysis. Second, seemingly different sets of identified genes may correspond to the same
or similar gene pathways. Pathway-based analysis can be conducted following gene-based
analysis to improve reproducibility. The third, and perhaps most important, reason is that most
cancer microarray studies have relatively small sample sizes (101∼3 samples compared to
103∼4 genes). Such studies can be severely underpowered, which may lead to significant
variations of identified gene signatures. An ideal solution to improve reproducibility is to conduct
well designed, large-scale, prospective studies. However, such studies can be extremely time-
consuming and expensive. A cost-effective solution is to conduct an integrative analysis of
multiple existing studies with comparable designs to increase the statistical power and, hence,
the reproducibility.

Data integration

Table 1
Public databases that host cancer microarray datasets

Name Organization URL

ArrayExpress European Bioinformatics Institute www.ebi.ac.uk/arrayexpress/

CIBEX Center for Information Biology cibex.nig.ac.jp

GEO National Institutes of Health www.ncbi.nih.gov/geo

CleanEx Swiss Institute of Bioinformatics www.cleanex.isb-sib.ch

RAD University of Pennsylvania www.cbil.upenn.edu/EPConDB/

GermOnline International Consortium www.germonline.org

HPMR Stanford University receptome.stanford.edu

PEPR Children’s National Medical Center microarray.cnmresearch.org
Note: The list is far from complete.
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Public data warehouses. With regard to cancer microarray studies, there has been a global
coordinated effort to make experiment protocols and raw data publicly available. Multiple public
data warehouses have been constructed to host cancer microarray datasets. Although the
original goal of such data warehouses was to facilitate the reproduction and validation of
microarray studies, they have enabled the integrative analysis of multiple existing studies to
be conducted. We provide a partial list of public databases in Table 1. Beyond those large
databases, many cancer microarray datasets are hosted at researchers’ personal or institutional
websites.

A case study of pancreatic cancer. Weprovide descriptions of four pancreatic cancermicroarray
studies in Table 2. Although this is a small example, we can already appreciate some of the
difficulties associated with integrating datasets from different cancer microarray studies. Careful
examination of the datasets described in Table 2 and others suggests that different studies
may differ in platforms (eg nylon versus glass), technologies (eg oligo versus spotted), array
annotations, sample annotations, and ways of annotating and recording the above information.

Table 2
List of pancreatic cancer microarray studies

Dataset P1 P2 P3 P4

Reference Logsdon Friess Iacobuzio-Donahue Crnogorac-Jurcevic

PDAC 10 8 9 8

Normal 5 3 8 5

Array Affy HuGeneFL Affy HuGeneFL cDNA Stanford cDNA Sanger

UG 5521 5521 29621 5794

MIAME guideline. To facilitate the adoption of standards for experiment annotation and data
representation, and to introduce standards for experimental controls and data normalisation
methods, theMIAME (Minimum Information About AMicroarray Experiment) guideline has been
developed. MIAME was originally created by MGED, a consortium of industry and academic
representatives in the field. It is now required by most major journals including Nature, Cell, and
JAMA. Such journals require two things for MIAME compliance: MIAME checklist information
in a Word document, and depositing the dataset in a public microarray database. Under the
current MIAME guideline, a relatively complete description of a cancer microarray study should
contain information on the following aspects, which are also summarised in Figure1.

1. Experiment design, which includes a brief description of the experiment’s goals, the
type of experiment (time course, treated vs untreated, gene knockout), the experiment
factors (the conditions being tested, eg time, dose, response to treatment), the total
number of hybridisations, the types of replicates (biological or technical) and links to
citations.

2. Array design – each array used and each element (spot) on the array, and array design-
related information (e.g. platform type: in situ synthesised or spotted, array provider,
surface type: glass, membrane, other).
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3. Sample information, extract preparation and labelling, which includes the origin of the
samples (name, provider and characteristics – gender, age, developmental stage), the
manipulations to the samples (growth conditions, treatment, separation techniques),
the RNA extraction protocols, sample labelling protocols and spiked-in controls.

4. Hybridisation procedures and parameters: the solution (eg concentration of solutes),
blocking agent, wash procedure, quantity of labelled target used, time, concentration,
volume, temperature and description of the hybridisation instruments.

5. Measurements, including scanning information, scan parameters (laser power, spatial
resolution, pixel space, PMT voltage), the laboratory protocol for scanning (scanning
hardware and software used) and image analysis information.

6. Normalisation strategy (spiking, housekeeping genes, total array, other), normalisation
algorithm and control array elements.

In Figure 2, we provide an example of a GEO submission that follows the MIAME guideline.
Figure 2 includes two parts (separated by “sample table begin”): the MIAME information is at
the top and the data table is at the bottom.

Computation of similarity. A critical step in integrative analysis is the selection of studies with
comparable designs, which amounts to computing the dissimilarity measurements between
studies. For studies that follow the MIAME guideline, we can use the experiment annotations
to compute dissimilarities, and select those with zero or small dissimilarities for downstream
integrative analysis.

One possibility is the component-wise experiment dissimilarity measurement. For two cancer
microarray studies, we have two sets of annotation terms (denoted as A and B, respectively).
The component-wise dissimilarity between these two studies can be defined as 1−|A∩B|/ |A∪B|
(Jaccard) or 1−1/2(|A∩B|/ |A|+ |A∩B|/ |B|) (Kulczynski). Choosing one measurement versus
the other depends on how the researchers want to weigh the containments.

As with simple numerical measurements, once the distance (dissimilarity) is properly defined,
cancer microarray studies can be classified into clusters, where studies in the same cluster
share similar schemes and can be integrated for further analysis.

After clusters of studies have been defined, we can evaluate the comparability of selected
studies using (for example) the approach in Butte and Kohane (2006), which is based on
mapping concepts found in sample annotations to the UMLS (Unified Medical Language
System) meta-thesaurus. Specifically, for study i, the silhouettes can be computed as follows:
(1) compute a(i), the average dissimilarity between study i and all other studies in the same
cluster as study i; (2) compute d(i,C), the average dissimilarity between study i and cluster C
that study i does not belong to; (3) compute b(i) = minCd(i,C), the dissimilarity between study
i and its neighbour cluster; (4) compute s(i) = b(i)−a(i)

max(a(i),b(i)) . If study i is in a singleton cluster,
then s(i) = 0. Larger s(i)s suggest studies are better clustered, whereas small s(i)s suggest that
studies lie between clusters, and negative s(i)s suggest possible wrong clustering.

Integrative analysis

Knudsen (2006) and references therein show that, for cancers of the breast, ovary, lung,
colon, prostate and lymphatics, there are multiple independent studies. Using the approach
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Figure 1
Protocols and materials required for the annotation of a microarray experiment

LEX: Labelled Extract, Evaluated or Reference

Figure 2
Example of a GEO submission under the MIAME guideline

described above, for a specific type of cancer, we will be able to select multiple studies
with comparable designs. Available statistical methodologies that can analyse multiple cancer
microarray datasets can be categorised as meta analysis and integrative analysis methods.

Meta analysis. Meta analysis methods analyse each dataset separately, and then combine
summary statistics from the analysis of multiple datasets.

Available meta analysis methods can be further categorised as follows: (1) category 1 focuses
on the comparative analysis of published results, such as lists of significant genes, without
actually accessing the raw data. Representative examples include the Lists of Lists Annotated
(LOLA, www.lola.gwu.edu) and L2L (depts.washington.edu/l2l) methods. Those methods only
involve searching publication databases (for example PubMed or NCBI) and utilising text mining
techniques; and (2) Category 2 uses raw data to compute unified statistics across multiple
studies, and then combines those statistics. Available methods include: (a) the effect size
approach, whereby the effect size is measured for each gene in each study as the Z score, and
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then combined under a random or fixed effects model; (b) the p-value approach, which applies
significance testing separately to each study and then combines the resulting p-values utilising
methods such as Fisher’s inverse Chi-square; and (c) the vote-counting approach, which ranks
genes according to the number of studies that show statistical significance for the genes in
question.

Integrative analysis. Integrative analysis, in the narrow sense, differs from meta analysis by
pooling and analysing raw data from multiple studies (as opposed to summary statistics).

A family of integrative analysis approaches, which have been referred to as “intensity
approaches” in the literature, compare intensity measurements of a gene matched across
multiple studies, and search for transformations that make those measurements comparable
(Shabalin et al (2008) and references therein). After transformation, multiple datasets can be
directly combined and treated as if they were from a single study. Single-dataset methods can
then be used for analysis. It is important to note that the comparability of gene expressions
obtained from different platforms (even after transformations) is still debatable.

MTGDR: a new integrative analysis approach

In this section, we describe a newly proposed integrative analysis method called MTGDR (Ma
and Huang (2009)), and demonstrate the basic principles of statistical methods for integrative
analysis.

Data and model. For simplicity of notation, we assume that the same set of d genes are
measured in M studies with M > 1. For study m = 1 . . .M, let Ym denote the cancer clinical
outcome and Zm denote the gene expressions. In addition, we assume a regression model
Ym ∼ ϕ(Zm′βm), where βm is the regression coefficient, Zm′ denotes the transpose of Zm, and
ϕ is the known link function. We assume the same link function ϕ across different experiments.
However, we allow for different regression coefficients βm and, hence, different models under
different studies. The rationale is that a one-unit gene expression change in experiment 1
(for example, a cDNA study) may not be equivalent to a one-unit change in experiment 2
(for example, an Affymetrix study). The regression coefficients, which measure the strength of
associations, should be allowed to differ.

Consider binary cancer outcomes. For study m, Ym = 1 and Ym = 0 may denote the presence
and absence of cancer or two different cancer stages, respectively. We assume the commonly
used logistic regression model, which postulates that the logit of the conditional probability
logit(P(Ym = 1|Zm)) = αm +Zm′βm, where αm is the unknown intercept. Suppose that there are
nm iid observations in experiment m. The log-likelihood is: Rm(βm) =

∑nm
j=1Y

m
j (α

m + Zm′j βm)−
log(1 + exp(αm + Zm′j βm)).

MTGDR method. The MTGDR is a gene selection method, which can analyse multiple
heterogeneous datasets. With the MTGDR, gene selection amounts to identifying non-zero
components of the regression coefficients βm. In integrative analysis, it is reasonable to assume
that the sets of genes with non-zero coefficients (i.e., the identified cancer-associated genes) are
the same across different experiments. However, even though similar logistic regression models
are used to link genes with cancer outcomes in all experiments, the non-zero components of
the regression coefficients βm may be not equal across experiments. This is mainly due to the
concern of different experimental setups, especially platforms.
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Let β = (β1, . . . , βM). Let R(β) = R1(β1)+ . . .+RM(βM), the overall objective function. Let Δν be
a small positive increment. In the implementation, we choose Δν = 10−3. Let βm(ν) denote the
parameter estimate of βm corresponding to ν. Let 0 ≤ τ ≤ 1 be a fixed threshold value. The
MTGDR algorithm proceeds as follows.

1. Initialise β = 0 (component-wise) and ν = 0.

2. With current estimate β, compute the d×M negative gradientmatrix g(ν) = −∂R(β)/∂β,
where the (j,m)th element of g is gj,m(ν) = −∂Rm(βm)/∂βmj .

3. Compute the length d vector of meta gradient G, where the jth component of G is
Gj(ν) =
∑M
m=1 gj,m(ν).

4. Compute the meta threshold vector F(ν) of length d, where the jth component of F(ν):
Fj(ν) = I(|Gj(ν)| ≥ τ ×maxl |Gl(ν)|) and I is the indicator function.

5. Update the (j,m)th element of β: βj,m(ν + Δν) = βj,m(ν)− Δνgj,m(ν)F(ν) and update
ν by ν + Δν.

6. Steps 2–5 are iterated k times, where k is determined by cross validation.

The tuning parameters τ and k jointly determine the property of β and hence the property
of gene selection. When τ ≈ 0, β is dense even for small values of k (i.e, many genes are
selected). When τ ≈ 1, β is sparse for small k and remains so for a relatively large number
of iterations. But it will become dense eventually. At the extreme, when τ = 1, the MTGDR
usually updates estimates for a single gene at each iteration, which is similar to the stage-wise
approaches. When τ is in the middle range, the characteristics of β are between those for τ = 0
and τ = 1. For τ 6= 0, gene selection can be achieved with cross-validated finite k by having
certain components of β exactly equal to zero.

Pancreatic cancer study. Pancreatic ductal adenocarcinoma (PDAC) is a major cause of
malignancy-related deaths. Apart from surgery, there is still no effective therapy, and even
resected patients usually die within one year post-operatively. As shown in Table 2, we collected
data from four independent studies, and conducted an integrative analysis. We compute the
dissimilarity measurements using the MIAME descriptions and found reasonable similarity
among the four studies. In addition, we manually examined the experiment protocols and
experimental setup and determined that the designs of the four studies are comparable. Among
the four studies, two use cDNA arrays and two use oligonucleotide arrays. Cluster ID and gene
names are assigned to all the cDNA clones and Affymetrix probes based on UniGene Build 161.
The two sample groups considered in our analysis are PDAC and normal pancreatic tissues.
We identity a consensus set of 2,984 UniGene IDs. We remove genes with more than 30%
missingness in any of the four datasets. There are 1,204 genes remaining for downstream
analysis.

In the MTGDR analysis, tuning parameters are chosen via the threefold cross validation.
15 genes are identified as being associated with the risk of developing pancreatic cancer
(results available upon request). We find that, if a gene has a non-zero coefficient in one
dataset, then it has non-zero coefficients in all the datasets (which indicates that this gene is
identified as cancer-associated in all studies). However, the estimated coefficients for one
gene can be different across studies. This is the extra flexibility allowed by the MTGDR,
which naturally accommodates differences among experimental setups in different studies.
We evaluate the biological implications of selected genes by looking at www.ncbi.nlm.nih.gov/
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and other public databases. Among the 15 genes, several (including Fibrinogen-like 1, Carnitine
acetyltransferase, CRAT, PABPC4, RPS9 ribosomal protein S9, fibronectin 1, BCAT1, MKNK1,
PTPN12, GATM, NBL1) have been confirmed to be associated with the risk of developing
pancreatic cancer in independent studies.

We have conducted extensive evaluations and comparisons. The results have been
summarised in Ma and Huang (2009). Specifically, we have found that: (a) the MTGDR gene
signature can be significantly different from alternatives; and (b) compared with gene signatures
identified using alternative approaches including the pooled analysis, meta analysis, and single-
dataset analysis, the gene signature identified by the MTGDR is more reproducible and has
better predictive power.

Remarks. Although the MTGDR is a very specific algorithm, it does provide insights into the
essential features common to most integrative analysis methods. Specifically, in integrative
analysis, the effect of a single gene (on a cancer outcome) needs to be considered in multiple
studies simultaneously. Such an effect needs to be described using the vector of regression
coefficients, with one coefficient for each study. In addition, it is crucial to allow for the existence
of heterogeneity among different studies. Following the development of MTGDR, we can extend
other single-dataset gene selection methods to the integrative analysis of multiple datasets. In a
recent endeavour, we have considered the group penalisation methods for integrative analysis,
which have roots in the single-dataset penalisation methods.

Conclusions

Cancer microarray study is a representative example of the “large p, small n” data, which
has attracted extensive attention. The analysis of individual datasets can be underpowered,
which may lead to low reproducibility of findings. The integrative analysis of multiple datasets
can increase statistical power without additional cost. Successful integrative analysis demands
proper execution of the following steps: (1) the establishment of public databases for data
storage and access; (2) the detailed descriptions of each individual study; (3) the computation
of dissimilarities between studies, and the selection of comparable studies; and (4) the effective
statistical methods for integrative analysis.

Many public databases have been established. Although most of them have already been very
successful, communications among databases are less satisfactory. The effective integration
of databases is of critical need. Software that can conduct automated database searching
and dataset integration is needed. The MIAME guideline has been proposed and commonly
adopted for descriptions of cancer microarray data. Of note, other guidelines have also been
developed and (maybe less extensively) adopted. The integration and unification of guidelines
may be necessary for the better integration of studies (described using different guidelines).
There have been a few published studies investigating the different definitions of dissimilarity.
However, a small number of experiment annotations cannot provide complete descriptions of all
studies. The examination of each individual study by experts and the selection of studies based
on experiences still play an important role. Efficient statistical methodologies for integrative
analysis still have a long way to go. Although considerable success has been achieved, most
available approaches have not been extensively tested and there is no consensus on the relative
performance of the different approaches.

IFC Bulletin No 33 89



References

Butte, AJ and IS Kohane (2006): “Creation and implications of a phenome-genome network”,
Nature Biotechnology, vol 24, pp 55–62.

Crnogorac-Jurcevic, T, E Missiaglia, E Blaveri et al (2003): “ Molecular alterations in pancreatic
carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly
prevalent”, Journal of Pathology, vol 201, pp 63–74.

Friess, H, J Ding, J Kleeff et al (2003): “Microarray-based identification of differentially expressed
growth-and metastasis-associated genes in pancreatic cancer”, Cellular and Molecular Life
Sciences, vol 60, pp 1180–99.

Iacobuzio-Donahue, CA, R Ashfaq, A Maitra et al (2003): “Highly expressed genes in pancreatic
ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription
profiles obtained from three major technologies”, Cancer Research, vol 63, pp 8614–22.

Knudsen, S (2006): “Cancer Diagnostics with DNA microarrays”, Wiley.

Logsdon, CD, DM Simeone, C Binkley et al (2003): “Molecular profiling of pancreatic
adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in
pancreatic cancer”, Cancer Research, vol 63, pp 2649–57.

Ma, S and J Huang (2009): “Regularized gene selection in cancer microarray meta-analysis”,
BMC Bioinformatics, vol 10, issue 1.

Shabalin, AA, H Tjelmeland, C Fan et al (2008): “Merging two gene expression studies via cross
platform normalization”, Bioinformatics, vol 24, pp 1154–60.

van’t Veer, LJ, H Dai, H van de Vijver, Y He et al (2002): “Gene expression profiling predicts
clinical outcome of breast cancer”, Nature, vol 415, pp 530–6.

Wang, Y, J Klijin, Y Zhang, AM Sieuwerts et al (2005): “Gene-expression profiles to predict
distant metastasis of lymph-node-negative primary breast cancer”, Lancet, vol 365, pp 671–9.

90 IFC Bulletin No 33


	Integrative analysis of cancer genomic data
	Cancer microarray study
	Data integration
	Integrative analysis
	MTGDR: a new integrative analysis approach
	Conclusions
	References




