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Motivation
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Sentiment influences 
economic agents’ 
decisions

Survey-based measures 
of sentiment are costly, 
tedious, and published 
with a delay

News-based indices 
can be produced at 
a higher frequency, 
allowing for more up 
to date assessment 
at a lower cost
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Data cleaning Sentiment analysis NSI

Overview

Web scraping
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Data Collection and Pre-processing

Data were collected from multiple local news sources. The sections of interest 
were limited to economy, banking, finance and related fields. Text from the 
articles are pre-processed and further analyzed. 

Pre-processing steps include:

▪ Removal of extra spaces in the text
▪ Case normalization
▪ Removal of punctuations and numbers
▪ Unicode conversion
▪ Tokenization
▪ Vectorization
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Dictionary based method involves a pre-defined list of keywords from some of the 
most used dictionaries in finance and well-known general dictionaries:

▪ General Inquirer (GI Lexicon)
▪ Loughran-McDonald Sentiment Dictionary (LM Lexicon)
▪ Financial Stability Sentiment Dictionary (FD Lexicon)
▪ Hu and Liu Opinion Lexicon (HL Lexicon)
▪ Valence Aware Dictionary for Sentiment Reasoning (VADER)

Using genetic algorithm, we retrieved combinations of keywords that maximizes 
the number of classified sentences from ~3000 manually labelled sentences (PH 
Lexicon).

Methodology
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Methodology

Machine learning based method utilizes two pretrained models to predict 
sentiment of text:

▪ BERT
• ML model specifically trained using Wikipedia and BooksCorpus for 

common language tasks

▪ FinBERT
• Built by further training BERT using financial text such as 10-K and 10-Q 

Corporate Reports, analyst reports and fine tuning it for financial sentiment 
classification
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Model Evaluation

Lexicons Accuracy Macro F1

PH Lexicon 0.66 0.64

LM Lexicon 0.52 0.46

FD Lexicon 0.51 0.51

VADER 0.51 0.42

HL Lexicon 0.50 0.46

GI Lexicon 0.45 0.42

Machine Learning Models Accuracy Macro F1

FinBERT 0.66 0.63

BERT 0.58 0.45

Both dictionaries and machine learning models were evaluated against ~3000 
manually labelled sentences sampled from online news articles

Accuracy measures the fraction of the model’s correct predictions over total predictions. Meanwhile, macro F1 score 
combines both precision (a measure of the proportion of true positives that were correct) and recall (a measure of the 
proportion of true positives that were actually predicted).
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Results
Estimates of NSIs strongly co-move with key economic events.  
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Results

Model PSEi PMI BES CES

NSI-D 0.61 0.62 0.49 0.38

NSI-ML 0.53 0.58 0.43 0.28

Correlation analysis suggest co-movements between NSIs and selected economic 
indicators

The Business Expectations Survey (BES) is one of the quarterly surveys conducted by the Bangko Sentral ng Pilipinas (BSP) 
which gathers information about entrepreneurs’ views on the general business situation in their own industry and on the 
national economy. Likewise, the Consumer Expectations Survey (CES) captures the economic outlook of consumers as an 
indication of the country's future economic condition.
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Topic Modeling involves unsupervised machine learning techniques to cluster 
text based on similarities.

We considered the two of the commonly used techniques in topic modelling:

▪ Non-Negative Matrix Factorization (NMF)
▪ Latent Dirichlet Allocation (LDA)

Using the coherence score, we determined 12 to be the optimal number of 
topics. We then group the articles according to topics, compute the NSI for 
each and correlate these with selected economic indicators.

Topic Modeling and Correlation Analysis
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Word clouds of selected topics

Monetary PolicyBanking

Energy

Company Earnings

Agriculture

Results
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Results

Topic PSEi PMI
Company Earnings 0.72 0.53

Services 0.45 0.47
Trade 0.44 0.63
Banking 0.41 0.49
Government Projects 0.44 0.35

Topic BES CI CES CI GDP
Company Earnings 0.74 0.79 0.81

Infrastructure 0.60 0.62 0.70
Trade 0.48 0.36 0.78

As well as against quarterly indicators BES, CES and GDP growth rate 

Correlation analysis show comovements of selected topics against monthly
indicators PSEi and PMI…
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Key Findings and Future Works
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Key Takeaways:

▪ NSIs are found to match expected sentiment for key economic events
▪ NSIs showed potential in complementing existing surveys (BES and CES) and 

providing timely measurement of market sentiment
▪ Topic modeling can help uncover specific news themes that may have more 

predictive content for specific key economic variables

Future Works:

▪ Enhance NSI-D (e.g., Add more linguistic rules, Part-of-Speech Tagging)
▪ Retrain FinBERT using the manually labelled dataset for NSI-ML
▪ Complement with other ML models (e.g., LM Lexicon + SVM, 

FinBERT + Random Forests, etc.)
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Thank you!

* The views expressed herein are those of the authors’ only and do not necessarily reflect those of the Bangko Sentral 
ng Pilipinas
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