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Introduction

@ Banknote production in the Eurosystem relies on strict
quality controls throughout the process (ECB quality
requirements, ISO standards);

@ Similar to any manufacturing process, the printing of
banknotes can give rise to various imperfections and
defects;

e The number, type, and size of defects on banknotes are
critical for the conformity of production batches (with
related losses).



Introduction

@ Banknotes exhibit variability in the position of
elements, and in the shade and intensity of colors;

e While measurement of many parameters is carried out
via automatic optical systems, the validation process
cannot be fully automatized and requires highly
trained staff (potential subjectivity factors);

o Artificial Intelligence (Al) systems are profitably used
across industries to support and automatize quality
control;

@ Our work focuses on a denomination/defect pair to
assess whether neural networks could improve process
efficiency.



Data

@ Since acquisition of high-resolution images is costly:
e Focus on € 50 banknotes of the Europa series;
e Focus on flag-bite defects: lack of ink on a homogenous
background, with varying shape, size, and position.
@ We manually acquire 24-bit color images (RGB model)
of banknotes with 2,656 x 1,467 pixels resolution and
annotate them as fit/unfit.
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Neural Networks & Image Processing

@ Previous research on banknotes
analysis mostly resorts to
convolutional neural networks
(CNNs);

@ Applications address recognition of
denomination, serial number,
currency, state of wear as well as
counterfeit detection. On the
production phase, we mention Pham
et al., 2017; Ke et al., 2016.

@ The inherent variability of banknotes
requires training of complex CNN
architectures, usually addressed via
data augmentation.




One-shot learning & Siamese Networks

@ The traditional way: data
augmentation

e Manual: Overfitting of specific bite
defects;

o Al-enabled: Hallucination-prone
behavior;

@ The practical way: one-shot learning
(Fei et al., 2006)

o Emulates the ability of the human
mind to associate entities based on
similarity criteria.
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Model development & Training

@ We build a Siamese neural network architecture (Koch
et al., 2015) for the bite-detection task:

o Each twin branch extracts a signal from its input, either
a verification or a support image;

e The more similar the signals, the most likely images
belong to the same class.
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Model development & Training

We train our models on different resolutions of the input
set: high, medium and low resolution + cropped flag
detail:

e Training set: N =200 images (100 bites, 100 fit;
C(N,2) training pairs);
@ We ensure convergence of the training process to global

minima via drop-out, batch normalization, random
re-initialization of weights;

@ We control internal logics of networks via soft masks
extracted from convolutional layers.



Empirical Results
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Empirical Results

Recall Fl-Score
o @ - = = @ — =
i | i i i | i
E‘ = = = = = = =
=] =] =] =] =] =] =]
= w w w w w w w
W W W W W W W
WHOLE HR 75 B2 .67 55
WHOLE MR 1 .87 .87 -3 .84 .B2 .93 .67
WHOLELR = .62 .62 -55 .62
FLAG - - -5 .98

Test set size: 46 images (14 bites; 32 fit);

RND-1: Support image is picked at random;

SSIM-j, j=0,1: the (j+1)th most similar image is picked as support;
SSIM-k: the k most similar images are picked as support, with k=10.



Empirical Results




Conclusions & Next Steps

@ Our exploratory study provides insights on the
detection of banknote defects for quality control via
one-shot learning;

@ We find medium resolution input allows for greater
accuracy based on different metrics and evaluation
criteria;

e Trade-off between resolution and attention scattering
due to variability patterns of banknotes;

@ We are able to gain insights on the internal logics
adopted by the models via soft masks;

e Future work will extend the analysis to additional
defects (minor bite type defects already tested) and
denominations, and to additional model architectures.
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