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Motivation

The sharing of financial data between central 
banks is crucial for managing economic policy 
and financial sector supervision. 
Key advantages:
• Improved economic policy: Informed 

responses to global trends and risks. 
• Boosted financial stability: Identifies risks and 

strengthens systems proactively.
• Better cross-border regulation: Enables 

consistent standards and detects misconduct.
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Motivation
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Challenges:
• Legal and Regulator Constraints: varying laws and data protection regulations in 

different countries can be cumbersome for data sharing.
• Data Privacy and Security Concerns: any breaches of confidential information 

can have severe consequences.
• Data Transmission: moving extensive datasets between central banks can 

become bandwidth-intensive and expensive.



Motivation
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How to overcome these challenges? 

Idea: “Federated Learning + Diffusion Models”

Challenges:

• Use Federated Learning for decentralized node training without data exchange. 
• Utilize Diffusion Models to synthesize central bank’s local data; then share the 

trained synthesizer model as part of the federated training. 
• The global model aggregates knowledge from central banks to produce high-

quality synthetic data.

• Legal and Regulator Constraints: varying laws and data protection regulations in 
different countries can be cumbersome for data sharing.

• Data Privacy and Security Concerns: any breaches of confidential information 
can have severe consequences.

• Data Transmission: moving extensive datasets between central banks can 
become bandwidth-intensive and expensive.



Data Sharing with Federated Learning
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Federated Learning: the mechanics 

Main ingredients:
1. Training on the Client: the initial model 𝜃!" is 

trained locally on each client 𝜔! using the local 
data 𝐷!, ensuring data privacy and security.
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Federated Learning: the mechanics 

Main ingredients:
1. Training on the Client: the initial model 𝜃!" is 

trained locally on each client 𝜔! using the local 
data 𝐷!, ensuring data privacy and security.

2. Model Aggregation at the Server: after each 
communication round 𝑟 = 1,… , 𝑅 only the 
model parameters are sent to a centralized 
server, where they are aggregated into a “global” 
model 𝜃# .
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Federated Learning: the mechanics 

Main ingredients:
1. Training on the Client: the initial model 𝜃!" is 

trained locally on each client 𝜔! using the local 
data 𝐷!, ensuring data privacy and security.

2. Model Aggregation at the Server: after each 
communication round 𝑟 = 1,… , 𝑅 only the 
model parameters are sent to a centralized 
server, where they are aggregated into a “global” 
model 𝜃# .

3. Continuous Learning Cycle: The updated global 
model is sent back to the clients for further local 
training, creating a continuous cycle of learning 
and improvement.
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Federated Learning: Benefits
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Privacy Preserving: Federated Learning enhances user privacy by 
keeping all the sensitive data on the local device, never sending raw 
data to the central server.

Reduced Data Transfer Costs: in the Federated Learning setup only 
the model parameters are being exchanged therefore avoiding 
transmission of large data volumes.

Global Insights: financial institutions can benefit from insights 
gathered globally across different markets and segments, but applied 
in a way that is tailored to local market conditions and regulations.



From Data Sharing to Model Sharing
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What kind of generative model 
could fit our needs?
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Diffusion Models

• Diffusion Models – are generative models trained with the objective of noise removal and 
subsequently constructing the desired data samples from pure noise.
• First introduced by Jascha Sohl-Dickstein et al. in 2015 with motivation from non-equilibrium 

thermodynamics. They can be thought as a sequence of denoising autoencoders.
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Forward Diffusion Process

Reverse Diffusion Process

Figure is taken from „Denoising Diffusion Probabilistic Models “ by Ho et al. https://arxiv.org/pdf/2006.11239.pdf

- Markov chain of diffusion steps.
- Add Gaussian noise in T steps.
- When 𝑇 → ∞, 𝑥+ is equivalent 
to an isotropic Gaussian.
- No learning at this step.

- Reverse process of T steps.
- Data generation from Isotropic 
Gaussian noise.
- Usually is called sampling.
- Learning is required.

https://arxiv.org/pdf/2006.11239.pdf


Diffusion Models for Financial Tabular Data

• FinDiff is a diffusion based generative 
model, that synthesizes financial tabular 
data for regulatory downstream tasks.
• It uses embeddings for mixed modality 

financial data, comprising both 
categorical and numeric attributes.
• Empirical results demonstrate high 

fidelity, privacy, and utility using FinDiff.
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FedTabDiff schematic overview
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1. Each central bank
trains a local
generative model 𝜽𝒊𝝎.

2. The Server aggregates
all models into a global 
generative model 𝜽𝝃
accumulating
knowledge from local
datasets 𝐷!".

3. The global model 𝜃# is
used to generate high 
quality tabular data
without sharing the
actual data.



Experimental Setup

• Mixed-type tabular datasets:
City of Philadelphia Payments – 215,302 payments generated by 58 city 
departments in 2017. Contains 10 categorical and 1 numeric attributes. 
Diabetes Hospital Data – 92,689 clinical care records collected by 130 US 
hospitals between 1999-2008. Each record has 40 categorical and 8 
numeric attributes.
• The dataset was non-iid partitioned 𝐷& ⊆ 𝐷 across 5 clients 𝜔&.
• Evaluation metrics: fidelity, utility, privacy, and coverage.
• Federated learning hyperparameters

total communication rounds: 𝑅 = 1000
client model 𝜃&' updates: 𝑅( = 20
• Diffusion model hyperparameters:

MLP layers: 1024 -> 1024 -> 1024 -> 1024
activation: leakyRelu
total diffusion steps: 𝑇 = 500
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Experimental Results

• Comparative analysis of the Federated (FedTabDiff) versus Non-Federated (FinDiff) 
models, evaluated using the full dataset 𝐷.

• Non-Federated diffusion models are trained individually at each client 𝜔! with subset 
𝐷! ⊆ 𝐷 (column "Split") and evaluated against the entire dataset 𝐷.
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Experimental Results

• Fidelity - similarity of every column in the synthetic dataset against the real dataset.
• Fidelity score comparison between Federated (FedTabDiff) and Non-Federated (FinDiff).
• In the Non-Federated model, each client is trained on its data subset 𝐷! ⊆ 𝐷 and evaluated 

across all subsets.
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Conclusion and Future Work

• Through the adoption of federated learning methodologies central banks may transition 
from data sharing to model sharing.
• FedTabDiff is a federated diffusion-based generative model for high-fidelity synthesis of 

mixed-type tabular data.
• The model avoids sharing of sensitive information by training a generative model and 

sharing it across different authorities without distributing the underlying data.
• Generated tabular data can be used for a variety of downstream tasks, such as regulatory 

compliance, anti-money laundering, fraud detection, risk management and many others.
• Future trajectories: advancement of privacy-preserving techniques, mitigation of 

information dissemination risks and evaluation on the proprietary regulatory financial 
statistics.
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Thank you
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