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MOTIVATION, BACKGROUND, SUMMARY OF RESULTS

• MNB’s commitment to high data quality

• Machine learning is suitable for large data volumes

• The role of ML in data quality checks is not yet standardized

Background

Results

• Un-labelled supervised learning can uncover relationships within the data

• State-of-the-art modelling techniques (XGBoost, Bayesian optimization)

• We present a few recommendations to flag potential data errors
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Unlabelled
supervised
methods we use

METHODS WE EMPLOY

Aggregated time series

Granular time series

Cross-sectional - granular

1

3

2

Residual plot in a model explaining a selected target variable
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DATA

• First ranking mortgages with a start date after 1st Oct 2021

• Approx. 73 thousand lines

• 274 columns → 69 columns (high correlations, missing value 
share >= 20 percent)

MNB LTV report Missing values

LTV = 
Loan amount

Allocated collateral value

Just a theory

Illustration
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XGBOOST GROWS DECISION TREES IN A SEQUENTIAL MANNER
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Loss reduction 
calculation

Similarity scores based on:

• residual direction

• residual magnitude

1. Visit only non-missing entries

2. Determine the best split and default direction for missing value based on the Similarity 
score above

Many hyperparameters to optimize

Sparsity-aware 
split finding
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BAYESIAN OPTIMIZATION TO FIND THE BEST HYPERPARAMETER CONFIGURATION 

GP: model of the objective function behaviour

• Train and test points are jointly distributed as 
multivariate normal

• Kernel encodes similarities between data points 
(shape of the prior)

Condition on data

Infer posterior

How to determine new samples?

• Acquisition Function

• Exploration-explotation trade-off
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. ..

MODELLING PIPELINE AND DESIGN QUESTIONS

Treatment of missing 
values

Determining the 
loss function 

Interpreting the 
results

Treatment of 
rare values

Bayesian 
optimization

We assume:

• If: explanatory column ‘B’, is not 
independent from ‘A’

• and data error distorts an 
explanatory variable ‘A’

• Then B takes over from A

Ways to deal with missing values:

• Estimator (missRanger)

• Constant (unusual dummy)

• Xgboost’s sparsity-aware split 
finding

Question 1 Question 2 Question 3

Loss function choice:

• Mitigate the impact of existing 
errors on finding the ground truth
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SYNTHETIC ERRORS
INSPIRATION FROM EXISTING ERRORS

Location Description

Response variable Values divided by 100.

Response variable Values set to 80.

Response variable
Values were multiplied by a random value, drawn for each observation from U(0.4, 0.6) and U(1.2, 
1.4)

Predictor (2nd 
most important)

Values set to 10 mln HUF 

Predictor (2nd 
most important)

Values were multiplied by a random value, drawn for each observation from U(0.4, 0.6) and U(1.2, 
1.4)

Errors in 5% of all observations, both in train and test sets



9 |

BASELINE MODEL PERFORMANCE
WITHOUT SYNTHETIC ERRORS

• RMSE = 5.6 percent, MAE = 3.2 percent

• the share of outliers is 1.4 percent only
(cutoff of standardized residuals of 3)

• The algorithm found intuitive errors (LTV 
as a fraction between 0 and 1)

• missing values using a constant

• squared loss function

• no synthetic errors

The baseline model

Model performance
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THE BASELINE MODEL – INDIVIDUAL FEATURE CONTRIBUTIONS (IFC)

IFC for Loan amount 
+ a LOESS function

IFC for allocated collateral value
+ a LOESS function

LTV = 
Loan amount

Allocated collateral value
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METRICS TO ASSESS MODEL PERFORMANCE

Did we find every synthetic error?
Am I any better off by looking at outliers 

than going through the raw data?

𝐷𝑖𝑠𝑐. 𝑒𝑟𝑟𝑜𝑟 𝑠ℎ. =
𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑚𝑜𝑛𝑔 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

𝐴𝑙𝑙 𝑒𝑟𝑟𝑜𝑟𝑠
𝐿𝑖𝑓𝑡 =

𝐸𝑟𝑟𝑜𝑟 𝑠ℎ𝑎𝑟𝑒 𝑎𝑚𝑜𝑛𝑔 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

𝐸𝑟𝑟𝑜𝑟 𝑠ℎ𝑎𝑟𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑑𝑎𝑡𝑎

Formula

Rationale

Share of discovered errors Lift value

One metric is insufficient
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HYPOTHESIS 1 (MISSING VALUE REPLACEMENT) AND
HYPOTHESIS 2 (LOSS FUNCTION)

Error type
80

Error type
div 100

Error type
random value multiplication
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HYPOTHESIS 3 – ERROR IN ALLOCATED COLLATERAL VALUE

Error type
Missing value 

replacement
Loss function

Outliers as % of 

total

Share of discovered 

errors
Lift

10 none Huber 3,5% 3,0% 0,87 

10 estimator Huber 3,0% 2,1% 0,70 

10 none rmse 1,5% 1,6% 1,05 

10 constant Huber 2,3% 1,3% 0,57 

10 constant rmse 1,3% 1,1% 0,83 

10 estimator rmse 1,1% 0,9% 0,83 

rv none rmse 2,0% 10,7% 5,41 

rv estimator Huber 4,5% 7,9% 1,75 

rv none Huber 2,5% 5,8% 2,31 

rv constant Huber 3,0% 4,3% 1,43 

rv constant rmse 1,5% 2,1% 1,41 

rv estimator rmse 1,3% 1,9% 1,51 

Vs. 70-80 % when
error in target

Vs. 10-12 when
error in target
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ABOVE NINE EXPLANATORY FEATURES AND AN ERROR SHARE OF 
AROUND 10 PERCENT EFFICIENCY STARTS TO DROP

• Loss function: RMSE
• Error type: div 100
• Missing value replacement: constant
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WHY YOUR COLLEAGUES WILL NOT LOVE YOU
ML-BASED DATA QUALITY TESTS CREATE MORE WORK FOR OTHERS

Employee time

Data 
quality

Traditional 
investigations

ML

Processing

Analysis

Discussion with 
data providers

Rules-based & 
aggregate analysis

ML-based methods

Required human labour

Rules-based & 
aggregate time-series

Granular data 
analysis

Data quality explodes
but only if you work with it

x 3

x 0,6

x 3

Automation

New 
discussions 
with data 
providers
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SUMMARY

• A supervised learning algorithm to flag potential data errors

• The method successfully identifies synthetic errors

• It provides hints to their location

• We also analysed various steps during the preprocessing phase (missing 
values and loss function) which may improve performance

Findings recap

• Our results helps the data providers

• The ’last mile problem’ is still there: error flags do not provide interpretation 

• Our results help modellers: model predictions may be used instead of actual 
values

Implications



17 |

Thank you for your attention!
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