Money Talks: Information and Monetary Policy

Marie Hoerova

Cyril Monnet FRB Philadelphia

Ted Temzelides

ECB

Rice U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

BIS/ECB Workshop on "Monetary Policy and Financial Stability"

September 11, 2009

The views expressed are solely those of the authors.

Swedish experience: Rapid rise in housing prices

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Swedish experience: Rapid rise in housing prices

Riskbank expressed concerns publicly throughout 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Swedish experience: Rapid rise in housing prices

Riskbank expressed concerns publicly throughout 2005

・ロト・日本・モート モー うへぐ

■ yet, 10% growth in the 3rd quarter of 2005

- Swedish experience: Rapid rise in housing prices
 - Riskbank expressed concerns publicly throughout 2005
 - yet, 10% growth in the 3rd quarter of 2005
- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.

"would also function as a *signal* that could subdue house price trends and household indebtedness"

- Swedish experience: Rapid rise in housing prices
 - Riskbank expressed concerns publicly throughout 2005
 - yet, 10% growth in the 3rd quarter of 2005
- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.

"would also function as a *signal* that could subdue house price trends and household indebtedness"

 \blacksquare Interest rates raised gradually from January 2006 onward \rightarrow slowdown in house prices

- Swedish experience: Rapid rise in housing prices
 - Riskbank expressed concerns publicly throughout 2005
 - yet, 10% growth in the 3rd quarter of 2005
- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.

"would also function as a *signal* that could subdue house price trends and household indebtedness"

 \blacksquare Interest rates raised gradually from January 2006 onward \rightarrow slowdown in house prices

Deeds need to complement words!

Research questions

How can a central bank effectively communicate its info about fundamentals to the private sector?

Research questions

How can a central bank effectively communicate its info about fundamentals to the private sector?

- What is the role of monetary policy as
 - a tool for information revelation?
 - a coordination device?

Research questions

- How can a central bank effectively communicate its info about fundamentals to the private sector?
- What is the role of monetary policy as
 - a tool for information revelation?
 - a coordination device?

Why do central banks typically follow policies that lead to positive average inflation levels?

 Study monetary policy as a tool for credible info transmission by the central bank (CB)

 Study monetary policy as a tool for credible info transmission by the central bank (CB)

- Economic environment:
 - aggregate risk about fundamentals; information dispersed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Study monetary policy as a tool for credible info transmission by the central bank (CB)

- Economic environment:
 - aggregate risk about fundamentals; information dispersed

money essential in facilitating trade

 Study monetary policy as a tool for credible info transmission by the central bank (CB)

Economic environment:

aggregate risk about fundamentals; information dispersed

- money essential in facilitating trade
- externalities on the aggregate level

 Study monetary policy as a tool for credible info transmission by the central bank (CB)

Economic environment:

- aggregate risk about fundamentals; information dispersed
- money essential in facilitating trade
- externalities on the aggregate level

• The CB has info about fundamentals \rightarrow how to reveal it?

Announcements

Announcements

costless... but not credible

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Announcements

- costless... but not credible
- the CB and individuals have differing incentives

Announcements

- costless... but not credible
- the CB and individuals have differing incentives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interest rate changes

Announcements

- costless... but not credible
- the CB and individuals have differing incentives

- Interest rate changes
 - credible... yet introduce a distortion

Announcements

- costless... but not credible
- the CB and individuals have differing incentives
- Interest rate changes
 - credible... yet introduce a distortion
 - enable more socially efficient investment

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Announcements

- costless... but not credible
- the CB and individuals have differing incentives
- Interest rate changes
 - credible... yet introduce a distortion
 - enable more socially efficient investment
 - $\blacksquare \rightarrow$ monetary policy as an optimal balance of this tradeoff

Announcements

- costless... but not credible
- the CB and individuals have differing incentives
- Interest rate changes
 - credible... yet introduce a distortion
 - enable more socially efficient investment
 - $\blacksquare \rightarrow \mbox{ monetary policy as an optimal balance of this tradeoff}$

Changes in the interest rate need not be large to be effective

Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

(ロ)、(型)、(E)、(E)、 E) の(の)

 Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Time t discrete

 Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

- Time t discrete
- Infinitely lived agents, discount factor β

 Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

- Time t discrete
- Infinitely lived agents, discount factor β
- Benevolent CB serves for one period and can:
 - print money
 - make loans to the private sector
 - make announcements

Two types of agents: investors and consumers

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Two types of agents: investors and consumers

Each period: three stages 0, 1, and 2

Two types of agents: investors and consumers

- Each period: three stages 0, 1, and 2
- Three goods:
 - stage 0: an investment good k, uncertain return θ^2 per unit

- stage 1: good q
- stage 2: good z

Preferences and technology

Investment good:

• cost of investment:
$$\frac{k_i^2}{2}$$

• utility of consumption: $\theta^2 k_i$

Preferences and technology

Investment good:

• cost of investment: $\frac{k_i^2}{2}$

• utility of consumption: $\theta^2 k_i$

Stage-1 good:

cost of production: q

• utility of consumption: u(q)

Preferences and technology

Investment good:

• cost of investment: $\frac{k_i^2}{2}$

• utility of consumption: $\theta^2 k_i$

Stage-1 good:

cost of production: q

• utility of consumption: u(q)

Stage-2 good:

linear utility of consumption (cost of production)

 $\blacksquare \rightarrow$ agents use Stage 2 to equalize money holdings

Timeline

t Stage 0	Stage 1	Stage 2 t+1
Nature chooses $ heta$, sig- nals are sent. The	Market for good <i>q</i> opens. Good <i>q</i> is traded	Investment matures. Agents produce or
CB makes an announce-	in exchange for money.	consume good <i>z</i> , repay

ment or changes the interest rate r. Investor i produces k_i units of the investment good.

Agents can borrow at the lending facility of the CB at the interest rate r > 0.

their loans (if any), and even their money holdings.

Benchmark: Fundamentals observable

Planner max period-*t* social welfare:

$$W(k_i, \theta) = \frac{1}{2} \left[u(q) - q + \int \theta^2 k_i di - \int \frac{k_i^2}{2} di \right]$$

Benchmark: Fundamentals observable

Planner max period-*t* social welfare:

$$W(k_i, \theta) = \frac{1}{2} \left[u(q) - q + \int \theta^2 k_i di - \int \frac{k_i^2}{2} di \right]$$
$$= \frac{1}{2} \left[u(q) - q + \theta^2 K - \frac{K^2}{2} - \int \frac{(k_i - K)^2}{2} di \right]$$

Benchmark: Fundamentals observable

Planner max period-t social welfare:

$$W(k_i, \theta) = \frac{1}{2} \left[u(q) - q + \int \theta^2 k_i di - \int \frac{k_i^2}{2} di \right]$$
$$= \frac{1}{2} \left[u(q) - q + \theta^2 K - \frac{K^2}{2} - \int \frac{(k_i - K)^2}{2} di \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• Optimum: $k_i^* = K^* = \theta^2$ and $u'(q^*) = 1$

Benchmark: Fundamentals observable

Planner max period-t social welfare:

$$W(k_i, \theta) = \frac{1}{2} \left[u(q) - q + \int \theta^2 k_i di - \int \frac{k_i^2}{2} di \right]$$
$$= \frac{1}{2} \left[u(q) - q + \theta^2 K - \frac{K^2}{2} - \int \frac{(k_i - K)^2}{2} di \right]$$

• Optimum: $k_i^* = K^* = \theta^2$ and $u'(q^*) = 1$

Decentralization using cash:

■ agents can borrow from the CB at *r* ≥ 0 at stage 1

Friedman rule is optimal: r = 0 for all states

State θ_t drawn from (improper) uniform over $(-\infty, \infty)$

(ロ)、(型)、(E)、(E)、 E) の(の)

• State θ_t drawn from (improper) uniform over $(-\infty,\infty)$

■ i.i.d. over time

Fundamentals uncertain

State θ_t drawn from (improper) uniform over $(-\infty, \infty)$

- i.i.d. over time
- Signals:

• CB receives signal
$$y_t = heta_t + \eta_t$$
, $\eta_t \sim N\left(0, rac{1}{lpha}
ight)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fundamentals uncertain

State θ_t drawn from (improper) uniform over $(-\infty, \infty)$

- i.i.d. over time
- Signals:

• CB receives signal
$$y_t = \theta_t + \eta_t$$
, $\eta_t \sim N\left(0, \frac{1}{\alpha}\right)$

• agent
$$i$$
 receives signal $x_{it} = heta_t + arepsilon_{it}$, $arepsilon_{it} \sim N\left(0, rac{1}{\delta}
ight)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fundamentals uncertain

State θ_t drawn from (improper) uniform over $(-\infty, \infty)$

- i.i.d. over time
- Signals:
 - CB receives signal $y_t = \theta_t + \eta_t$, $\eta_t \sim N\left(0, \frac{1}{\alpha}\right)$
 - agent *i* receives signal $x_{it} = \theta_t + \varepsilon_{it}$, $\varepsilon_{it} \sim N\left(0, \frac{1}{\delta}\right)$

• θ_t , η_t , ε_{it} independent

State θ_t drawn from (improper) uniform over $(-\infty, \infty)$

- i.i.d. over time
- Signals:
 - CB receives signal $y_t = \theta_t + \eta_t$, $\eta_t \sim N\left(0, \frac{1}{\alpha}\right)$
 - agent *i* receives signal $x_{it} = \theta_t + \varepsilon_{it}$, $\varepsilon_{it} \sim N\left(0, \frac{1}{\delta}\right)$

• θ_t , η_t , ε_{it} independent

CB's tools: announcements and changes of r

Suppose y is observable but α is not

Suppose y is observable but α is not

• CB announces α and sets r = 0 (Friedman rule):

Suppose y is observable but α is not

• CB announces α and sets r = 0 (Friedman rule):

a an individual investor chooses k_i given x_i , y, α :

$$-\frac{k_i^2}{2}+E\left[\max_{q}-q+W\left(k_i,m+pq,0,\theta\right)\right]$$

Suppose y is observable but α is not

• CB announces α and sets r = 0 (Friedman rule):

a an individual investor chooses k_i given x_i , y, α :

$$-\frac{k_i^2}{2}+E\left[\max_{q}-q+W\left(k_i,m+pq,0,\theta\right)\right]$$

• CB maximizes social welfare given y and α :

$$E\left[u\left(q\right)-q+\theta^{2}K-\frac{K^{2}}{2}-\int\frac{\left(k_{i}-K\right)^{2}}{2}di\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $\alpha = 0$, $\delta = 0$, or $\alpha = \infty$, then the CB announces α truthfully.

- If $\alpha = 0$, $\delta = 0$, or $\alpha = \infty$, then the CB announces α truthfully.
- For $0 < \alpha < \infty$ and $0 < \delta < \infty$, there is an $\varepsilon > 0$ s. t. announcing $\alpha_L = \alpha_H - \varepsilon$ is preferred by the CB to announcing α_H .

- If $\alpha = 0$, $\delta = 0$, or $\alpha = \infty$, then the CB announces α truthfully.
- For $0 < \alpha < \infty$ and $0 < \delta < \infty$, there is an $\varepsilon > 0$ s. t. announcing $\alpha_L = \alpha_H - \varepsilon$ is preferred by the CB to announcing α_H .
- Intuition:
 - lower α_a increases dispersion of individual investment levels

- If $\alpha = 0$, $\delta = 0$, or $\alpha = \infty$, then the CB announces α truthfully.
- For $0 < \alpha < \infty$ and $0 < \delta < \infty$, there is an $\varepsilon > 0$ s. t. announcing $\alpha_L = \alpha_H - \varepsilon$ is preferred by the CB to announcing α_H .
- Intuition:
 - lower α_a increases dispersion of individual investment levels

• but: lower α_a increases mean investment

- If $\alpha = 0$, $\delta = 0$, or $\alpha = \infty$, then the CB announces α truthfully.
- For $0 < \alpha < \infty$ and $0 < \delta < \infty$, there is an $\varepsilon > 0$ s. t. announcing $\alpha_L = \alpha_H - \varepsilon$ is preferred by the CB to announcing α_H .
- Intuition:
 - lower α_a increases dispersion of individual investment levels
 - but: lower α_a increases mean investment
- No equilibrium where the CB announces its precision truthfully and the investors use the announcement → Talk is cheap!

Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$
- $r(\alpha_L)$ s.t. α_H -type indifferent between $(r = 0, \alpha_a = \alpha_H)$ and $(r = r(\alpha_L), \alpha_a = \alpha_L)$

- Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$
- $r(\alpha_L)$ s.t. α_H -type indifferent between $(r = 0, \alpha_a = \alpha_H)$ and $(r = r(\alpha_L), \alpha_a = \alpha_L)$

• Then,
$$k_i = E\left[heta^2 \mid lpha_L, y, x_i
ight]$$
 and $ec{u}(q) = 1 + r\left(lpha_L
ight)$

- Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$
- $r(\alpha_L)$ s.t. α_H -type indifferent between $(r = 0, \alpha_a = \alpha_H)$ and $(r = r(\alpha_L), \alpha_a = \alpha_L)$

• Then,
$$k_i = E\left[\theta^2 \mid \alpha_L, y, x_i\right]$$
 and $u'(q) = 1 + r(\alpha_L)$

Since
$$r\left(lpha_L
ight) > 0$$
, $ec{u}\left(q
ight) = 1 + r\left(lpha_L
ight) > 1$ and $q < q^*$

- Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$
- $r(\alpha_L)$ s.t. α_H -type indifferent between $(r = 0, \alpha_a = \alpha_H)$ and $(r = r(\alpha_L), \alpha_a = \alpha_L)$

• Then,
$$k_i = E\left[heta^2 \mid lpha_L, y, x_i
ight]$$
 and $ec{u}(q) = 1 + r\left(lpha_L
ight)$

Since
$$r\left(lpha_L
ight)>$$
 0, $ec{u}\left(q
ight)=1+r\left(lpha_L
ight)>1$ and $q< q^*$

• \rightarrow Investors take CB's info into account but q is distorted

- Precisions $\{\alpha_L, \alpha_H\}$, $\alpha_L < \alpha_H$. The CB signals through MP: $r(\alpha) > 0$
- $r(\alpha_L)$ s.t. α_H -type indifferent between $(r = 0, \alpha_a = \alpha_H)$ and $(r = r(\alpha_L), \alpha_a = \alpha_L)$

• Then,
$$k_i = E\left[heta^2 \mid lpha_L, y, x_i
ight]$$
 and $ec{u}(q) = 1 + r\left(lpha_L
ight)$

Since
$$r\left(lpha_L
ight)>$$
 0, $ec{u}\left(q
ight)=1+r\left(lpha_L
ight)>1$ and $q< q^*$

• \rightarrow Investors take CB's info into account but q is distorted

Choice between costly signaling and pooling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choice between costly signaling and pooling
- Pooling: agents use $\overline{\alpha} = \pi \alpha_L + (1 \pi) \alpha_H$ and the CB sets $r(\overline{\alpha}) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Choice between costly signaling and pooling
- Pooling: agents use $\overline{\alpha} = \pi \alpha_L + (1 \pi) \alpha_H$ and the CB sets $r(\overline{\alpha}) = 0$
- If agents' expectations are far away from the truth, costly signaling is preferred to costless pooling

Credible interest rate changes

Let
$$\alpha_H = 60$$
, $\alpha_L = 50$, $\pi (\alpha = \alpha_H) = 0.5$, $\delta = 70$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Credible interest rate changes

Let
$$\alpha_H = 60$$
, $\alpha_L = 50$, $\pi (\alpha = \alpha_H) = 0.5$, $\delta = 70$

• For CRRA = 1, credible info transmission achieved with r = 27 b.p.

Credible interest rate changes

Let
$$\alpha_H = 60$$
, $\alpha_L = 50$, $\pi (\alpha = \alpha_H) = 0.5$, $\delta = 70$

• For CRRA = 1, credible info transmission achieved with r = 27 b.p.

For CRRA = 4, credibility achieved with r = 54 b.p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Effects of MP on the yield curve: Ellingsen and Söderström (2001)

(ロ)、(型)、(E)、(E)、 E) の(の)

- Effects of MP on the yield curve: Ellingsen and Söderström (2001)
 - MP reveals info about fundamentals or about preferences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Effects of MP on the yield curve: Ellingsen and Söderström (2001)
 - MP reveals info about fundamentals or about preferences
 - this paper: explanation of why info is revealed through MP instead of announcements

- Effects of MP on the yield curve: Ellingsen and Söderström (2001)
 - MP reveals info about fundamentals or about preferences
 - this paper: explanation of why info is revealed through MP instead of announcements

- MP in the presence of information frictions:
 - Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...

- Effects of MP on the yield curve: Ellingsen and Söderström (2001)
 - MP reveals info about fundamentals or about preferences
 - this paper: explanation of why info is revealed through MP instead of announcements

- MP in the presence of information frictions:
 - Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...
 - this paper: does not rely on reputation building by a long-lived CB

- Effects of MP on the yield curve: Ellingsen and Söderström (2001)
 - MP reveals info about fundamentals or about preferences
 - this paper: explanation of why info is revealed through MP instead of announcements

- MP in the presence of information frictions:
 - Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...
 - this paper: does not rely on reputation building by a long-lived CB

- Monetary economy with
 - dispersed information and externalities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monetary economy with

- dispersed information and externalities
- \blacksquare CB has a credibility issue \rightarrow signaling role for MP

Monetary economy with

- dispersed information and externalities
- \blacksquare CB has a credibility issue \rightarrow signaling role for MP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

info transmission involves a tradeoff

Monetary economy with

- dispersed information and externalities
- \blacksquare CB has a credibility issue \rightarrow signaling role for MP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- info transmission involves a tradeoff
- MP affects expectations and has real effects

Monetary economy with

- dispersed information and externalities
- \blacksquare CB has a credibility issue \rightarrow signaling role for MP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- info transmission involves a tradeoff
- MP affects expectations and has real effects

Extensions:

- Signaling both y and α
- Correlated signals
- Other instruments

Thank you!

 \blacksquare Money M provided by the CB, growth rate γ

 \blacksquare Money M provided by the CB, growth rate γ

• In stage 1, agents can borrow money from the CB at $r \ge 0$

- \blacksquare Money M provided by the CB, growth rate γ
- In stage 1, agents can borrow money from the CB at $r \ge 0$
- In stage 2, loans / repaid; the CB redistributes profits from lending:

- Money M provided by the CB, growth rate γ
- In stage 1, agents can borrow money from the CB at $r \ge 0$
- In stage 2, loans / repaid; the CB redistributes profits from lending:

$$M_{+1} = M + T + (1 + r) I - \tau$$

where T is such that $M_{+1} = \gamma M$

- Money M provided by the CB, growth rate γ
- In stage 1, agents can borrow money from the CB at $r \ge 0$
- In stage 2, loans / repaid; the CB redistributes profits from lending:

$$M_{+1} = M + T + (1 + r) I - \tau$$

where T is such that $M_{+1} = \gamma M$

• Stationary equilibria: $\phi M = \phi_{+1} M_{+1}$, ϕ real price of money

- Money M provided by the CB, growth rate γ
- In stage 1, agents can borrow money from the CB at $r \ge 0$
- In stage 2, loans / repaid; the CB redistributes profits from lending:

$$M_{+1} = M + T + (1 + r) I - \tau$$

where T is such that $M_{+1} = \gamma M$

• Stationary equilibria: $\phi M = \phi_{+1} M_{+1}$, ϕ real price of money

Discounted lifetime utility entering Stage 2:

$$W(k, m, l; \theta) = \max_{z, m_{\pm 1}} \{-z + \beta EV(m_{\pm 1}; \theta)\}$$

s.t. $\phi m_{\pm 1} = z + \theta^2 k + \phi m - \phi (1 + r) l + \phi \tau + \phi T$

(ロ)、(型)、(E)、(E)、 E) の(の)

Discounted lifetime utility entering Stage 2:

$$W(k, m, l; \theta) = \max_{z, m_{\pm 1}} \{-z + \beta EV(m_{\pm 1}; \theta)\}$$

s.t. $\phi m_{\pm 1} = z + \theta^2 k + \phi m - \phi (1 + r) l + \phi \tau + \phi T$

Expected discounted lifetime utility entering Stage 0:

$$V(m) = \frac{1}{2} \max_{k_i} \left\{ -\frac{k_i^2}{2} + E\left[\max_{q} -q + W(k_i, m + pq, 0, \theta) \right] \right\} \\ + \frac{1}{2} E\left[\max_{q,l \text{ s.t. } pq \le m+l} u(q) + W(0, m + l - pq, l, \theta) \right]$$

Stage 0: Investment

■ islands isolated, investment k made

Stages

Stage 0: Investment

■ islands isolated, investment k made

■ Stage 1: Special goods market

all islands together, competitive pricing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

■ anonymity → money essential

Stages

Stage 0: Investment

■ islands isolated, investment k made

■ Stage 1: Special goods market

- all islands together, competitive pricing
- anonymity → money essential

Stage 2: General market

• return θ^2 per unit of k realized, consumed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- good z traded
- frictionless Walrasian market