Money Talks: Information and Monetary Policy

Marie Hoerova

ECB

Cyril Monnet
FRB Philadelphia

Ted Temzelides
Rice U.

BIS/ECB Workshop on "Monetary Policy and Financial Stability"

September 11, 2009

The views expressed are solely those of the authors.

Motivation

■ Swedish experience: Rapid rise in housing prices

Motivation

■ Swedish experience: Rapid rise in housing prices
■ Riskbank expressed concerns publicly throughout 2005

Motivation

■ Swedish experience: Rapid rise in housing prices
■ Riskbank expressed concerns publicly throughout 2005

- yet, 10% growth in the 3 rd quarter of 2005

Motivation

■ Swedish experience: Rapid rise in housing prices

- Riskbank expressed concerns publicly throughout 2005
- yet, 10% growth in the 3rd quarter of 2005
- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.
"would also function as a signal that could subdue house price trends and household indebtedness"

Motivation

■ Swedish experience: Rapid rise in housing prices

- Riskbank expressed concerns publicly throughout 2005
- yet, 10% growth in the 3 rd quarter of 2005
- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.
"would also function as a signal that could subdue house price trends and household indebtedness"

■ Interest rates raised gradually from January 2006 onward \rightarrow slowdown in house prices

Motivation

■ Swedish experience: Rapid rise in housing prices
■ Riskbank expressed concerns publicly throughout 2005
■ yet, 10% growth in the 3 rd quarter of 2005

- Minutes of the Executive Board monetary policy meeting, December 2005: Raising the repo rate by 25 b.p.
"would also function as a signal that could subdue house price trends and household indebtedness"
- Interest rates raised gradually from January 2006 onward \rightarrow slowdown in house prices

■ Deeds need to complement words!

Research questions

- How can a central bank effectively communicate its info about fundamentals to the private sector?

Research questions

- How can a central bank effectively communicate its info about fundamentals to the private sector?
- What is the role of monetary policy as
- a tool for information revelation?
- a coordination device?

Research questions

- How can a central bank effectively communicate its info about fundamentals to the private sector?
- What is the role of monetary policy as
- a tool for information revelation?
- a coordination device?

■ Why do central banks typically follow policies that lead to positive average inflation levels?

What do we do?

- Study monetary policy as a tool for credible info transmission by the central bank (CB)

What do we do?

- Study monetary policy as a tool for credible info transmission by the central bank (CB)

■ Economic environment:

- aggregate risk about fundamentals; information dispersed

What do we do?

- Study monetary policy as a tool for credible info transmission by the central bank (CB)
- Economic environment:
- aggregate risk about fundamentals; information dispersed
- money essential in facilitating trade

What do we do?

- Study monetary policy as a tool for credible info transmission by the central bank (CB)
- Economic environment:
- aggregate risk about fundamentals; information dispersed
- money essential in facilitating trade
- externalities on the aggregate level

What do we do?

- Study monetary policy as a tool for credible info transmission by the central bank (CB)

■ Economic environment:

- aggregate risk about fundamentals; information dispersed
- money essential in facilitating trade
- externalities on the aggregate level

■ The CB has info about fundamentals \rightarrow how to reveal it?

What do we get?

- Announcements

What do we get?

- Announcements
- costless... but not credible

What do we get?

- Announcements
- costless... but not credible
- the CB and individuals have differing incentives

What do we get?

- Announcements
- costless... but not credible
- the CB and individuals have differing incentives
- Interest rate changes

What do we get?

- Announcements
- costless... but not credible
- the CB and individuals have differing incentives

■ Interest rate changes

- credible... yet introduce a distortion

What do we get?

- Announcements
- costless... but not credible
- the CB and individuals have differing incentives

■ Interest rate changes

- credible... yet introduce a distortion
- enable more socially efficient investment

What do we get?

- Announcements
- costless... but not credible
- the CB and individuals have differing incentives
- Interest rate changes
- credible... yet introduce a distortion
- enable more socially efficient investment
- \rightarrow monetary policy as an optimal balance of this tradeoff

What do we get?

- Announcements

■ costless... but not credible

- the CB and individuals have differing incentives
- Interest rate changes
- credible... yet introduce a distortion

■ enable more socially efficient investment
$■ \rightarrow$ monetary policy as an optimal balance of this tradeoff

- Changes in the interest rate need not be large to be effective

The environment

- Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

The environment

- Based on Berentsen and Monnet (2008), Lagos and Wright (2005)
- Time t discrete

The environment

- Based on Berentsen and Monnet (2008), Lagos and Wright (2005)
- Time t discrete

■ Infinitely lived agents, discount factor β

The environment

- Based on Berentsen and Monnet (2008), Lagos and Wright (2005)

■ Time t discrete

- Infinitely lived agents, discount factor β

■ Benevolent CB serves for one period and can:

- print money

■ make loans to the private sector
■ make announcements

The environment

- Two types of agents: investors and consumers

The environment

- Two types of agents: investors and consumers

■ Each period: three stages 0,1 , and 2

The environment

■ Two types of agents: investors and consumers

■ Each period: three stages 0,1 , and 2

- Three goods:
- stage 0: an investment good k, uncertain return θ^{2} per unit
- stage 1: good q
- stage 2: good z

Preferences and technology

■ Investment good:

- cost of investment: $\frac{k_{i}^{2}}{2}$
- utility of consumption: $\theta^{2} k_{i}$

Preferences and technology

- Investment good:
- cost of investment: $\frac{k_{i}^{2}}{2}$
- utility of consumption: $\theta^{2} k_{i}$
- Stage-1 good:
- cost of production: q
- utility of consumption: $u(q)$

Preferences and technology

- Investment good:
- cost of investment: $\frac{k_{i}^{2}}{2}$
- utility of consumption: $\theta^{2} k_{i}$
- Stage-1 good:
- cost of production: q
- utility of consumption: $u(q)$

■ Stage-2 good:

- linear utility of consumption (cost of production)
- \rightarrow agents use Stage 2 to equalize money holdings

Timeline

Nature chooses θ, signals are sent. The CB makes an announcement or changes the interest rate r. Investor i produces k_{i} units of the investment good.

Market for good q opens. Good q is traded in exchange for money. Agents can borrow at the lending facility of the $C B$ at the interest rate $r \geq 0$.

Investment matures. Agents produce or consume good z, repay their loans (if any), and even their money holdings.

Benchmark: Fundamentals observable

■ Planner max period- t social welfare:

$$
W\left(k_{i}, \theta\right)=\frac{1}{2}\left[u(q)-q+\int \theta^{2} k_{i} d i-\int \frac{k_{i}^{2}}{2} d i\right]
$$

Benchmark: Fundamentals observable

■ Planner max period- t social welfare:

$$
\begin{aligned}
W\left(k_{i}, \theta\right) & =\frac{1}{2}\left[u(q)-q+\int \theta^{2} k_{i} d i-\int \frac{k_{i}^{2}}{2} d i\right] \\
& =\frac{1}{2}\left[u(q)-q+\theta^{2} K-\frac{K^{2}}{2}-\int \frac{\left(k_{i}-K\right)^{2}}{2} d i\right]
\end{aligned}
$$

Benchmark: Fundamentals observable

■ Planner max period- t social welfare:

$$
\begin{aligned}
W\left(k_{i}, \theta\right) & =\frac{1}{2}\left[u(q)-q+\int \theta^{2} k_{i} d i-\int \frac{k_{i}^{2}}{2} d i\right] \\
& =\frac{1}{2}\left[u(q)-q+\theta^{2} K-\frac{K^{2}}{2}-\int \frac{\left(k_{i}-K\right)^{2}}{2} d i\right]
\end{aligned}
$$

- Optimum: $k_{i}^{*}=K^{*}=\theta^{2}$ and $u^{\prime}\left(q^{*}\right)=1$

Benchmark: Fundamentals observable

■ Planner max period- t social welfare:

$$
\begin{aligned}
W\left(k_{i}, \theta\right) & =\frac{1}{2}\left[u(q)-q+\int \theta^{2} k_{i} d i-\int \frac{k_{i}^{2}}{2} d i\right] \\
& =\frac{1}{2}\left[u(q)-q+\theta^{2} K-\frac{K^{2}}{2}-\int \frac{\left(k_{i}-K\right)^{2}}{2} d i\right]
\end{aligned}
$$

- Optimum: $k_{i}^{*}=K^{*}=\theta^{2}$ and $u^{\prime}\left(q^{*}\right)=1$

■ Decentralization using cash:

- agents can borrow from the CB at $r \geq 0$ at stage 1
- Friedman rule is optimal: $r=0$ for all states

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

■ i.i.d. over time

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

■ i.i.d. over time

■ Signals:

- CB receives signal $y_{t}=\theta_{t}+\eta_{t}, \eta_{t} \sim N\left(0, \frac{1}{\alpha}\right)$

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

■ i.i.d. over time

■ Signals:

- CB receives signal $y_{t}=\theta_{t}+\eta_{t}, \eta_{t} \sim N\left(0, \frac{1}{\alpha}\right)$
- agent i receives signal $x_{i t}=\theta_{t}+\varepsilon_{i t}, \varepsilon_{i t} \sim N\left(0, \frac{1}{\delta}\right)$

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

■ i.i.d. over time

■ Signals:

- CB receives signal $y_{t}=\theta_{t}+\eta_{t}, \eta_{t} \sim N\left(0, \frac{1}{\alpha}\right)$
- agent i receives signal $x_{i t}=\theta_{t}+\varepsilon_{i t}, \varepsilon_{i t} \sim N\left(0, \frac{1}{\delta}\right)$

■ $\theta_{t}, \eta_{t}, \varepsilon_{i t}$ independent

Fundamentals uncertain

■ State θ_{t} drawn from (improper) uniform over $(-\infty, \infty)$

■ i.i.d. over time

■ Signals:

- CB receives signal $y_{t}=\theta_{t}+\eta_{t}, \eta_{t} \sim N\left(0, \frac{1}{\alpha}\right)$
- agent i receives signal $x_{i t}=\theta_{t}+\varepsilon_{i t}, \varepsilon_{i t} \sim N\left(0, \frac{1}{\delta}\right)$

■ $\theta_{t}, \eta_{t}, \varepsilon_{i t}$ independent

■ CB's tools: announcements and changes of r

Signaling CB's information: Announcements

- Suppose y is observable but α is not

Signaling CB's information: Announcements

- Suppose y is observable but α is not
- CB announces α and sets $r=0$ (Friedman rule):

Signaling CB's information: Announcements

- Suppose y is observable but α is not
- CB announces α and sets $r=0$ (Friedman rule):
- an individual investor chooses k_{i} given x_{i}, y, α :

$$
-\frac{k_{i}^{2}}{2}+E\left[\max _{q}-q+W\left(k_{i}, m+p q, 0, \theta\right)\right]
$$

Signaling CB's information: Announcements

- Suppose y is observable but α is not
- CB announces α and sets $r=0$ (Friedman rule):
- an individual investor chooses k_{i} given x_{i}, y, α :

$$
-\frac{k_{i}^{2}}{2}+E\left[\max _{q}-q+W\left(k_{i}, m+p q, 0, \theta\right)\right]
$$

- CB maximizes social welfare given y and α :

$$
E\left[u(q)-q+\theta^{2} K-\frac{K^{2}}{2}-\int \frac{\left(k_{i}-K\right)^{2}}{2} d i\right]
$$

Signaling CB's information: Announcements

■ If $\alpha=0, \delta=0$, or $\alpha=\infty$, then the CB announces α truthfully.

Signaling CB's information: Announcements

■ If $\alpha=0, \delta=0$, or $\alpha=\infty$, then the CB announces α truthfully.

- For $0<\alpha<\infty$ and $0<\delta<\infty$, there is an $\varepsilon>0$ s. t . announcing $\alpha_{L}=\alpha_{H}-\varepsilon$ is preferred by the CB to announcing α_{H}.

Signaling CB's information: Announcements

■ If $\alpha=0, \delta=0$, or $\alpha=\infty$, then the CB announces α truthfully.

- For $0<\alpha<\infty$ and $0<\delta<\infty$, there is an $\varepsilon>0$ s. t. announcing $\alpha_{L}=\alpha_{H}-\varepsilon$ is preferred by the CB to announcing α_{H}.
- Intuition:
- lower α_{a} increases dispersion of individual investment levels

Signaling CB's information: Announcements

■ If $\alpha=0, \delta=0$, or $\alpha=\infty$, then the CB announces α truthfully.

- For $0<\alpha<\infty$ and $0<\delta<\infty$, there is an $\varepsilon>0$ s. t. announcing $\alpha_{L}=\alpha_{H}-\varepsilon$ is preferred by the CB to announcing α_{H}.
- Intuition:
- lower α_{a} increases dispersion of individual investment levels
- but: lower α_{a} increases mean investment

Signaling CB's information: Announcements

■ If $\alpha=0, \delta=0$, or $\alpha=\infty$, then the CB announces α truthfully.

■ For $0<\alpha<\infty$ and $0<\delta<\infty$, there is an $\varepsilon>0$ s. t. announcing $\alpha_{L}=\alpha_{H}-\varepsilon$ is preferred by the CB to announcing α_{H}.

- Intuition:
- lower α_{a} increases dispersion of individual investment levels

■ but: lower α_{a} increases mean investment

- No equilibrium where the CB announces its precision truthfully and the investors use the announcement \rightarrow Talk is cheap!

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

■ $r\left(\alpha_{L}\right)$ s.t. α_{H}-type indifferent between $\left(r=0, \alpha_{a}=\alpha_{H}\right)$ and $\left(r=r\left(\alpha_{L}\right), \alpha_{a}=\alpha_{L}\right)$

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

■ $r\left(\alpha_{L}\right)$ s.t. α_{H}-type indifferent between $\left(r=0, \alpha_{a}=\alpha_{H}\right)$ and $\left(r=r\left(\alpha_{L}\right), \alpha_{a}=\alpha_{L}\right)$

- Then, $k_{i}=E\left[\theta^{2} \mid \alpha_{L}, y, x_{i}\right]$ and $u^{\prime}(q)=1+r\left(\alpha_{L}\right)$

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

■ $r\left(\alpha_{L}\right)$ s.t. α_{H}-type indifferent between $\left(r=0, \alpha_{a}=\alpha_{H}\right)$ and $\left(r=r\left(\alpha_{L}\right), \alpha_{a}=\alpha_{L}\right)$

- Then, $k_{i}=E\left[\theta^{2} \mid \alpha_{L}, y, x_{i}\right]$ and $u^{\prime}(q)=1+r\left(\alpha_{L}\right)$
- Since $r\left(\alpha_{L}\right)>0, u^{\prime}(q)=1+r\left(\alpha_{L}\right)>1$ and $q<q^{*}$

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

■ $r\left(\alpha_{L}\right)$ s.t. α_{H}-type indifferent between $\left(r=0, \alpha_{a}=\alpha_{H}\right)$ and $\left(r=r\left(\alpha_{L}\right), \alpha_{a}=\alpha_{L}\right)$

- Then, $k_{i}=E\left[\theta^{2} \mid \alpha_{L}, y, x_{i}\right]$ and $u^{\prime}(q)=1+r\left(\alpha_{L}\right)$
- Since $r\left(\alpha_{L}\right)>0, u^{\prime}(q)=1+r\left(\alpha_{L}\right)>1$ and $q<q^{*}$

■ \rightarrow Investors take CB's info into account but q is distorted

Signaling CB's information: Monetary policy

■ Precisions $\left\{\alpha_{L}, \alpha_{H}\right\}, \alpha_{L}<\alpha_{H}$. The CB signals through MP: $r(\alpha)>0$

■ $r\left(\alpha_{L}\right)$ s.t. α_{H}-type indifferent between $\left(r=0, \alpha_{a}=\alpha_{H}\right)$ and $\left(r=r\left(\alpha_{L}\right), \alpha_{a}=\alpha_{L}\right)$

- Then, $k_{i}=E\left[\theta^{2} \mid \alpha_{L}, y, x_{i}\right]$ and $u^{\prime}(q)=1+r\left(\alpha_{L}\right)$
- Since $r\left(\alpha_{L}\right)>0, u^{\prime}(q)=1+r\left(\alpha_{L}\right)>1$ and $q<q^{*}$

■ \rightarrow Investors take CB's info into account but q is distorted

To signal or not to signal?

- Choice between costly signaling and pooling

To signal or not to signal?

- Choice between costly signaling and pooling

■ Pooling: agents use $\bar{\alpha}=\pi \alpha_{L}+(1-\pi) \alpha_{H}$ and the CB sets $r(\bar{\alpha})=0$

To signal or not to signal?

- Choice between costly signaling and pooling

■ Pooling: agents use $\bar{\alpha}=\pi \alpha_{L}+(1-\pi) \alpha_{H}$ and the CB sets $r(\bar{\alpha})=0$

- If agents' expectations are far away from the truth, costly signaling is preferred to costless pooling

Credible interest rate changes

■ Let $\alpha_{H}=60, \alpha_{L}=50, \pi\left(\alpha=\alpha_{H}\right)=0.5, \delta=70$

Credible interest rate changes

\square Let $\alpha_{H}=60, \alpha_{L}=50, \pi\left(\alpha=\alpha_{H}\right)=0.5, \delta=70$

- For $C R R A=1$, credible info transmission achieved with $r=27$ b.p.

Credible interest rate changes

\square Let $\alpha_{H}=60, \alpha_{L}=50, \pi\left(\alpha=\alpha_{H}\right)=0.5, \delta=70$

- For $C R R A=1$, credible info transmission achieved with $r=27$ b.p.
- For $C R R A=4$, credibility achieved with $r=54$ b.p.

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

- MP reveals info about fundamentals or about preferences

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

- MP reveals info about fundamentals or about preferences
- this paper: explanation of why info is revealed through MP instead of announcements

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

- MP reveals info about fundamentals or about preferences
- this paper: explanation of why info is revealed through MP instead of announcements
- MP in the presence of information frictions:
- Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

- MP reveals info about fundamentals or about preferences
- this paper: explanation of why info is revealed through MP instead of announcements

■ MP in the presence of information frictions:

- Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...
- this paper: does not rely on reputation building by a long-lived CB

Concluding remarks

■ Effects of MP on the yield curve: Ellingsen and Söderström (2001)

- MP reveals info about fundamentals or about preferences
- this paper: explanation of why info is revealed through MP instead of announcements

■ MP in the presence of information frictions:

- Weiss (1980), Barro and Gordon (1983), King, Lu and Pasten (2008) ...
- this paper: does not rely on reputation building by a long-lived CB

Concluding remarks

- Monetary economy with
- dispersed information and externalities

Concluding remarks

- Monetary economy with
- dispersed information and externalities
- CB has a credibility issue \rightarrow signaling role for MP

Concluding remarks

- Monetary economy with
- dispersed information and externalities
- CB has a credibility issue \rightarrow signaling role for MP
- info transmission involves a tradeoff

Concluding remarks

- Monetary economy with
- dispersed information and externalities
- CB has a credibility issue \rightarrow signaling role for MP
- info transmission involves a tradeoff

■ MP affects expectations and has real effects

Concluding remarks

- Monetary economy with
- dispersed information and externalities
- CB has a credibility issue \rightarrow signaling role for MP
- info transmission involves a tradeoff

■ MP affects expectations and has real effects

■ Extensions:

- Signaling both y and α
- Correlated signals
- Other instruments

Thank you!

Decentralization using cash

■ Money M provided by the CB, growth rate γ

Decentralization using cash

■ Money M provided by the CB, growth rate γ

■ In stage 1, agents can borrow money from the CB at $r \geq 0$

Decentralization using cash

■ Money M provided by the CB, growth rate γ

■ In stage 1, agents can borrow money from the CB at $r \geq 0$

■ In stage 2, loans / repaid; the CB redistributes profits from lending:

Decentralization using cash

■ Money M provided by the CB, growth rate γ

■ In stage 1, agents can borrow money from the CB at $r \geq 0$

■ In stage 2, loans / repaid; the CB redistributes profits from lending:

$$
M_{+1}=M+T+(1+r) I-\tau
$$

where T is such that $M_{+1}=\gamma M$

Decentralization using cash

■ Money M provided by the CB, growth rate γ

■ In stage 1, agents can borrow money from the CB at $r \geq 0$

- In stage 2, loans / repaid; the CB redistributes profits from lending:

$$
M_{+1}=M+T+(1+r) I-\tau
$$

where T is such that $M_{+1}=\gamma M$

■ Stationary equilibria: $\phi M=\phi_{+1} M_{+1}, \phi$ real price of money

Decentralization using cash

■ Money M provided by the CB, growth rate γ

■ In stage 1, agents can borrow money from the CB at $r \geq 0$

- In stage 2, loans / repaid; the CB redistributes profits from lending:

$$
M_{+1}=M+T+(1+r) I-\tau
$$

where T is such that $M_{+1}=\gamma M$

■ Stationary equilibria: $\phi M=\phi_{+1} M_{+1}, \phi$ real price of money

Decentralization using cash

■ Discounted lifetime utility entering Stage 2 :

$$
\begin{aligned}
W(k, m, l ; \theta) & =\max _{z, m_{+1}}\left\{-z+\beta E V\left(m_{+1} ; \theta\right)\right\} \\
\text { s.t. } \phi m_{+1} & =z+\theta^{2} k+\phi m-\phi(1+r) I+\phi \tau+\phi T
\end{aligned}
$$

Decentralization using cash

■ Discounted lifetime utility entering Stage 2 :

$$
\begin{aligned}
W(k, m, l ; \theta) & =\max _{z, m_{+1}}\left\{-z+\beta E V\left(m_{+1} ; \theta\right)\right\} \\
\text { s.t. } \phi m_{+1} & =z+\theta^{2} k+\phi m-\phi(1+r) I+\phi \tau+\phi T
\end{aligned}
$$

■ Expected discounted lifetime utility entering Stage 0:

$$
\begin{aligned}
V(m)= & \frac{1}{2} \max _{k_{i}}\left\{-\frac{k_{i}^{2}}{2}+E\left[\max _{q}-q+W\left(k_{i}, m+p q, 0, \theta\right)\right]\right\} \\
& +\frac{1}{2} E\left[\max _{q, l \text { s.t. } p q \leq m+l} u(q)+W(0, m+I-p q, I, \theta)\right]
\end{aligned}
$$

Stages

■ Stage 0: Investment

- islands isolated, investment k made

Stages

■ Stage 0: Investment

- islands isolated, investment k made
- Stage 1: Special goods market
- all islands together, competitive pricing
- anonymity \rightarrow money essential

Stages

■ Stage 0: Investment

- islands isolated, investment k made

■ Stage 1: Special goods market

- all islands together, competitive pricing
- anonymity \rightarrow money essential

■ Stage 2: General market

- return θ^{2} per unit of k realized, consumed
- good z traded
- frictionless Walrasian market

