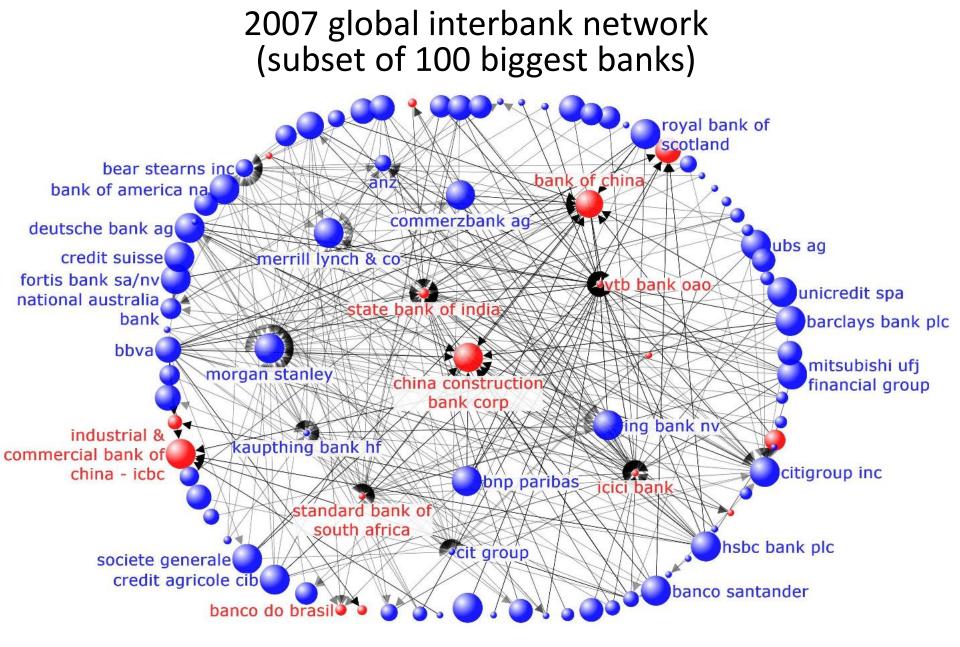
Crisis Transmission in the Global Banking Network


Galina Hale (FRBSF) Tümer Kapan (Fannie Mae) Camelia Minoiu (IMF)

> ASSA/AEA Annual Meetings Boston January 3-5, 2015

*The views expressed herein are those of the authors and should not be attributed to the Federal Reserve System, Fannie Mae, the IMF, their Executive Boards, or their management.

Motivation

- It is often argued that interconnectedness has contributed to the severity of the global financial crisis (Dudley, 2012; Haldane, 2009)
- The complex web of interconnections among financial institutions raises questions about their ability to manage risk (Caballero and Simsek, 2013) and the stability of the global financial system during crises
- Connections among banks, especially across borders, can act as conduits of financial sector shocks
- We proxy for these connections with linkages formed on the global syndicated loan market

In 2007, Citigroup had syndicated loan exposures vis-à-vis 198 banks in 62 countries.

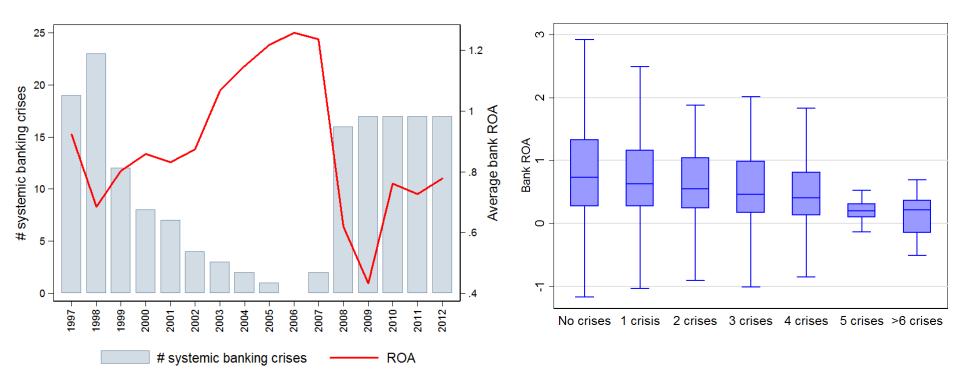
Question

- Study the role of international interbank exposures in the transmission of systemic banking crises across borders
- Estimate the impact of exposures to borrowers in countries experiencing financial crises ("crisis exposures") on bank profitability
 - Key dimension of banking system soundness
 - Good predictor of bank survival

Specifically,

- Examine several distinct ways in which crises may be transmitted through the global interbank market:
 - **Direct** crisis exposures
 - First-degree (1 step away) connections
 - Indirect crisis exposures
 - Second-degree (2 steps away) connections

Contribution


- First paper to build a large bank-level global network of interbank exposures ("GBN") from granular data and to empirically examine shock transmission through it
- Add to two strands of literature:
 - Contagion in financial networks
 - Emphasizes the benefits and risks of interconnectedness (risk sharing vs. contagion)
 - Stability of financial networks
 - Mostly based on simulations
 - When empirical, refers to domestic interbank markets

Steps

- Construct GBN comprising >6,000 banks from 120+ countries
- 2. Compute bank-level measures of direct and indirect crisis exposures, and overall network position
- Relate these measures to bank returns (>1,800 banks are linked to their financials during 1997-2012)

Negative correlation between crises and banks' ROA

There is a negative correlation between average bank returns and the # of crises worldwide; as well as the # of financial systems in crisis to which banks have direct exposures

Structural equation

 Bank performance Y_i is affected by vector of bank characteristics X_i and by home country crises C_i as well as the performance of banks to which it is exposed (directly or indirectly):

$$Y_i = X_i\beta + \lambda C_i + \gamma \sum_j E_{ij} Y_{j}$$

• Expanding repeatedly (no loops):

$$Y_{i} = X_{i}\beta + \lambda C_{i} + \gamma \sum_{j} E_{ij_{1}}X_{j_{1}}\beta + \gamma \sum_{j_{1}} E_{ij_{1}}\lambda C_{j_{1}} + \gamma^{2} \sum_{j_{2}} E_{ij_{1}}E_{j_{1}j_{2}}X_{j_{2}}\beta + \gamma^{2} \sum_{j_{2}} E_{ij_{1}}E_{j_{1}j_{2}}\lambda C_{j_{2}}$$
$$+ \dots + \gamma^{n} \sum_{j_{n}} E_{ij_{1}}E_{j_{1}j_{2}}\dots E_{j_{n-1}j_{n}}X_{j_{n}}\beta + \gamma^{n} \sum_{j_{n}} E_{ij_{1}}E_{j_{1}j_{2}}\dots E_{j_{n-1}j_{n}}\lambda C_{j_{n}},$$

Empirical specification

• The structural equation translates into the following empirical specification:

$$Y_{iht} = \alpha_{ht} + X_{iht}\beta + \lambda C_{iht} + \sum_{j} E_{ij_1t} X_{j_1t}\beta' + \lambda' \sum_{j_1} E_{ij_1t} C_{j_1t}$$
$$+ \sum_{j_2} E_{ij_1t} E_{j_1j_2t} X_{j_2t}\beta' + \lambda' \sum_{j_2} E_{ij_1t} E_{j_1j_2t} C_{j_2t} + \varepsilon_{iht},$$

Dataset Construction

- Data on 170,274 individual syndicated loans extended during 1990-2012 from *Dealogic Loan Analytics*
 - Clean up bank names, adjust for bank name changes, mergers and acquisitions, etc. – locational approach
 - Using lender and borrower identifiers, loan amount and maturity, construct interbank exposures as dollar values and **counts (# links)**
- Data on bank balance sheets from *Bankscope*
- Data on systemic banking crises: Laeven and Valencia (2013)

Example: Syndicated loan to a British investment bank

Participating banks (15):

BayernLB; Bank of Montreal (London); Bank of Tokyo-Mitsubishi UFJ Ltd; Commerzbank International Luxembourg SA; Dresdner Kleinwort Wasserstein; HSH Nordbank AG (London); ING Bank NV; KBC; Lloyds TSB Bank plc; Mizuho Corporate Bank Ltd; Royal Bank of Scotland plc; SG Corporate & Investment Banking; Standard Chartered Bank; Sumitomo Mitsui Banking Corp Europe Ltd; Wachovia Bank NA

Nationalities (7):

Germany, UK, Japan, Luxembourg, Netherlands, Belgium, France Borrower: Investec Bank (UK) Ltd.

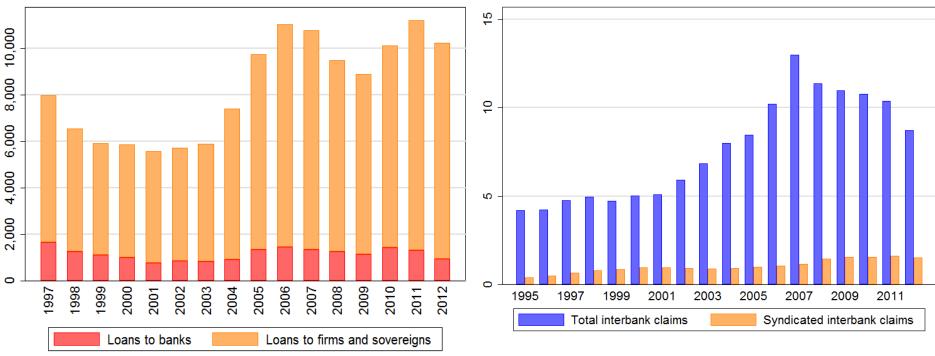
Industry: Private sector bank

Signing date: March 28, 2006

Deal type: Investment grade

Maturity: 3 years

Amount: GBP 445 million

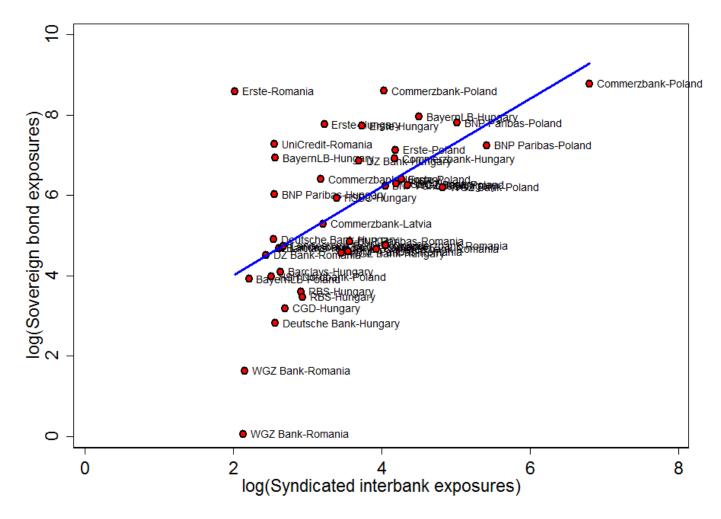

Interest rate: LIBOR + 120bps

Source: Dealogic Loan Analytics

12

How important are syndicated interbank loans?

About 10% of total syndicated loan counts and loan deal volumes 12.5% of total cross-border loan exposures of BIS reporting banking systems

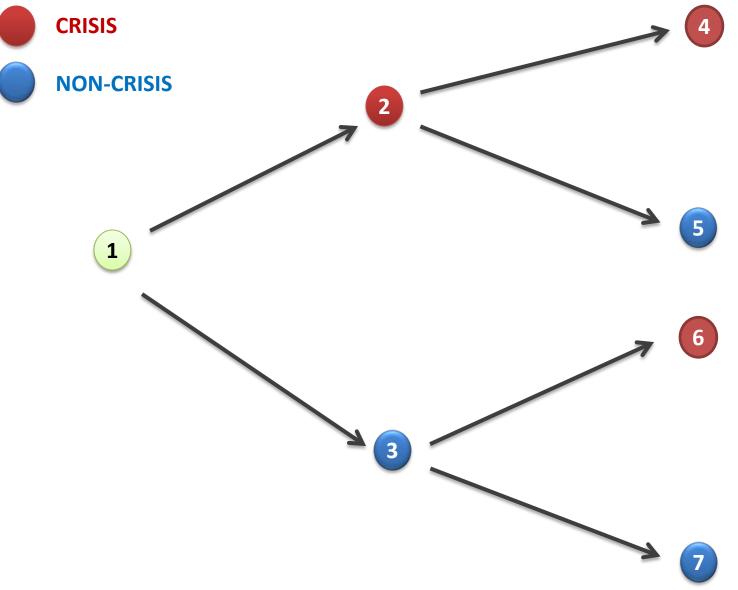


Estimates obtained based on methodology in Cerutti, Hale, and Minoiu (forthcoming)

U.S. banks – syndicated loan exposures *to banks* proxy well for total exposure and trade finance exposure

	Full total		Letters	of credit
Log(Syndicated loan exposure on banks)	0.113***		0.131***	
	(0.016)		(0.022)	
Log(Syndicated loan exposure on non- banks)	0.025**		0.056***	
	(0.012)		(0.017)	
Number of direct exposures to banks		0.404***		0.513***
		(0.081)		(0.104)
Number of direct exposures to non- banks		0.014		0.020
		(0.017)		(0.018)
Observations	6,970	6,970	7,298	7,298
R-squared	0.727	0.726	0.728	0.727
p-value (coeff on banks > coeff on non- banks)	1.000	1.000	0.995	1.000

European banks: syndicated loan exposures to banks correlate with sovereign bond holdings



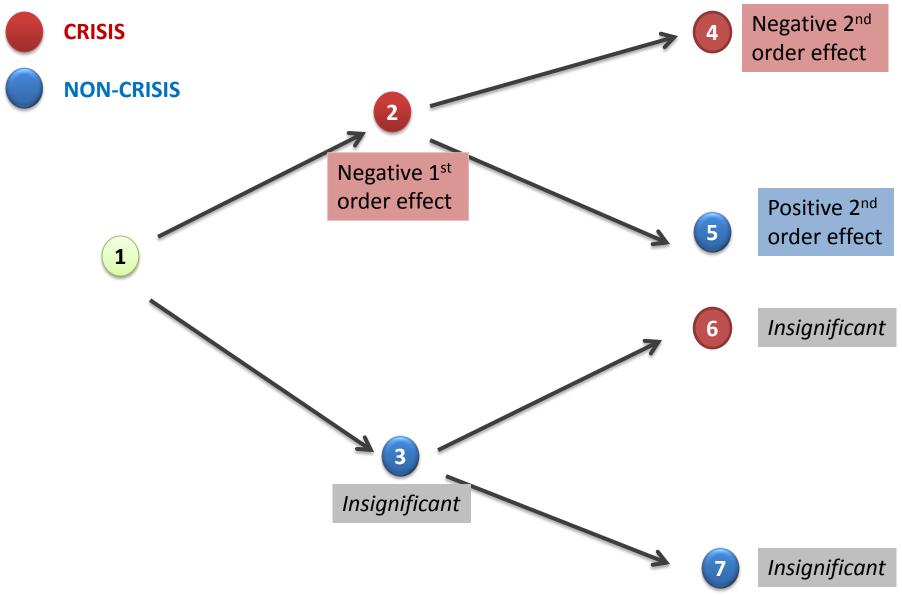
Sources: Dealogic Loan Analytics and European Banking Authority

Empirical framework

- **Regression Dataset**: 1,875 banks from 110 countries over 1997-2012
- Dependent variables: ROA, NIM, z-score
- Controls:
 - Bank size (log-assets)
 - Capital (equity/assets)
 - Bank type
 - Bank business model
 - Country Year fixed effects
 - Total exposures (# links)
- Regressors of interest:
 - Direct crisis exposures (# links or out-degree)
 - Indirect crisis exposures: (# links or out-degree of first-degree connections)

Direct and indirect crisis/non-crisis exposures

Effect of direct and indirect crisis exposures on bank ROA (controls)


	(1)	(2)	(3)
Equity/Assets	0.055***	0.055***	0.055***
	(0.007)	(0.007)	(0.007)
Log-assets	0.069***	0.069***	0.069***
	(0.012)	(0.012)	(0.012)
Business model: Commercial bank	0.150*	0.150*	0.147*
	(0.080)	(0.080)	(0.080)
Business model: Investment bank	0.166	0.165	0.162
	(0.148)	(0.148)	(0.148)
Bank type: Subsidiary	0.152***	0.152***	0.153***
	(0.057)	(0.057)	(0.057)
Bank type: Global ultimate owner	0.231***	0.231***	0.231***
	(0.051)	(0.051)	(0.051)
p-value test that characteristics of vis-à-vis			
banks do not matter	0.199	0.305	0.289
Observations	14,483	14,483	14,483
R-squared	0.441	0.441	0.441

Effect of direct and indirect crisis exposures on bank ROA

(variables of interest)

ι.	,		
	(1)	(2)	(3)
DIRECT EXPOSURES			
# exposures to all banks	-0.002	-0.002	-0.001
•	(0.004)	(0.004)	(0.004)
# exposures to crisis banks	-0.030***		-0.026***
	(0.009)	(0.010)	(0.010)
INDIRECT EXPOSURES			
# exposures to all banks		-0.000	
		(0.001)	
# exposures to crisis banks		0.001	
		(0.002)	
# exposures through crisis banks to crisis			-0.006**
banks			(0.003)
# exposures through crisis banks to non-crisis			0.003**
banks			(0.001)
# exposures through non-crisis banks to			0.003
crisis banks			(0.002)
# exposures through non-crisis banks to non-			-0.001
crisis banks			(0.001)
Observations	14,483	14,483	14,483
R-squared	0.441	0.441	0.441

Direct and indirect crisis/non-crisis exposures

Potential mechanisms

- 1. Losses due to borrower defaults or loan restructurings
 - Syndicated loan market exhibits lower default rates and higher loan recovery rates than other segments of the credit market
 - Troubled loans are typically renegotiated and restructured
 - => effect on NIMs
- 2. Losses in the securities portfolio
 - Would occur if syndicated loans were designated as "held for trading" and marked-to-market
 - => may affect z-scores

Indeed, NIMs and z-scores are affected by exposures to banks in crisis countries

(1)	(2)	(3)	(4)
Net interest margins		Z-score	
-0.002	-0.001	0.004	0.001
(0.002)	(0.003)	(0.005)	(0.005)
-0.022**	-0.018*	-0.041*	-0.034
(0.009)	(0.010)	(0.023)	(0.025)
	-0.004*		0.001
	(0.002)		(0.005)
	0.001		-0.002
	(0.001)		(0.003)
	0.002		0.002
	(0.002)		(0.006)
	-0.001		0.004**
	(0.001)		(0.002)
14,350	14,350	13,927	13,927
0.631	0.631	0.324	0.326
	.0.002 (0.002) .0.022*** (0.009)	Net interest margins -0.002 -0.001 (0.002) (0.003) -0.022** -0.018* (0.009) (0.010) -0.004* (0.002) 0.001 (0.001) 0.002 (0.002) -0.001 (0.001) 14,350 14,350	Net interest margins Z-set -0.002 -0.001 0.004 (0.002) (0.003) (0.005) -0.022** -0.018* -0.041* (0.009) (0.010) (0.023) -0.004* (0.002) 0.001 0.001 (0.002) 0.001 0.002 0.001 (0.002) 0.001 (0.002) -0.001 10.002 -0.001 13,927

Conclusions

- We empirically traced the transmission of financial crises through a global network of interbank exposures using exposures on the syndicated loan market as a proxy
- Results:
 - Direct exposures to crises reduce bank profitability (ROA, NIM) and stability (z-score)
 - Indirect exposures to crises through crisis banks further reduce profitability
 - Indirect exposures to non-crises through crisis banks dampen the negative direct crisis effect
- Losses/restructuring of troubled loans are a likely mechanism