Banks Interconnectivity and Leverage

Alessandro Barattieri¹ Laura Moretti² Vincenzo Quadrini³

¹Collegio Carlo Alberto and ESG UQAM

²Central Bank of Ireland

³University of Southern California

Third BIS Research Network meeting on Global Financial Interconnectedness Basel, 1-2 October 2015

The views expressed in this paper do not reflect the views of the Central Bank of Ireland or the European System of Central Banks.

Motivation: Two Interesting Recent Trends

Figure: Interconnectivity (Left) and Leverage (Right)

∃ ► < ∃ ►</p>

э

Motivation: An Interesting Correlation

ヨー わへ(

프 () () () (

Both Interconnectivity and Leverage have increased significantly before the crisis:

Both Interconnectivity and Leverage have increased significantly before the crisis:

• Are the simultaneous increases in interconnectivity and leverage related?

Both Interconnectivity and Leverage have increased significantly before the crisis:

- Are the simultaneous increases in interconnectivity and leverage related?
- What are the forces that have induced banks to become more interconnected and leveraged?

- Theoretical Analysis
 - We develop a dynamic model where banks make risky investments outside the financial sector.

< 注 → < 注 → …

= 990

- We develop a dynamic model where banks make risky investments outside the financial sector.
- To reduce the idiosyncratic risk, banks sell some of the investments to other banks and become more diversified.

- We develop a dynamic model where banks make risky investments outside the financial sector.
- To reduce the idiosyncratic risk, banks sell some of the investments to other banks and become more diversified.
- Because of the diversification, they are willing to invest more and take more leverage.

(B) < B)</p>

- We develop a dynamic model where banks make risky investments outside the financial sector.
- To reduce the idiosyncratic risk, banks sell some of the investments to other banks and become more diversified.
- Because of the diversification, they are willing to invest more and take more leverage.
- Empirical Analysis
 - Analysis of the association between interconnectivity and leverage.

(B) < B)</p>

- We develop a dynamic model where banks make risky investments outside the financial sector.
- To reduce the idiosyncratic risk, banks sell some of the investments to other banks and become more diversified.
- Because of the diversification, they are willing to invest more and take more leverage.
- Empirical Analysis
 - Analysis of the association between interconnectivity and leverage.
 - Exploration of the empirical implication of the two mechanisms built in the theoretical model.

- Increase in leverage and interconnectivity can be driven by:
 - Increase of the return spreads (ratio between investment expected return and the cost of liabilities).
 - Decline of the cost of diversification.

- Increase in leverage and interconnectivity can be driven by:
 - Increase of the return spreads (ratio between investment expected return and the cost of liabilities).
 - Decline of the cost of diversification.
- The two mechanisms have different implications for the correlation between return differentials (to be defined) and interconnectivity.

- Increase in leverage and interconnectivity can be driven by:
 - Increase of the return spreads (ratio between investment expected return and the cost of liabilities).
 - Decline of the cost of diversification.
- The two mechanisms have different implications for the correlation between return differentials (to be defined) and interconnectivity.
- Empirical Analysis
 - Positive correlation between interconnectivity and leverage:
 - Across time
 - Across countries,
 - Across (and within) financial institutions.

- Increase in leverage and interconnectivity can be driven by:
 - Increase of the return spreads (ratio between investment expected return and the cost of liabilities).
 - Decline of the cost of diversification.
- The two mechanisms have different implications for the correlation between return differentials (to be defined) and interconnectivity.
- Empirical Analysis
 - Positive correlation between interconnectivity and leverage:
 - Across time
 - Across countries,
 - Across (and within) financial institutions.
 - Negative relation between interconnectivity and return differentials:
 - Interconnectivity and leverage co-movement likely driven by diversification cost.

Related Literature

- Interconnectedness (see conference program...)
 - Theoretical
 - Allen and Gale (2000), Freixas et al. (2000), Allen et al. (2012),
 - David and Lear (2011), Eiser and Eufinger (2014),
 - Acemoglu et al. (2015).
 - Empirical
 - Cetorelli and Goldberg (2012), Cai el al. (2014), Hale et al. (2014), Peltonen et al. (2015).
- Bank Leverage
 - Adrian and Shin (2010, 2011, 2014),
 - Eichberger and Summer (2005),
 - Devereux and Yetman (2010).
- Interlink between interconnectedness and leverage
 - Shin (2009), Hahm, Shin and Shin (2013), Gennaioli et al. (2013).

• Dynamic model where banks are owned by investors with log utility.

ъ.

- Dynamic model where banks are owned by investors with log utility.
- Given the net worth a_t , the bank sells liabilities l_t at price $1/R_t^l$ and make risky investments k_t at price $1/R_t^k$ in the nonfinancial sector.

- Dynamic model where banks are owned by investors with log utility.
- Given the net worth a_t , the bank sells liabilities l_t at price $1/R_t^l$ and make risky investments k_t at price $1/R_t^k$ in the nonfinancial sector.
- The investments return is $z_{t+1}k_t$, with $\mathbb{E}_t z_{t+1} = 1$.

- Dynamic model where banks are owned by investors with log utility.
- Given the net worth a_t , the bank sells liabilities l_t at price $1/R_t^l$ and make risky investments k_t at price $1/R_t^k$ in the nonfinancial sector.
- The investments return is $z_{t+1}k_t$, with $\mathbb{E}_t z_{t+1} = 1$.
- Risky investments creates demand for insurance \rightarrow banks sell $\alpha_t k_t$ investment to other banks and buy *diversified* portfolio f_t from other banks at price $1/R^i$.

- Dynamic model where banks are owned by investors with log utility.
- Given the net worth a_t , the bank sells liabilities l_t at price $1/R_t^l$ and make risky investments k_t at price $1/R_t^k$ in the nonfinancial sector.
- The investments return is $z_{t+1}k_t$, with $\mathbb{E}_t z_{t+1} = 1$.
- Risky investments creates demand for insurance \rightarrow banks sell $\alpha_t k_t$ investment to other banks and buy *diversified* portfolio f_t from other banks at price $1/R^i$.
- Agency problems limit the degree of diversification: convex cost $\varphi(\alpha_t)k_t$, with $\varphi(\alpha_t) = \chi \alpha_t^{\gamma}$, $\gamma > 1$

Model: Bank's Maximization Problem

• The problem solved by the bank can be written recursively as

$$V_t(a_t) = \max_{c_t, l_t, k_t, \alpha_t, f_t} \ln(c_t) + \beta \mathbb{E}_t V_{t+1}(a_{t+1})$$
(1)

subject to:

$$c_{t} = a_{t} + \frac{l_{t}}{R_{t}^{l}} - \frac{k_{t}}{R_{t}^{k}} + \frac{[\alpha_{t} - \varphi(\alpha_{t})]k_{t}}{R_{t}^{i}} - \frac{f_{t}}{R_{t}^{i}}$$
$$a_{t+1} = z_{t+1}(1 - \alpha_{t})k_{t} + f_{t} - l_{t}.$$

Model: Bank's Maximization Problem

• The problem solved by the bank can be written recursively as

$$V_t(a_t) = \max_{c_t, l_t, k_t, \alpha_t, f_t} \ln(c_t) + \beta \mathbb{E}_t V_{t+1}(a_{t+1})$$
(1)

subject to:

$$c_{t} = a_{t} + \frac{l_{t}}{R_{t}^{l}} - \frac{k_{t}}{R_{t}^{k}} + \frac{[\alpha_{t} - \varphi(\alpha_{t})]k_{t}}{R_{t}^{i}} - \frac{f_{t}}{R_{t}^{i}}$$
$$a_{t+1} = z_{t+1}(1 - \alpha_{t})k_{t} + f_{t} - l_{t}.$$

• We solve the problem by transforming it in a standard portfolio choice with a risky asset $(\bar{k}_t = (1 - \alpha_t)k_t)$ and a riskless asset $(-\bar{l}_t = f_t - l_t)$ (as in Merton, 1971).

Model: Leverage and Interconnectivity (1)

• We define bank leverage as the ratio of total bank assets and total bank equities:

$$LEVERAGE = \frac{K_t/R_t^k + F_t/R_t^l}{K_t/R_t^k - L_t/R_t^l}.$$
(2)

< 注入 < 注入 -

Model: Leverage and Interconnectivity (1)

• We define bank leverage as the ratio of total bank assets and total bank equities:

$$LEVERAGE = \frac{K_t/R_t^k + F_t/R_t^l}{K_t/R_t^k - L_t/R_t^l}.$$
(2)

• We define interconnectivity as the ratio of aggregate non-core liabilities (assets sold to other banks) over aggregate assets:

INTERCONNECTIVITY =
$$\frac{\alpha_t K_t / R_t^l}{K_t / R_t^k + F_t / R_t^l}.$$
 (3)

(B) < B)</p>

Proposition (2.1)

For empirically relevant parameters, leverage and interconnectivity are

- Strictly decreasing in the diversification cost, χ .
- Strictly increasing in the return spread, R_t^k/R_t^l .

• The return differential is defined as the difference between the return in total assets (revenue) and the return on total liabilities (cost):

$$DIFFERENTIAL = \frac{K_t + F_t}{K_t/R_t^k + F_t/R_t^i} - \frac{L_t + \alpha_t K_t}{L_t/R_t^l + \alpha_t K_t/R_t^i}$$
(4)

A = A = A = OQO
 A

• The return differential is defined as the difference between the return in total assets (revenue) and the return on total liabilities (cost):

$$DIFFERENTIAL = \frac{K_t + F_t}{K_t/R_t^k + F_t/R_t^i} - \frac{L_t + \alpha_t K_t}{L_t/R_t^l + \alpha_t K_t/R_t^i}$$
(4)

Proposition (2.2)

The bank return differential is

- Strictly increasing in the diversification cost, χ .
- Strictly increasing in the return spread, R_t^k/R_t^l , if χ is sufficiently large.

- Data from Bankscope
- Sample 1999-2011
- 32 OECD Countries
- 14,000 Financial Institutions
- Winsorized at 1 and 99 percentile

★ E ► ★ E ►

$INTERCONNECTIVITY_{it} = \frac{LIABILITIES_{it} - DEPOSITS_{it}}{ASSETS_{it}}$

 $LEVERAGE_{it} = \frac{ASSETS_{it}}{ASSETS_{it} - LIABILITIES_{it}}$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ○ ○ ○ ○

Interconnectivity and Leverage: Country-level (1)

() <) <)
 () <)
 () <)
</p>

Interconnectivity and Leverage: Country-level (2)

Figure: Leverage and Interconnectivity, Across countries, Selected Years

Barattieri-Moretti-Quadrini Banks Interconnectivity and Leverage

글 > : < 글 >

Interconnectivity and Leverage: Firm-level (1)

Table: Very Large Financial Institutions (1999-2011)

Dep Variable	A/E	A/E	A/E	
INTERCONN	31.648***	29.363***	32.485***	
	(1.978)	(2.968)	(8.090)	
size	0.315	-0.231	3.421	
	(0.398)	(0.422)	(2.118)	
Specialisation FE	No	Yes	No	
Country FE	No	Yes	No	
Time FE	No	Yes	Yes	
Banks FE	No	No	Yes	
R-squared	0.263	0.505	0.200	
N	1214	1214	1214	

Notes: Standard Errors in Parenthesis

*,**,*** Statistically Significant at 10%, 5% and 1%

Interconnectivity and Leverage: Firm-level (2)

Table: All financial institutions

Dep Variable	A/E	A/E	A/E
Time Period	1999-2011	1999-2007	2003-2007
INTERCONN	2.896***	2.192***	1.240***
	(0.126)	(0.133)	(0.173)
size	2.831***	2.897***	3.249***
	(0.024)	(0.026)	(0.038)
Banks FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
R-squared	0.090	0.118	0.126
N	176108	125361	69334

Notes: Standard Errors in Parenthesis

*,**,*** Statistically Significant at 10%, 5% and 1%

Interconnectivity and Return Differential

$DIFFERENTIAL_{it} = \frac{INT_{-}INCOME_{it}}{AV_{-}ASSETS_{it}} - \frac{INT_{-}EXP_{it}}{AV_{-}LIABILITIES_{it}}.$

Interconnectivity and Return Differential

$DIFFERENTIAL_{it} = \frac{INT_{-}INCOME_{it}}{AV_{-}ASSETS_{it}} - \frac{INT_{-}EXP_{it}}{AV_{-}LIABILITIES_{it}}.$

• The model predicts:

$DIFFERENTIAL_{it} = \frac{INT_{-}INCOME_{it}}{AV_{-}ASSETS_{it}} - \frac{INT_{-}EXP_{it}}{AV_{-}LIABILITIES_{it}}.$

- The model predicts:
 - a positive correlation between interconnectivity and return differentials if R_t^k/R_t^l is the main force at play

 $\mathbf{A} \equiv \mathbf{A} \equiv$

$DIFFERENTIAL_{it} = \frac{INT_{-}INCOME_{it}}{AV_{-}ASSETS_{it}} - \frac{INT_{-}EXP_{it}}{AV_{-}LIABILITIES_{it}}.$

• The model predicts:

- a positive correlation between interconnectivity and return differentials if R_t^k/R_t^l is the main force at play
- a negative correlation between interconnectivity and return differentials if χ is the main force at play

Interconnectivity and Differential: Country-level (1)

Barattieri-Moretti-Quadrini Banks Interconnectivity and Leverage

Interconnectivity and Differential: Country-level (2)

A 10

A B M A B M

Interconnectivity and Differential: Firm-level (1)

Table: Very Large Financial Institutions (1999-2011)

Dep Variable	INTERCONN	INTERCONN	INTERCONN	
Differential	-0.098***	-0.114***	-0.026**	
	(0.007)	(0.009)	(0.013)	
size	-0.015**	-0.006	0.071* [*]	
	(0.008)	(0.008)	(0.033)	
Specialisation FE	No	Yes	No	
Country FE	No	Yes	No	
Time FE	No	Yes	Yes	
Banks FE	No	No	Yes	
R-squared	0.210	0.674	0.217	
N	963	963	963	
Na	tool Standard Err	are in Daranthasis		

Notes: Standard Errors in Parenthesis

*,**,*** Statistically Significant at 10%, 5% and 1%

Interconnectivity and Differential: Firm-level (2)

Table: All Financial Institutions (1999-2011)

Dep Variable	INTERCONN	INTERCONN	INTERCONN			
Differential	-0.048***	-0.024***	-0.007***			
	(0.001)	(0.001)	(0.001)			
size	0.044***	0.031***	0.021***			
	(0.000)	(0.000)	(0.003)			
Specialisation FE	No	Yes	No			
Country FE	No	Yes	No			
Time FE	No	Yes	Yes			
Banks FE	No	No	Yes			
R-squared	0.328	0.562	0.035			
N	169308	169308	169298			
No	Notes: Standard Errors in Parenthesis					

Notes: Standard Errors in Parenthesis

*,**,*** Statistically Significant at 10%, 5% and 1%

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ ()~

• Positive relation between leverage and interconnectivity.

- 4 臣 🖌 🛪 臣 🛌 👘

- Positive relation between leverage and interconnectivity.
- Negative relation between interconnectivity and return differential.

- Positive relation between leverage and interconnectivity.
- Negative relation between interconnectivity and return differential.
- The upward trends observed prior to the crisis likely to have been driven by financial innovation.

- Positive relation between leverage and interconnectivity.
- Negative relation between interconnectivity and return differential.
- The upward trends observed prior to the crisis likely to have been driven by financial innovation.
- Planned (partly ongoing) research:
 - Analyze the impact of interconnectivity on the post-Lehman fall in credit growth,
 - Analyze the implications for systemic risk.

THANK YOU!!! for Suggestions, Comments, Complaints: alessandro.barattieri@carloalberto.org

	Number Obs		Total Assets		Leverage		Interconnectivity	
	Total	%	mean	s.d.	mean	s.d.	mean	s.d.
ALL	211291		7812.9	245	12.7	8.6	0.16	0.23
of which:								
MEGA BANKS	1303	0.6	635986.1	565491	25.7	13.8	0.54	0.23
Commercial Banks	118156	55.9	5964.5	65249.8	10.8	5.6	0.10	0.19
Investment Banks	3438	1.6	28948.2	95661.3	17	18.8	0.63	0.29

Notes: Millions of USD. Back to Main

□ > * ミ > * ミ > ・ ミ ・ の < (~

Interconnectivity, Selected Countries

Leverage, Selected Countries

Back to Main

< 注 > < 注 >

æ