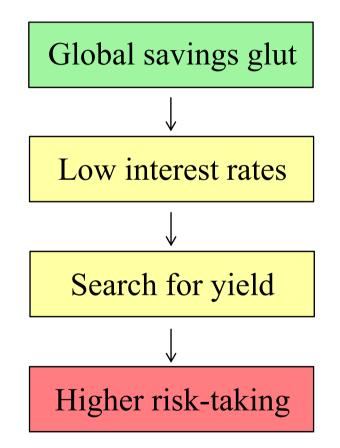
Search for Yield

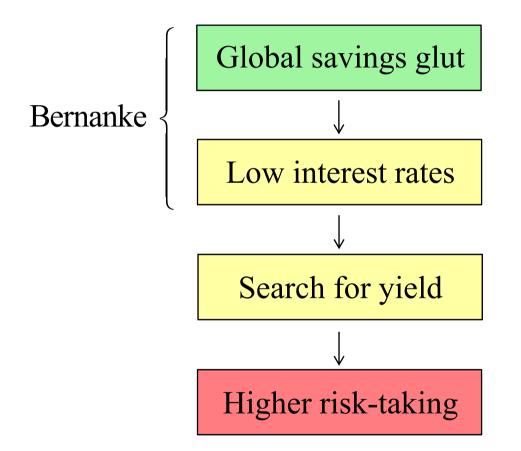
David Martinez-MieraRafael RepulloU. Carlos III de MadridCEMFI

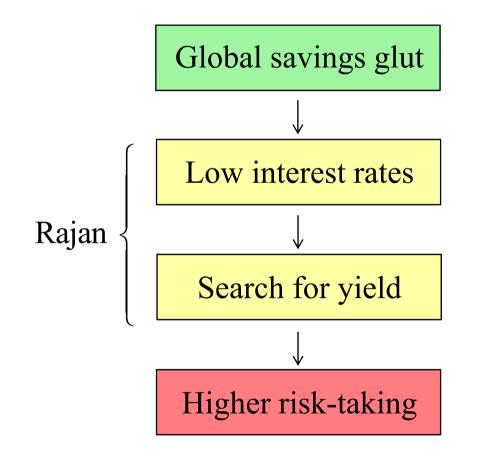
Meeting of the BIS Network on Banking and Asset Management

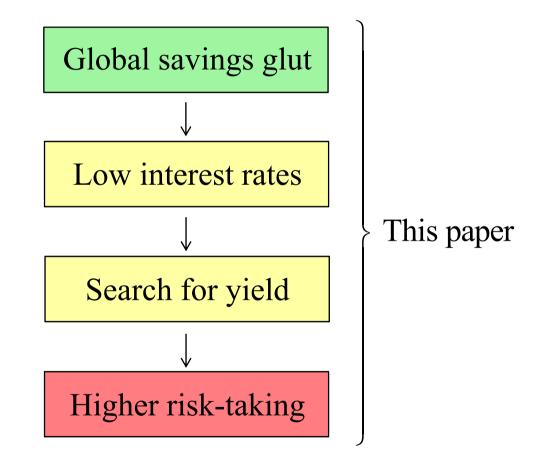
Basel, 9 September 2014

Motivation (i)


"Over the past decade a combination of diverse forces has created a significant increase in the global supply of saving, a **global saving glut**, which helps to explain both the increase in the U.S. current account deficit and the **relatively low level of long-term real interest rates** in the world today."


Ben Bernanke (2005)


Motivation (ii)


"An environment of low interest rates following a period of high rates is particularly problematic, for not only does the incentive of some participants to 'search for yield' go up, but also asset prices are given the initial impetus, which can lead to an upward spiral, creating the conditions for a sharp and messy realignment."

Raghu Rajan (2005)

Overview of model

- Three types of agents
 - \rightarrow Entrepreneurs require funds for their risky projects
 - → **Banks** fund entrepreneurs' projects
 - \rightarrow **Investors** provide funds to the banks
- Banks monitor entrepreneur's projects
 - \rightarrow Reduces probability of failure
- Monitoring is costly and not observed by investors
 - \rightarrow Moral hazard problem

Two types of contracts

- Contracts with positive monitoring
 - \rightarrow Banks that **originate-to-hold**
 - \rightarrow Traditional banking system
- Contracts with zero monitoring
 - → Market finance or banks that **originate-to-distribute**
 - → Shadow banking system

Main results

- Equilibrium allocation of savings features
 - \rightarrow Zero monitoring for safer entrepreneurs
 - \rightarrow Positive monitoring for riskier entrepreneurs
- An increase in the supply of savings
 - \rightarrow Reduces interest rates and interest rate spreads
 - \rightarrow Reduces monitoring incentives
 - \rightarrow Increases probability of failure of traditional banks
 - \rightarrow Expands relative size of shadow banking system

Roadmap

- A model of bank finance
- Search for yield
- Extensions
 - \rightarrow Short- vs long-run effects of savings glut
 - \rightarrow Risk-averse investors
 - \rightarrow Endogenous booms and busts
- Concluding remarks

Part 1 A model of bank finance

Model setup

- Two dates (t = 0, 1)
- Agents: \rightarrow Set of potential entrepreneurs
 - \rightarrow Set of risk-neutral investors
 - \rightarrow Single risk-neutral bank
- Entrepreneurs have projects that require bank finance
- Bank has to raise funds from investors
- Investors require expected return R_0

Entrepreneurs

• Each entrepreneur has risky project

Unit investment
$$\rightarrow$$
 Return =

$$\begin{cases}
R, \text{ with prob. } 1 - p + m \\
0, \text{ with prob. } p - m
\end{cases}$$

where $m \in [0, p]$ is monitoring by lending bank

 \rightarrow Monitoring reduces probability of failure

Bank monitoring

• Monitoring is not observed by investors

 \rightarrow Moral hazard problem

• Monitoring entails cost c(m)

 \rightarrow For numerical results assume

$$c(m) = \frac{\gamma}{2}m^2$$
, with $\gamma > 0$

Bank

- Bank can only fund one project
 - \rightarrow Short side of the market
 - \rightarrow Loan rate equal to success return *R*
- Bank raises funds from investors
 - \rightarrow Limited liability
 - \rightarrow Borrowing rate denoted *B*

Optimal contract between bank and investors

$$(B^*, m^*) = \arg \max_{(B,m)} \left[(1 - p + m)(R - B) - c(m) \right]$$

 \rightarrow subject to bank's incentive compatibility constraint (IC)

$$m^* = \arg \max_m \left[(1 - p + m)(R - B^*) - c(m) \right]$$

 \rightarrow bank's participation constraint (PCB)

$$(1-p+m^*)(R-B^*)-c(m^*) \ge 0$$

 \rightarrow and investors' participation constraint (PCI)

$$(1-p+m^*)B^*=R_0$$

Characterization of optimal contract (i)

• Bank's IC constraint

$$m^* = \arg\max_m \left[(1 - p + m)(R - B^*) - c(m) \right]$$

 \rightarrow Interior solution characterized by FOC

$$R-B^*=c'(m^*)$$

 \rightarrow Marginal revenue (intermediation margin) = marginal cost

Characterization of optimal contract (ii)

• Investors' PC

$$(1-p+m^*)B^*=R_0$$

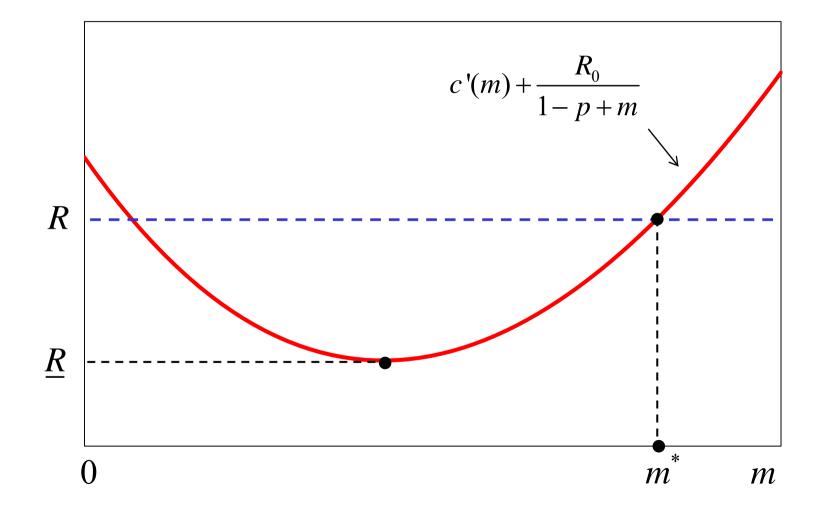
 \rightarrow Substituting it into FOC

$$R - B^* = c'(m^*) \rightarrow c'(m^*) + B^* = R$$

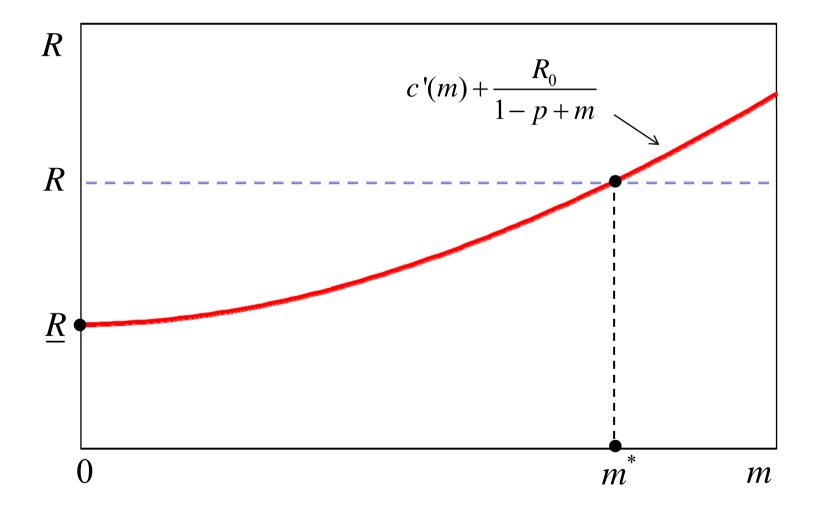
 \rightarrow Key equation

$$c'(m^*) + \frac{R_0}{1 - p + m^*} = R$$

Proposition 1

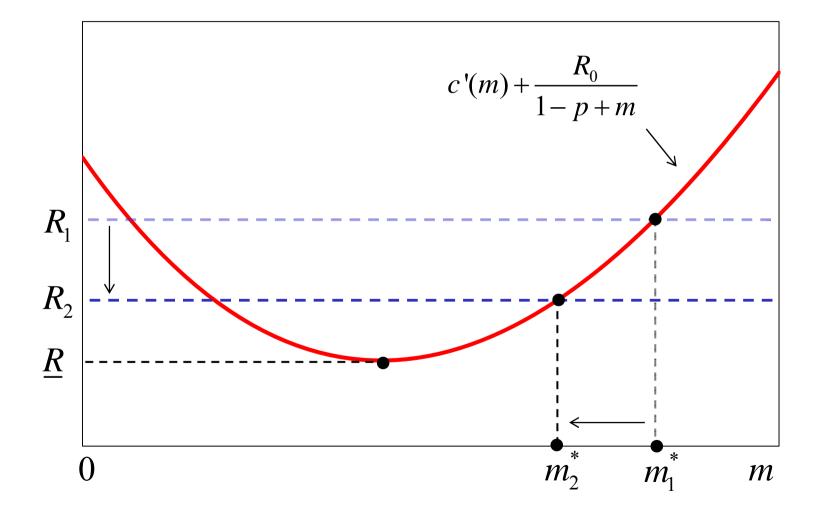

• Bank finance is feasible if loan rate *R* satisfies

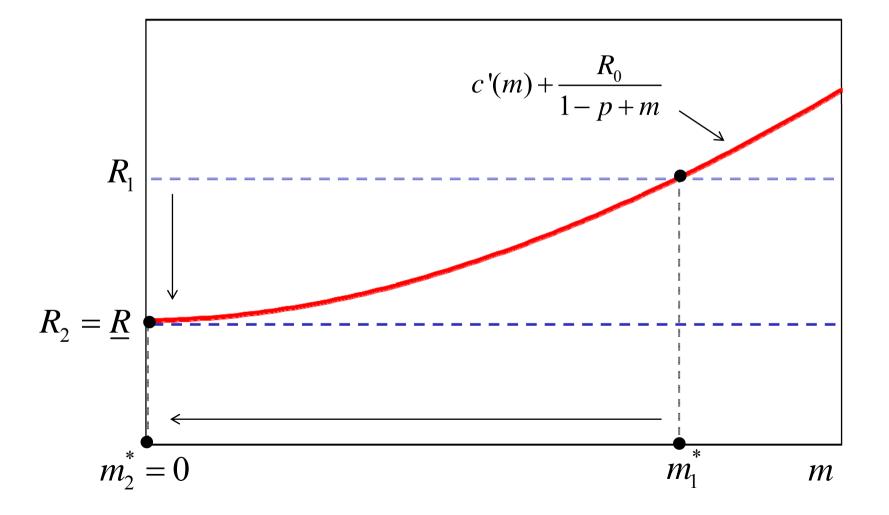
$$R \ge \underline{R} = \min_{m \in [0,p]} \left(c'(m) + \frac{R_0}{1 - p + m} \right)$$


• Optimal monitoring m^* given by highest value of m that satisfies

$$c'(m) + \frac{R_0}{1 - p + m} \le R$$

A case with positive monitoring


Another case with positive monitoring


Proposition 2

- If bank finance is feasible and we have interior solution
 - \rightarrow Monitoring is decreasing in funding cost R_0
 - \rightarrow Monitoring is increasing in loan rate *R*
 - \rightarrow Monitoring is increasing in spread $R R_0$

Effect of a decrease in loan rate R

Effect of a decrease in loan rate R

- Monitoring m^* depends on interest rate spread $R R_0$
- Lower spreads lead to
 - \rightarrow Lower monitoring and higher default risk
 - \rightarrow Possible switch from positive to zero monitoring
 - \rightarrow Form originate-to-hold to originate-to-distribute
- Results assume exogenous interest rates
 - \rightarrow General equilibrium model

Part 2 Search for yield

Model setup

- Two dates (t = 0, 1)
- Agents: \rightarrow Set of potential entrepreneurs
 - \rightarrow Set of risk-neutral investors
 - \rightarrow Set of risk-neutral banks
- Entrepreneurs have projects that require bank finance
- Banks have to raise funds from investors
- Investors have a **fixed aggregate supply of savings** *w*

Entrepreneurs

- Continuum of entrepreneurs of observable types $p \in [0,1]$
- Each entrepreneur of type *p* has risky project

Unit investment
$$\rightarrow$$
 Return = $\begin{cases} R_p, \text{ with prob. } 1-p+m\\ 0, \text{ with prob. } p-m \end{cases}$

where $m \in [0, p]$ is monitoring by lending bank

Entrepreneurs and banks

• Single bank for each type of entrepreneur

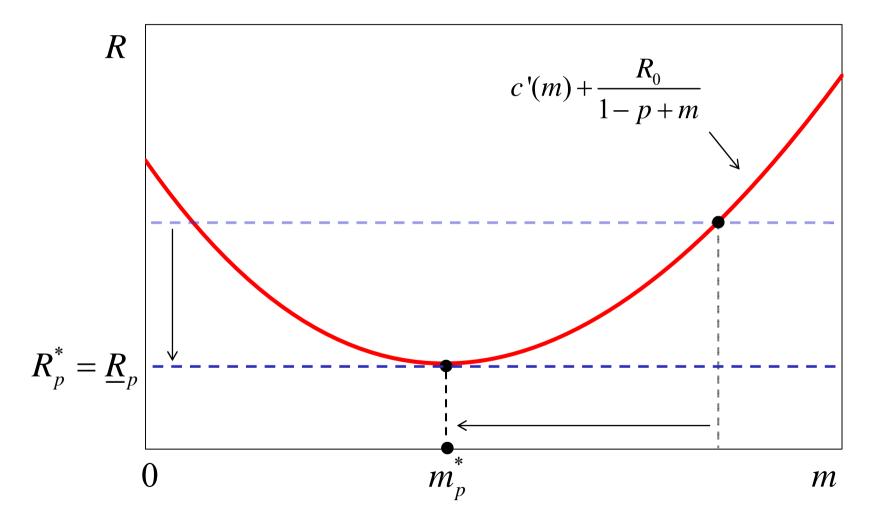
 \rightarrow All entrepreneurs of type *p* borrow from this bank

• Loan market is contestable

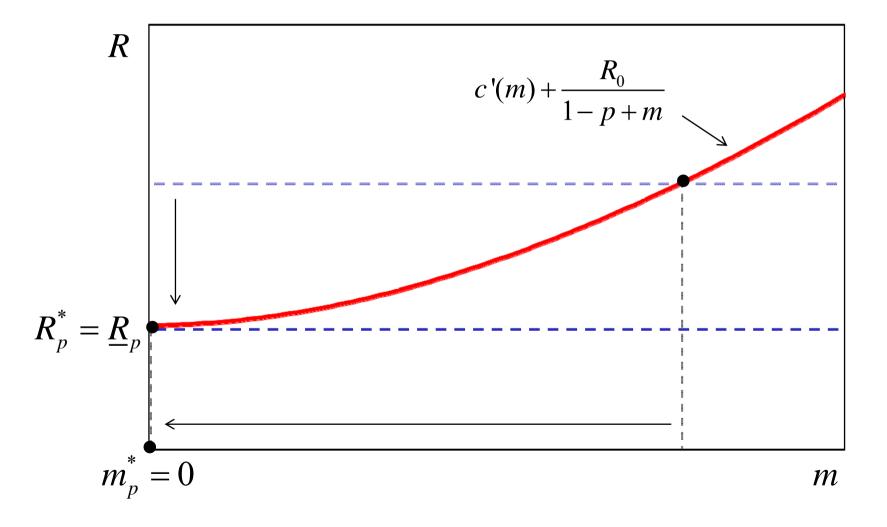
 \rightarrow Equilibrium loan rate is lowest feasible rate

• Returns of entrepreneurs of type p are perfectly correlated

 \rightarrow Portfolio return coincides with single project return


Equilibrium loan rates

• These assumptions imply


$$R_{p}^{*} = \underline{R}_{p} = \min_{m \in [0,p]} \left(c'(m) + \frac{R_{0}}{1 - p + m} \right)$$

- \rightarrow Entrepreneurs of type *p* borrow at the lowest feasible rate
- \rightarrow Otherwise another bank would undercut incumbent

Equilibrium with positive monitoring

Equilibrium with zero monitoring

Investment returns

• Success return R_p is a decreasing function of investment x_p

$$R_p = R(x_p)$$
, with $R'(x_p) < 0$

 \rightarrow For numerical results assume

$$R(x_p) = (x_p)^{-1/\sigma}$$
, with $\sigma > 1$

Equilibrium

An equilibrium is investment allocation $\{x_p^*\}$ such that

1. Interest rates satisfy

$$R_p^* = R(x_p^*) = \underline{R}_p$$
, for all $p \in [0,1]$

2. The market clears

$$\int_0^1 x_p^* dp = w$$

Proposition 3

• There is a marginal type

$$p^* = 1 - \sqrt{R_0^* / c''(0)}$$

→ Banks lending to types $p \le p^*$ will choose $m_p^* = 0$ → Banks lending to types $p > p^*$ will choose $m_p^* > 0$

Comment on Proposition 3 (i)

• Loan rate for riskier types $p > p^*$ satisfies

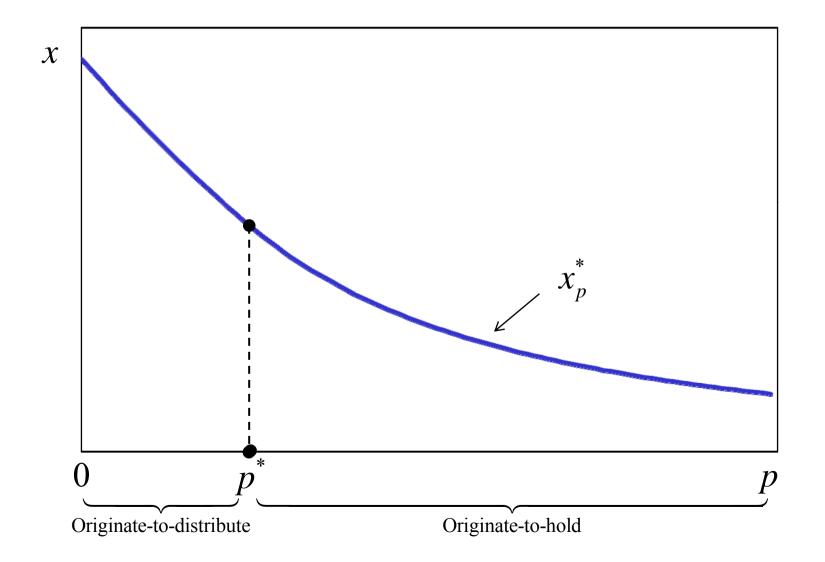
$$R_{p}^{*} = \underline{R}_{p} = \min_{m \in [0,p]} \left(c'(m) + \frac{R_{0}^{*}}{1 - p + m} \right)$$

 \rightarrow which implies

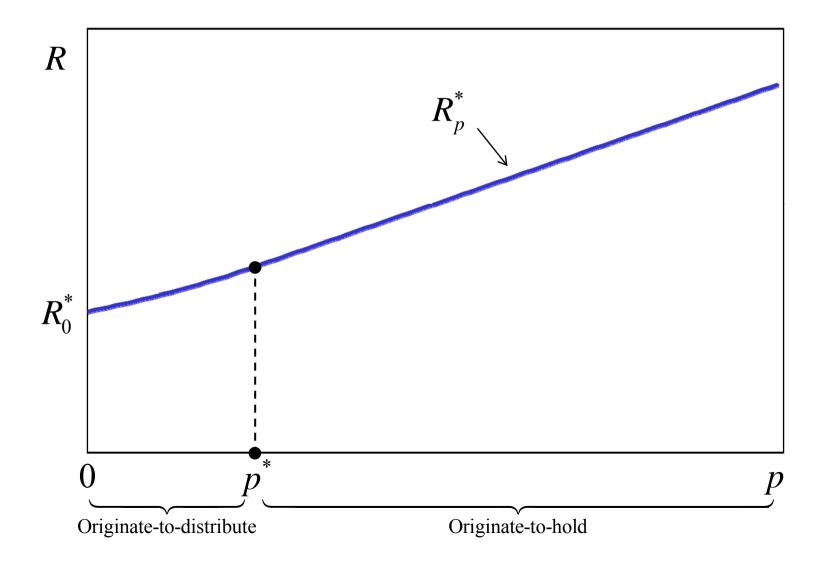
$$c''(m_p^*) - \frac{R_0^*}{(1 - p + m_p^*)^2} = 0$$

Comment on Proposition 3 (ii)

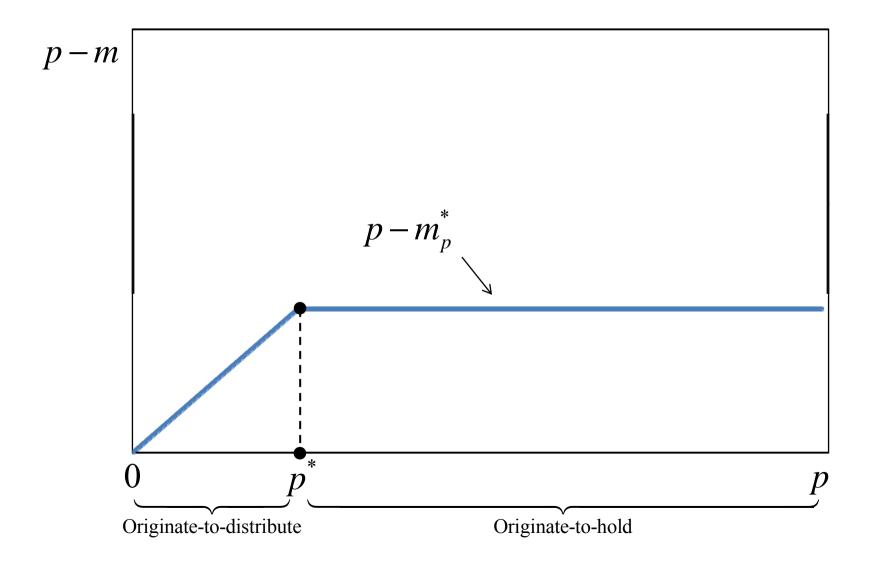
• If monitoring cost function is quadratic this condition becomes


$$c''(m_p^*) - \frac{R_0^*}{(1-p+m_p^*)^2} = \gamma - \frac{R_0^*}{(1-p+m_p^*)^2} = 0$$

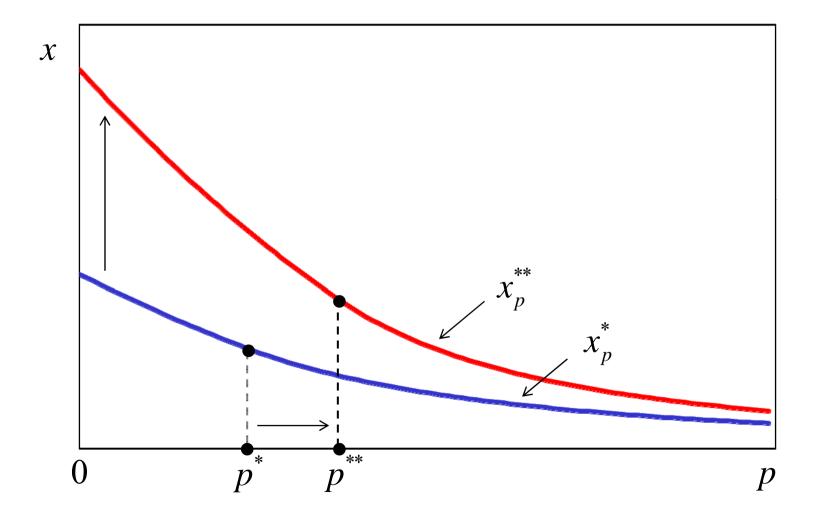
$$\downarrow$$

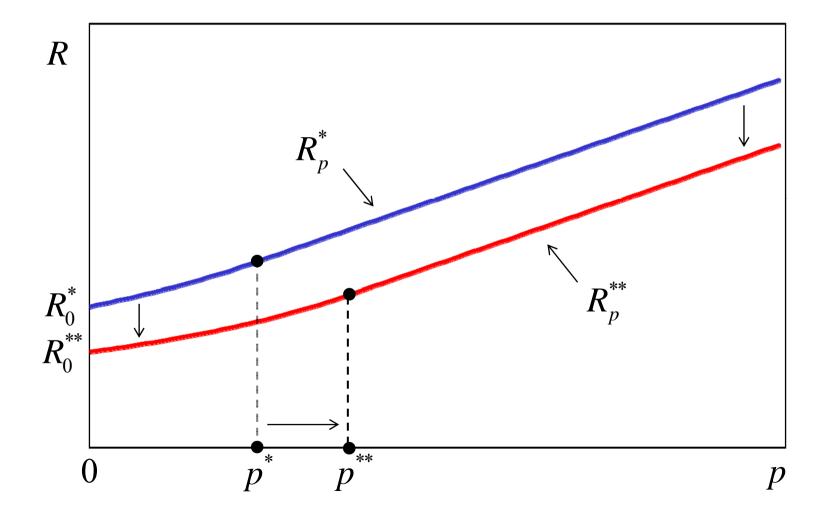

$$p - m_p^* = 1 - \sqrt{R_0^* / \gamma} = p^*$$

- \rightarrow Originate-to-hold banks have same probability of failure
- \rightarrow Equal to the type p^* of marginal entrepreneur

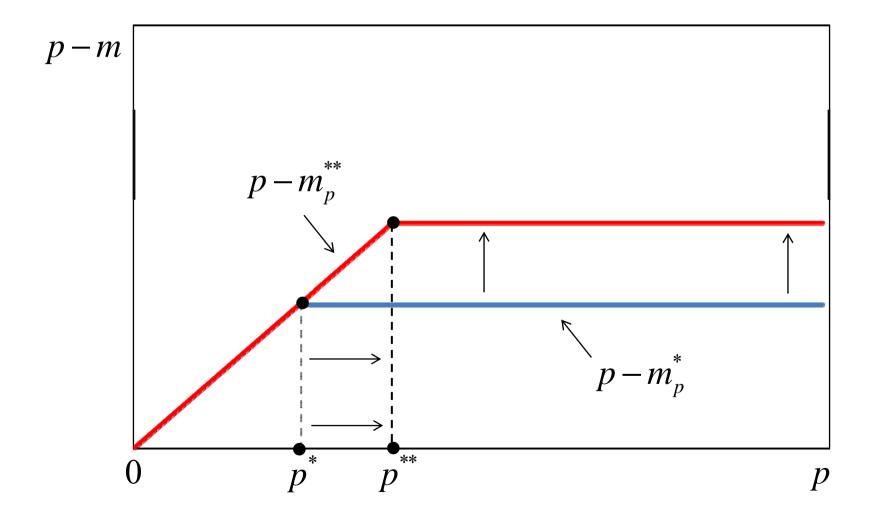

Equilibrium investment allocation

Equilibrium loan rates


Equilibrium probabilities of bank failure


Proposition 4

- Increase in aggregate supply of savings w leads to
 - \rightarrow Reduction in interest rates R_p^*
 - \rightarrow Reduction in interest rate spreads $R_p^* R_0^*$
 - \rightarrow Increase in bank lending and bank size x_p^*
 - \rightarrow Expansion of originate-to-distribute region $[0, p^*]$
 - \rightarrow Increase in probability of failure of originate-to-hold banks


Equilibrium investment allocation

Equilibrium loan rates

Equilibrium probabilities of bank failure

Two effects of savings glut

• Extensive margin effect

 \rightarrow Originate-to-hold banks lend to riskier borrowers

$$p^* \rightarrow p^{**} > p^*$$

• Intensive margin effect

 \rightarrow Originate-to-hold banks take more risk

$$p - m_p^* = p^* \rightarrow p - m_p^{**} = p^{**} > p^*$$

Co-movement of spreads and monitoring

- Effects on spreads of change in R_0^*
 - \rightarrow By envelope theorem

$$\frac{dR_p^*}{dR_0^*} = \frac{d}{dR_0^*} \left(c'(m_p^*) + \frac{R_0^*}{1 - p + m_p^*} \right) = \frac{1}{1 - p + m_p^*}$$

 \rightarrow Hence we have

$$\frac{d(R_p^* - R_0^*)}{dR_0^*} = \frac{1}{1 - p + m_p^*} - 1 > 0$$

• Savings glut leads to a reduction in safe rate R_0^*

 \rightarrow which implies a reduction in spreads $R_p^* - R_0^*$

Co-movement of spreads and monitoring

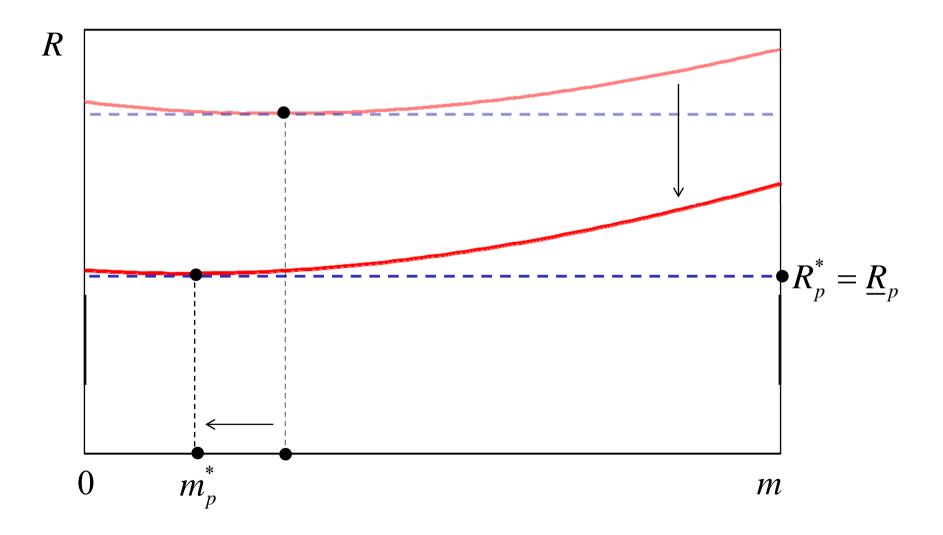
• Effects on monitoring of change in R_0^*

 \rightarrow Zero slope condition at m_p^*

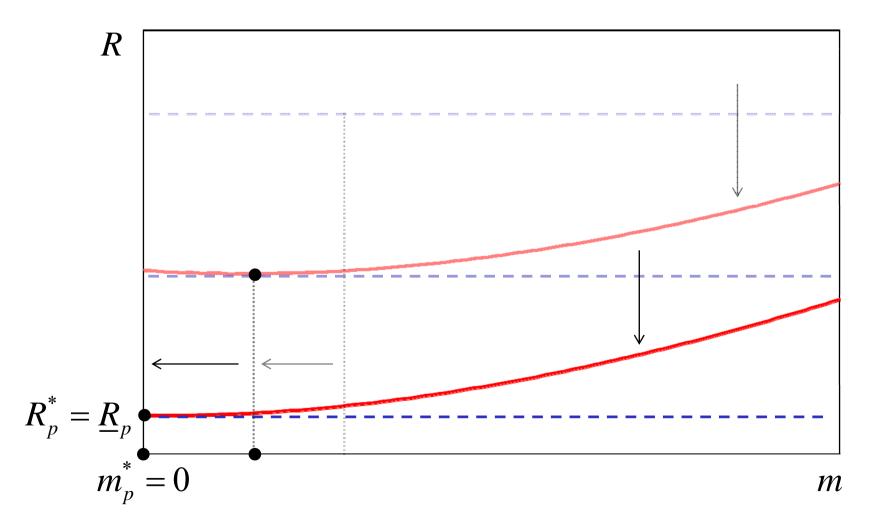
$$c''(m_p^*) - \frac{R_0^*}{(1 - p + m_p^*)^2} = 0$$

 \rightarrow Differentiating this condition gives

$$\frac{dm_p^*}{dR_0^*} > 0$$


• Savings glut leads to a reduction in safe rate R_0^*

→ which implies a reduction in monitoring m_p^* → which could go to the corner $m_p^* = 0$


Effect of a reduction in safe rate

Effect of a reduction in safe rate

Effect of a reduction in safe rate

Summing up

- Model of the effects of savings glut
 - \rightarrow Partial equilibrium (moral hazard) model of bank finance
 - \rightarrow General equilibrium model of interest rates
- Results show link between savings glut and
 - \rightarrow Interest rates and interest rate spreads
 - \rightarrow Increases probability of failure of traditional banks
 - \rightarrow Increase in relative size of shadow banking system

Part 3 Extensions

Part 3 (i)

Short- vs long-run effects of savings glut

Short-run effects of savings glut

- Suppose that originate-to-hold banks cannot increase x_p^*
 - \rightarrow Due to some capacity constraint (e.g. capital requirements)

Results

- If traditional banks cannot expand
 - \rightarrow Greater increase in shadow banking system
 - \rightarrow Greater reduction in safe rate
 - \rightarrow Wider spreads for traditional banks
 - \rightarrow They become safer!
- The effect will only be temporary

 \rightarrow They become riskier as soon as constraint is relaxed

Connection with Shin (2012)

Key role of European global banks intermediating dollar funds
 → Tapping the wholesale funding market in the US

"The culprit of the easy credit conditions in the US up to 2007 may have been the **global banking glut** rather than the global savings glut."

Part 3 (ii)

Risk-averse investors

Risk-averse investors

- Continuum of risk-averse investors of mass w
 - \rightarrow Unit wealth
 - \rightarrow Utility function

 $u(c) = c^{\alpha}$, with $0 < \alpha < 1$

• Assume that they can only invest in one asset

 \rightarrow Indifferent between funding all types of banks

• Look at effects of a **reduction in risk aversion**

Results

- If investors are less risk-averse
 - \rightarrow Higher loan rates for safer entrepreneurs
 - \rightarrow Lower loan rates for riskier entrepreneurs
 - \rightarrow Narrower spreads for traditional banks
 - \rightarrow They become riskier
- Key difference with effect of savings glut
 - \rightarrow The safe rate R_0^* goes up (instead of down)

Part 3 (iii)

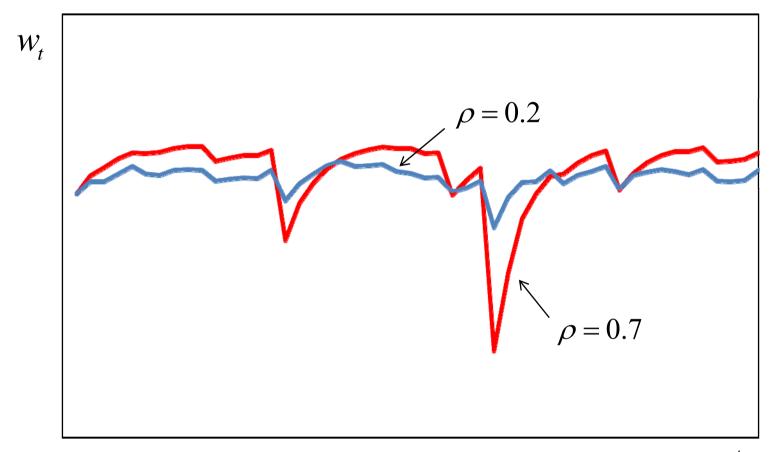
Endogenous booms and busts

A simple dynamic model

• Suppose that supply of funds w_{t+1} at date t + 1 is the outcome of

 \rightarrow Investment of funds w_t at date t

 \rightarrow Realization of a systematic risk factor z_t


- Single risk factor of Vasicek (2002)
 - \rightarrow Effect of shocks determined by correlation across types

 \rightarrow Correlation parameter $\rho \in (0,1)$

Endogenous booms and busts

- Good realizations of systematic risk factor lead to
 - \rightarrow Accumulation of savings (boom state)
 - \rightarrow Reduction in spreads & higher probabilities of failure
 - \rightarrow Banking system vulnerable to bad realization of risk factor
- Bad realizations of systematic risk factor lead to
 - \rightarrow Reduction in savings (bust state)
 - \rightarrow Increase in spreads & lower probabilities of failure
 - \rightarrow Restart process that generates another boom

Two sample paths of savings

Concluding remarks

Summing up

• Simple model to explain effects of savings glut

 \rightarrow Focus on key role of bank intermediation

- Main result: If savings glut is accompanied by banking glut
 → Higher risk-taking by banks
- Results consistent with a number of stylized facts

 \rightarrow More work needs to be done!

Role of macro-prudential policy

- Macroeconomic variables can have effects on systemic risk
 → Macro-prudential policy may play significant role
- Policy should not focus narrowly on credit growth
 → As in latest regulation of Basel Committee (Basel III)
- Broader macro-finance perspective would be required

 \rightarrow More work needs to be done!

What about monetary policy?

• Our story has nothing to do with monetary policy

 \rightarrow Real model

• Interestingly, we show that build-up of risk may take some time

 \rightarrow Interest rates have to be "too low for too long"

 \rightarrow As noted by many critics of Fed policy

• Broader money-macro-finance perspective would be required

 \rightarrow More work needs to be done also here!

References

• Bernanke, B. (2005), "The Global Saving Glut and the U.S. Current Account Deficit," Sandridge Lecture, Richmond, Virginia.

• Caballero, R., E. Farhi, and P.-O. Gourinchas (2008), "An Equilibrium Model of 'Global Imbalances' and Low Interest Rates," *AER*.

• Holmström, B., and J. Tirole (1997), "Financial Intermediation, Loanable Funds, and the Real Sector," *Quarterly Journal of Economics*.

• Huberman, G., and R. Repullo (2013), "Moral Hazard and Debt Maturity," CEMFI Working Paper No. 1311.

• Rajan, R. (2005), "Has Financial Development Made the World Riskier?," Proceedings of the Jackson Hole Conference.

• Shin, H. S. (2012), "Global Banking Glut and Loan Risk Premium," *IMF Economic Review*.