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Abstract

Monetary policy entails a dual role for the central bank. As well as
being a vigilant observer of events, the central bank must also be able to
shape expectations through its words and deeds. This paper examines the
impact of central bank forecasts and other sources of public information
in an economy where agents also have diverse private information. In
an otherwise standard macro model, the disproportionate role of public
information degrades the information value of economic outcomes, alters
the welfare consequences of increased precision of public information and
generates distinctive time series characteristics of some macro variables.

*We thank Andy Filardo, Nobu Kiyotaki and Stephen Morris for their comments on earlier
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1 Introduction

One of the often-cited virtues of a decentralized economy is the ability of the mar-
ket mechanism to aggregate the private information of the individual economic
agents. Each economic agent has a window on the world. This window is a
partial vantage point for the underlying state of the economy. But when all the
individual perspectives are brought together, one can gain a much fuller picture
of the economy. If the pooling of information is effective, and economic agents
have precise information concerning their respective sectors or geographical re-
gions, the picture that emerges for the whole economy would be a very detailed
one. When can policy makers rely on the effective pooling of information from
individual decisions?

This question is a very pertinent one for the conduct of monetary policy.
Central banks that attempt to regulate aggregate demand by adjusting interest
rates rely on timely and accurate generation of information on any potential
inflationary forces operating in the economy. The role of the central bank in this
context is of a vigilant observer of events to detect any nascent signs of pricing
pressure.  Such signs can be met by prompt central bank action to head off
any inflationary forces through the use of monetary policy instruments. More
generally, these actions can be codified in a more systematic framework for the
setting of nominal interest rates, for instance as part of an ‘inflation-forecast
targeting’ regime.

However, by the nature of its task, the central bank cannot confine its role
merely to be a vigilant, but detached observer. Its monetary policy role implies
that it must also engage in the active shaping and influencing of events (see Blin-
der, Goodhart, Hildebrand, Lipton and Wyplosz (2001)). For economic agents,
who are all interested parties in the future course of action of the central bank,
the signals conveyed by the central bank in its deeds and words have a material
impact on how economic decisions are arrived at. For this reason, Svensson
(2002) and Svensson and Woodford (2002) have advocated the announcement of

the future path of the short term policy interest rate as part of a central bank’s



overall policy of inflation-forecast targeting.

Monetary policy thus entails a dual role. As well as being a vigilant observer
of outcomes, the central bank must also be able to shape the outcomes. There
is, however, a tension in this dual role. To the extent that the central bank is
effective in shaping the outcome, the informational value of this outcome for the
purpose of inferring the underlying state of the economy may be impaired. Since
the actions of economic agents reflect in part the central bank’s own assessment
of the underlying state, the mirror that is held up to the economy for signs of
potential imbalances may simply reflect the central bank’s own assessment of the
same issue. The more authority that the central bank commands among the
economic agents, the greater is the danger that the aggregate outcome is tinged
with the central bank’s own prior beliefs.

In a situation of common knowledge, potential problems associated with the
feedback between central bank actions and the expectations of private agents
can largely be avoided under standard policies.! By contrast, under differential
information, the central bank’s actions and the information it releases constitute
a shared benchmark in the information processing decisions of economic agents.
In particular, the central bank’s disclosures — or, in general, any type of credi-
ble public information — become a powerful focal point for the coordination of
expectations among such agents. There is the potential for a feedback process
that degrades the information value of signals generated in the economy. Cen-
tral bank disclosures push events in the direction of bringing about what was
disclosed. Thus, any reaction function used by the central bank in setting pol-
icy has to rely on less informative signals of the underlying fundamentals. To
compensate, the central bank would be forced to adopt a reaction function that
is more sensitive to the signals emanating from the economy. When the signal
to noise ratio is low, such a move would invite unwelcome side-effects.

Against this backdrop, this paper assesses the implications of public infor-

mation in a small-scale monetary-policy model in which agents have imperfect

!See Bernanke and Woodford (1997) for a treatment of the issues as pertains to forward-

looking interest rate rules.



common knowledge on the state of the economy. We employ a model that
is standard in most respects, but one that recognizes the importance of decen-
tralized information gathering and the resulting differential information in the
economy. In particular, building on recent work by Woodford (2002), our focus
is on the pricing behaviour of monopolistically competitive firms with access to
both private and public information.

Our analysis proceeds in two steps. Beginning with a series of simplified
examples, we show how differentially informed firms follow pricing rules that
suppress their own information, but instead put disporportionately large weight
on commonly shared information; that is, firms suppress their private information
on the underlying demand and cost conditions far more than is justified than
when the estimates of fundamentals are common knowledge. For reasonable
values for the strength of strategic complementarity, the aggregate price suffers
substantial information loss, and therefore ceases to be an informative signal of
the underlying demand and cost conditions.

Following up on our partial equilibrium example, we then develop a general
equilibrium model incorporating households and the central bank. A complete
monetary-policy model allows us to consider the implications of specific mone-
tary policies, in particular the properties of interest rate rules based on inflation
forecasts as explored in the recent monetary policy literature. Our objectives
here are threefold. First, under a particular parametrization of the policy rule,
we wish to assess the impact of public information on the volatility of macroeco-
nomic aggregates. Second, we investigate the dynamic responses of the variables
to shocks in the underlying economic fundmentals. Third, we trace out the wel-
fare implications of different parametrizations of the policy rule with respect to
the relative precision of private and public signals of the fundamentals.

In the next section we provide a brief overview of related literature. Section 3
provides some theoretical background by means of simplified examples of pricing
differential information. Section 4 develops a complete macroeconomic model
that is standard except for the presence of differential information amongst some

agents. The general equilibrium properties of this model are explored in Section



5. Section 6 concludes. The Appendix contains further technical results.

2 Related Literature

From a theoretical perspective, we have good grounds to conjecture that the
‘climate of opinion’ as embodied in the commonly shared information in an econ-
omy will play a disproportionate role in determining the outcome. A strand
of the macroeconomics literature begun by Townsend (1983) and Phelps (1983),
and recently developed and quantified by Woodford (2001), examines the impact
of decentralized information processing by individual agents in an environment
where their interests are intertwined. Indeed, Phelps’s paper is explicitly couched
in terms of the importance of higher order beliefs — that is, beliefs about the
beliefs of others. For Woodford, the intertwining of interests arise from the
strategic complementarities in the pricing decisions of firms. In setting prices,
firms try to second-guess the pricing strategies of their potential competitors
for market share. Even when there are no nominal rigidities, the outcome of
navigating through the higher-order beliefs entailed by the second-guessing of
others leads firms to set prices that are far less sensitive to firms’ best estimates
of the underlying fundamentals. The implication is that average prices suffer
some impairment in serving as a barometer of the underlying cost and demand
conditions.

These results are bolstered by recent theoretical studies into the impact of
public and private information in a number of related contexts. They suggest that
there is potential for the aggregate outcome to be overly sensitive to commonly
shared information relative to reactions that are justified when all the available
information is used in a socially efficient way. Morris and Shin (2002) note how
increased precision of public information may impair social welfare in a game of
second-guessing in the manner of Keynes’s ‘beauty contest’ that has close formal
similarities with the papers by Phelps and Woodford. Allen, Morris and Shin
(2002) note that an asset’s trading price may be a biased signal of its true value

in a rational expectations equilibrium with uncertain supply, where the bias is



toward the ex ante value of the asset.

A number of recent papers have revisited macroeconomic models with im-
perfect common knowledge by drawing on the recent modelling innovations for
dealing with differential information. Hellwig (2002) analyses the impact of pub-
lic announcements in a new Keynesian model with imperfect competition. He
shows that public announcements allow quicker adjustment to fundamentals, but
at the cost of greater noise. Bacchetta and van Wincoop (2002) explore the
impact of public information in an asset pricing context. Pearlman and Sargent
(2002) and Kasa (2000) are other recent papers that have pushed the boundaries
of this literature.

There has also been growing interest in examining more deeply the underlying
rationale for imperfect common knowledge among agents. Is it possible that
agents observe only noisy signals of aggregate fundamentals? If so, why do
agents lack common knowledge? The latter question is easier to address, since
it is presumed to be self-evident that agents have access to (at least partially)
private information in the conduct of their own activities. One answer to the
first question is that data on macroeconomic aggregates are subject to persistent
measurement errors. Publicly available statistics rarely provide a completely
accurate measure of the true underlying aggregates of economic interest. Bomfim
(2001) has analysed the general equilibrium implications of measurement error
in a common knowledge rational expectations setting. A second answer is that
agents have limited information processing capabilities, along the lines of Sims
(2002). The story is as follows. Consider dividing agents’ activities into two
parts: an information processing stage and a decision-making stage. Given the
vast quantity of information at their disposal, both private and public in nature,
it is conjectured that agents can only imperfectly filter this data into a set of
statistics upon which to base decisions. But conditional upon their information
sets, agents act optimally. A related argument is that a good deal of public
information that agents pay attention to is imperfectly filtered by public sources,
for example, newspaper reports or commentators on television.

The existence and likely use of both public and private information suggests



that models with disparately-informed agents should take both types of signals
into account. The strong likelihood that measurement errors in some key macroe-
conomic data series or that processing errors by agents persist indefinitely into
the future suggests that the true state is never revealed. Combining these two
features in a monetary-policy model is a novel contribution of this paper.

One potential argument against the plausibility of the importance of higher-
order beliefs in agents’ behaviour is the degree of complexity involved in forming
these beliefs (see, for instance, Svensson’s (2001) comments on Woodford (2002)).
If agents have only limited information processing capabilities, then how could
they be expected to form expectations about others’ expectations about others’
expectations and so on? However, there is a clear distinction between the be-
haviours exhibited by agents and the informational constraints they face. Agents
form and act upon higher-order beliefs because it is rational for them to do
so. Invoking the well-known billiard player analogy, agents act as if they have
knowledge of the workings of the economy, which in our setting requires that
they implictly second-guess others. By contrast, it is not clear how they can
act as if they have perfect common knowledge of the economy’s state. Indeed,
a differential-information rational expectations economy places less stringent re-
quirements upon agents than full information rational expectations models that
are typical in the literature. The elegance of these latter models can be mislead-
ing regarding the enormous demands placed upon agents in both their behaviour,

which we also impose, and information processing abilities, which we relax.

3 Theoretical Background

Before developing our main arguments in a general equilibrium setting, we will
introduce our conceptual building blocks by means of a series of simplified exam-
ples. Our focus is on the equilibrium consequences of the pricing rule for firms

that takes the form:

pi = Eip+ B (1)



where p; is the (log) price set by firm 4, p is the (log) average price across firms, x
denotes the output gap (in real terms) - our “fundamental variable” - and ¢ is a
constant between 0 and 1. A rigorous development of (1) is presented in section
4. The operator F; denotes the conditional expectation with respect to firm 4’s
information set. The pricing rule given by (1) arises in the classic treatment by
Phelps (1983), and has been developed more recently by Woodford (2002) for an
economy with imperfectly competitive firms.

In a discussion that has subsequently proved to be influential, Phelps (1983)
compared this pricing rule to the ‘beauty contest’ game discussed in Keynes’s
General Theory (1936), in which the optimal action involves second-guessing the
choices of other players. Townsend (1983) also emphasized the importance of
higher order expectations - that of forecasting the forecasts of others. To see

this, rewrite (1) in terms of the nominal output gap, defined as ¢ = = +p, yielding

pi=1—-¢& Ep+£EEq (2)

If we then take the average of (2) across firms, we get

p=(1-¢&) Ep+EEq (3)

where E(-) is the “average expectations operator”, defined as E(-) = [ E;(-)di.

By repeated substitution, we have

p=) &(1—&" " Efq (4)

k=1
where E* is the k-fold iterated average expectations operator. With differential
information, the k-fold iterated average expectations do not collapse to the single
average expectation. Morris and Shin (2002) show how such the failure of the law
of iterated expectations affect the welfare consequences of decision rules of this
form, and note that increased precision of public information may be detrimental
to welfare.

The size of the parameter £ proves to be crucial in determining the impact

of differential information, through higher-order expectations, on aggregate price

dynamics. In a monopolistically competitive model, the parameter ¢ reflects,
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among other things, the degree of competition between firms. The more in-
tense is competition - that is, the larger is the elasticity of substitution between
firms’ goods - the smaller will be ¢, and hence the more important higher-order

expectations in determining prices.

3.1 Differential Information in a Static Context

Let us explore the consequences of the pricing rule given by (1) in a single period
context when the firms have differential information on the underlying fundamen-
tal variable - the nominal output gap q. For ease of illustration, let us suppose
for the moment that the nominal output gap g can take on finitely many possible
values. No firm observes g perfectly, but firm ¢ observes an imperfect signal z;
of q, where z; takes on finitely many possible values. Each firm observes the
realization of its own signal, but not the signals of other firms. Let us further
suppose that the firms can be partitioned into a finite number N of equally-sized
subclasses, where firms in each subclass are identical, and commonly known to

be so. We define a state w to be an ordered tuple:
W= (q7217z27"' 7ZN)

that specifies the outcomes of all random variables of relevance. We will denote
by € the state space that consists of all possible states. The state space is finite
given our assumptions.

There is a known prior density ¢ over the state space €2 that is implied by
the joint density over ¢ and the signals z;. The prior is known to all firms, and
represents the commonly shared assessment of the likelihood of various outcomes.
However, once the firm observes its own signal z;, it makes inferences on the
economy based on the realization of its own signal z;. Firm ¢’s information
partition over € is generated by the equivalence relation ~; over €2, where w ~; W’
if and only if the realization of z; is the same at w and w'.

Some matrix notation is useful here. Index the state space 2 by the set
{1,2,---,]9|}. We will use the convention of denoting a random variable f :

2 — R as a column vector of length |€2|, while denoting any probability density
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over () as a row vector of the same dimension. Thus, from here on, the prior
density ¢ will be understood to be a row vector of length |2]. We will denote
by b; (k) the row vector that gives the posterior density for firm i at the state
indexed by k. By gathering together the conditional densities across all states
for a particular firm 4, we can construct the matrix of posterior probabilities for
that firm. Define the matrix B; as the matrix whose kth row is given by firm ¢’s
posterior density at the state indexed by k. That is

— (1) -
B=| bi('2) —

— b (Q) —
We note one important general property of this matrix. ~We know that the
average of the rows of B; weighted by the prior probability of each state must be
equal to the prior density itself. This is just the consequence of the consistency
between the prior density and the posterior densities. In our matrix notation,

this means that

¢=¢B; (5)
for all firms 2. In other words, ¢ is a fixed point of the mapping defined by
B;.  More specifically, note that B; is a stochastic matrix in the sense that it
is a matrix of non-negative entries where each row sums to one. Hence, it is
associated with a Markov chain defined on the state space €. Then equation
(5) implies that the prior density ¢ is an invariant distribution over the states
for this Markov chain. We will make much use of this property in what follows.
This formalization of differential information environments in terms of Markov
chains follows Shin and Williamson (1996) and Samet (1998).

For any random variable f : 2 — R, denote by E;f the conditional expecta-
tion of f with respect to ¢’s information. F;f is itself a random variable, and
so we can denote it as a column vector whose kth component is the conditional
expectation of firm ¢ at the state indexed by k. In terms of our matrix notation,

we can write:

Ezf = Bz’f



As well as the conditional expectation of any particular firm, we will also be

interested in the average expectation across all firms. Define Ef as

1 N
— =S Ef
3

Ef is the random variable whose value at state w gives the average expectation
of f at that state. The matrix that corresponds to the average expectations

operator F is simply the average of the conditional belief matrices {B;}, namely
N

1

NP

Then, for any random variable f, the average expectation random variable Ef is

given by the product Bf. Since Bf is itself a random variable, we can define
B*f = BBf

as the average expectation of the average expectation of f. Iterating further, we
can define B¥f as the kth order iterated average expectation of f. Then, the

equilibrium pricing rule (1) can be expressed in matrix form as

pi=EBig+ (1 —&) Bip

Taking the average across firms, we have

p=¢&Bg+(1-¢&) Bp (6)

By successive substitution, and from the fact that 0 < £ < 1, we have

ngz Bg

where M is the matrix



Thus, equilibrium average price p is given by (7). Let us note some preliminary
observations on the comparison between (7) and the case where all firms observe
the same signal, and hence where the law of iterated expectations holds. When
all firms observe the same signal, the k-fold iterated average expectation collapses

to the single average expectation, and we have the pricing rule:

p= Byq (8)

The difference between (7) and (8) lies in the role played by matrix M. Note
that M is a stochastic matrix (i.e. a matrix of non-negative entries whose rows
sum to one) since each row of the matrix ((1 — &) B)" sums to (1 — £)" so that
the matrix (I — (1 —&)B)™' = 3°,((1 — €) B)* has rows which sum to 1 +
(1—&6)+(1—¢6>*+---=1/6 Thus, the matrix M = (I —(1—€)B) 'isa
stochastic matrix.

The matrix M serves the role of “adding noise” (in the sense of Blackwell)
to the average expectation of the fundamentals q. The effect of the noise is to
smooth out the variability of prices across states. Thus, in going from (8) to (7)
the average price becomes a less reliable signal of the output gap. Since the noise
matrix M is a convex combination of the higher order beliefs {B’“}, we must first
understand what determines these higher order beliefs. In general, higher order
expectations contain much less information than lower order expectations in the
following precise sense. For any random variable f, denote by max f the highest
realization of f, and define min f analogously as the smallest realization of f.

Then for any stochastic matrices C' and D and any random variable f,

maxCDf < maxDf
minCDf > minDf

CD is a “smoother” or “noisier” version of D in the sense of Blackwell. So, the
higher is the order of the iterated expectation, the more rounded are the peaks
and troughs of the iterated expectation across states.

The importance of the parameter ¢ is now apparent. The smaller is this

parameter, the greater is the weighting received by the higher order beliefs in the

11



noise matrix M, so that the prices are much less informative about the underlying
fundamentals.
In particular, the limiting case for higher order beliefs B* as k becomes large

has a very special property. From (5), we know that

¢ =¢B (9)
so that the prior density ¢ is an invariant distribution for the Markov chain

defined by the average belief matrix B. By post-mulitiplying both sides by B,

we have

¢ = ¢B = ¢B*
so that ¢ is an invariant density for B? also. By extension, we can see that ¢ is
an invariant density for B* for any kth order average belief operator. We also
know from the elementary theory of Markov chains that under certain regularity
conditions (which we will discuss below), the sequence { B’“}Zo:1 converges to a
matrix B whose rows are identical, and given by the unique stationary distribu-
tion over 2. Since we know that the prior density ¢ is an invariant distribution,
we can conclude that under the regularity conditions, all the rows of B> are

given by ¢. That is
B> = ) (10)

In other words, the limiting case of higher order beliefs B* as k becomes large
is so noisy that all information is lost, and the average beliefs converge to the
prior density ¢ at every state. In particular, for any random variable f, suc-
cessively higher order beliefs are so noisy that all all peaks and troughs into a
constant function, where the constant is given by the prior expectation f (i.e.

the expectation of f with respect to the prior density ¢). In other words,

k|

Bf — | °, as k — oo (11)

-
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To introduce the regularity conditions that ensure this, and to delve further
into the underlying structure of our results, let us denote the (j, k)th entry of B

by

b(j, k)

This is the probability of one-step transition from state j to state k in this Markov

chain. The condition that guarantees (10) is the following.

Condition 1 For any two states j and k, there is a positive probability of making

a transition from j to k in finite time.

Condition 1 ensures that the matrix B corresponds to a Markov chain that is
wrreducible, persistent and aperiodic. It is irreducible since all states are accessible
from all other states. For finite chains, this also means that all states are visited
infinitely often, and hence persistent. Finally, the aperiodicity is trivial, since all
diagonal entries of B are non-zero irrespective of condition 1. We can then prove
lemma 2. Samet (1998) proves an analogous result for the iteration of individual

beliefs.

Lemma 2 Suppose B satisfies condition 1. Then, the prior density ¢ is the
unique stationary distribution, and B* — B>, where B*® is the matriz whose

rows are all identical and given by ¢.

Condition 1 has an interpretation in terms of the degree of information shared

between the firms. It corresponds to the condition that
(Z:=0 (12)

In other words, the intersection of the information sets across all firms is empty.
There is no signal that figures in the information set of all the firms. For instance,
if the firms’ costs are highly correlated, but not exactly identical, then (12) holds
so that condition 1 is satisfied. Another way to phrase this is to say that there

is no non-trivial event that is common knowledge among the firms. The only
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event that is common knowledge is the trivial event €2, which is the whole space
itself.

When the intersection (), Z; is non-empty, then this means that there are
signals that are observed by every firm. Hence, the outcomes of signals in (), Z;
becomes common knowledge among all firms. One such example would be the
publicly announced inflation forecast of the central bank. Information contained
in (), Z; is thus public. The equilibrium pricing decision of firms can be analysed
for this more general case in which firms have access to public information, as
well as their private information.

In this more general case, the limiting results for the higher order average
belief matrices B* correspond to the beliefs conditional on public signals. In
order to introduce these ideas, let us recall the notion of an information partition
for a firm. Let firm ¢’s information partition be defined by the equivalence
relation ~; where w ~; W' if firm 7 cannot distinguish between states w and w’'.
Denote firm ¢’s information partition by P;, and consider set of all information
partitions {P;} across firms. The meet of {P;} is defined as the finest partition
that is at least as coarse as all of the parititions in {P;}. The meet of {P;} is
thus the greatest lower bound of all the individual partitions in the lattice over
partitions ordered by the relation “is finer than”. The meet of {P;} is denoted
by

AP

The meet is the information partition that is generated by the public signals -
i.e. those signals that are in the information set of every firm, and hence in the

intersection

Ak

The meet has the following property whose proof is given in Shin and Williamson

(1996).
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Lemma 3 If two states w and w' belong to the same element of the meet N\, P;,
then there is positive probability of making a transition from w to W' in finite time

in the Markov chain associated with B.

Lemma 3 gives a generalization of condition 1. The idea is that the Markov
chain defined by the average belief matrix B can be expressed in block diagonal

form:

Ay

and where each sub-matrix A; defines an irreducible Markov chain that corre-
sponds to an element of the meet A, P;. Then, the higher-order belief limit is
given by

Ay
Az

AT
Furthermore, we have
AP
. 45
¢=9¢BT =¢
A7
and so for any random variable f, the higher order expectation of f at each

state has the following limiting property, in which the limit of the higher order

expectation is the conditional expectation based on the public signals only.

E(f|Ni Zi) (w1)

i | EUINT) @

as k — oo
E(fIM:Z) (ww)
where E (f| N Z;) (ws) is the conditional expectation of f at state w, based on

public information only.

15



This result has important implications for the pricing equilibrium for firms.
For small values of the parameter £, the dominant influence in determining the
average price level p is given by the set of public signals. In particular, if the
central bank’s forecast is publicly announced, and is a sufficient statistic for any
public signals available to the firms, then the equilibrium average price p will be an
extremely noisy signal of the underlying cost conditions in the economy. Rather
than reflecting the underlying average marginal costs of the firms, p will simply
reflect the public information only. In this sense, price will be an uninformative

signal of the underlying state of fundamentals.

3.2 Extension to Dynamic Context

So far we have examined a static example of price setting by firms. However,
many economic decisions (such as consumption and investment) are inherently
dynamic, and so we have to face the task of showing whether the results shown
so far translate into a more general framework that can accommodate dynamic
decisions over time. This entails generalizing the argument above, but it turns
out that the key results of our example hold in analogous form in a more general
economy with time. We turn first to the definition of the state space €.

Time is discrete, and indexed by the non-negative integers. Let there be a

countable set of economic variables

{flaf2>f37”'}

that are of relevance to the economy. This list includes all economic variables
that affect the fundamentals of the economy such as productivity, preferences
and exogenous shocks, together with all signals observed by any economic agent
of these variables. We assume that each economic variable f; can take on a
countable number of realizations, drawn from the set Sx. The outcome space is

the product space

k
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The outcome of the economy at time ¢ - given by a specified outcome for each of
the economic variables f; - is thus an element of S. Since each Sy is countable,
so is the outcome space S.

The state space € is defined to be set of all sequences drawn from the set S.

Thus, a typical state w is given by the sequence

w:(80781a32>"')

where each s; is an element of the outcome space S. Thus, a state w specifies the
outcome of all economic variables at every date, and so is a maximally specific
description of the world over the past, present and future.

Let 2 be endowed with a prior probability measure ¢. Each economic variable

fs then defines a stochastic process in the usual way in terms of the sequence

(fs,Ou fs,17f5,27 o )

where f,; is the random variable that maps each state w to the outcome of the
economic variable f,; at time ¢. The information set of agent i at date ¢ is a set
of random variables whose outcomes are observed by firm i at date t. We denote

by

Liy

)

the information set of firm ¢ at date {. The information set Z;; defines the
information partition of agent ¢ at date ¢ over the state space (2. This information

partition is denoted by

Pi

)

The meet of the individual partitions at ¢ is the finest partition of €2 that is at
least as coarse as each of the partitions in {P;;}. The meet at ¢ is denote by P;.
It is the partition generated by the intersection of all information sets at date ¢,
as in our earlier discussion. The meet P; represents the set of events that are
common knowledge at date ¢.

The analysis of pricing decisions by firms can then be generalized to this new

setting. By construction, the state space {2 is countable. Much of the notation
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and apparatus developed in the previous section can then be used in our new
setting by using matrix notation for random variables and probability measures,
provided that we are mindful of those rules for matrix manipulation that are
not valid for infinite matrices. Kemeny, Snell and Knapp (1966) is a textbook
reference for how infinite matrices can be used in the context of countable state
spaces.

As before, any probability measure over €2 is denoted as a row vector, while a
random variable f is denoted as a column vector. For each date ¢, the average
belief matrix By is defined in the natural way. The sth row of B, is the probability
measure over §) that represents the mean across firms of their conditional beliefs

over () at date t. Then, the average price at date ¢ satisfies

pe=EBg + (1 =&) Bipe (13)

where p; is the average price at ¢, and ¢ is the date ¢ version of the random
variable ¢ in the static case. By successive substitution, and from the fact that

0 < & < 1, we can solve for p;.

Dt 252((1 —§) Bt)]C Bq, (14)

=0

Here, we encounter the first difference between our more general dynamic frame-
work and the simple static framework developed earlier. For finite €2, we can ex-
press the infinite sum Y2°° ((1 — €) B;)" as being the inverse matrix (I — (1 —¢) B) ™.
However, for infinite matrices, the notion of an inverse is not well defined, and so
we cannot simplify (14) any further (see Kemeny, Snell and Knapp (1966, chapter
1)).

There is also a more substantial change to our results in this more general
framework. The results concerning the prior information limit and the public

information limit examined in the previous section is no longer valid. Let us

first consider the prior information limit. For our finite state space example,
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Condition 1 was sufficient for the limiting result that, for any random variable f,

of
Bff — ZJ; as k — oo (15)

where ¢f is the expectation of f with respect to the prior density ¢. For our
more general framework, we must strengthen Condition 1 by stipulating that the
Markov chain associated with B; is also recurrent in the sense of every state being
visited infinitely often by the Markov chain. With this additional strengthening,
we can then appeal to the standard results for Markov chains on the convergence

to stationary distributions (see Karlin and Taylor (1975, p.35)) to conclude that
Bf — - 4 - as k — oo

Similar modifications must be made to the public information limit. Here,
the additional restriction that needs to be imposed is the requirement that each
irreducible sub-chain associated with elements of the meet A, P;; is recurrent.
Then, we have the result that for any random variable f,

E(fI0:i i) (w1)

E HZL w
gy | BUINTO @) |

E(f| 0w Toy) (wn)

where E (f| N; Z;;) (ws) is the conditional expectation of f at state w, based on

date t public information only.

4 General Equilibrium Monetary Policy Model

We now consider the general equilibrium implications of the presence of both
public and private information in monetary-policy models. Our analysis is based

on a model with standard behavioural assumptions on households and firms. All
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agents are rational, in the sense that they know the structure of the economy
and make optimal decisions based on their information sets. The only departure
we make from the benchmark full information rational expectations setting is the
absence of common knowledge of the state of the economy among some agents.
Specifically, as in the partial equilibrium example studied in the previous section,
we assume that firms receive private and public noisy signals of current shocks.
By contrast, households and the central bank are assumed to observe these shocks
perfectly. This helps keep the focus on the pricing decisions, where the presence
of strategic complementarities allows differential information to have important
dynamic effects.

In this section we describe the behaviour and information sets of households,
firms and the central bank, respectively. In the next section, we begin by char-
acterising equilibrium, and we then provide some simulation results illustrating
the impact of public information on macroeconomic volatility and the effects of

different monetary policies on economic dynamics.

4.1 Households

Households maximize their discounted expected utility of consumption subject
to their budget constraint. One issue that must be addressed at the outset is the
potential implications of having households possess private information. As men-
tioned above, we assume that households have full knowledge of the state. This
allows households to mitigate idiosyncractic risk in incomes through insurance
markets without greatly complicating our analysis. Households make identical
consumption choices and we avoid having to keep track of the distribution of
wealth. However, our assumption of perfect income insurance is only reasonable
if we assume that households have perfect common knowledge without introduc-
ing complications regarding costly state verification. In addition, we would need
to consider how rational expectations equilibria are established in asset markets
under differential information. Incorporating asset market issues would take us

too far astray, and divert attention from the main focus of our paper. Thus,
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both for the purpose of ensuring identical consumption decisions, and also for
the purpose of avoiding asset market complications with differential information,
we model households as having maximally-specific information sets with regard
to all economic variables that have been realized to date.

To be more specific, we will assume that at any date ¢, households’ information
sets are identical, and include the realizations of all current and past economic

variables { fi, fo,---}. Thus, at date ¢, all households have the information set

I: = Us {fs,O;fs,l;' o afs,t}

Households’ conditional expectations operator at date ¢ is given by

Ei ()

E(IZ)

At date ¢, households know at least as much as any other agent in the economy;,
including Nature, who has chosen the latest realizations of the economic variables.
Each household z supplies labour services of one type, Hy(z,1), for firm ¢, and

seeks to maximise

Eq {Z B [u(Ci(2)) — U(Ht(z,@'))]} (16)
=0
subject to the budget constraint
Eibt1+15001] < B¢ + Wi(i)He(2,1) + @, — PCy(2) (17)

Within each period, the household derives utility, u(-), from consuming the Dixit-

Stiglitz aggregate, Cy(z), defined as

Cy(z) = [/01 Ct(z,i)e_eldi} - (18)

where Cy(z, 1) is household z’s consumption of product 7 and € > 1 is the elasticity
of substitution between differentiated products. As € increases, goods become ever
closer substitutes (i.e. firms have less market power), and hence the degree of
strategic complementarity increases. Supplying H;(z, %) hours reduces welfare, as
indicated by the function v(-). We assume that labour markets are competitive

and a equal number of households supply labour of type 3.
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Households can insure against idiosyncratic risk in incomes (as mentioned
above) and therefore consume the identical amount given by C;. In the budget
constraint, P, denotes the price index corresponding to the aggregate C; defined

as
1

p = { /0 1 Pt(i)l_edz} - (19)

where P;(i) is the price of product i; Z; denotes the nominal value of the house-

hold’s holdings of financial assets at the beginning of period t; W; () is the nominal
hourly wage for supplying labour of type i; ®; is the household’s share of firms’
profits, which we assume are distributed lump-sum to households, and ¢, is a
stochastic discount factor, pricing in period t assets whose payoffs are realised in
period s. We assume there exists a riskless one-period nominal bond, the gross
return on which is given by R; = (E:6;;.1)"". Finally, notice that we have not
assumed that housholds can insure against idiosyncratic variation in labour sup-
ply, although, in equilibrium, households who supply labour to firm ¢ will work
the same amount, Hy (7).
Given the overall level of consumption, households allocate their expenditures
across goods according to
at - [22] e, (20
The first-order condition for determining the optimal level of consumption, given
the allocation of consumption across goods expressed in (20), is Ay = u.(Cy),
where A; is the marginal utility of real income, and the standard Euler equation

is given by
AP, = BRE A1/ Piy] (21)

A log-linear approximation of (21) around A; = A, R; = R and Py /Py = 1

results in
M= B + 1 — B (22)

where 71 = log(P;41/F;) is the inflation rate and lower case represents percent

deviation of a variable from its steady state.
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Market clearing requires that C; = Y; — Gy, where Y; is the aggregate de-
mand for output and G is an exogenous component of demand (e.g. exogenous

government expenditures). Since Ay = u.(Y; — G¢), A\; can be expressed as

A =—0 (Y — gt) (23)

where 0 = u..(C)C/u.(C) is the inverse of the intertemporal elasticity of substi-

tution. Substituting out for \; in (22) yields a “forward-looking IS equation”:

Y — gt = By (Yer1 — Ge1) — 0 1y — By (24)

The (log of) the demand shock, g;, is assumed to follow a Markov process given

by
iid
9t = PgGt—1 + &1, ef ~ N(0, O-?,g) (25)

Finally, the first-order condition for optimal labour supply is found by equat-
ing the marginal rate of substitution of consumption for leisure with the real

wage

Wi(i) _ on(Hi(i)
P T A, (26)

4.2 Firms

Consider first the optimal pricing decisions of firms, taking as given each firm’s
information set. Each firm ¢ faces a Cobb-Douglas production technology with

constant returms to scale
Yi(i) = Ki(i)S (AcHy (i)' (27)

where K3(i) is the capital input of firm 4, A; denotes a labour-augmenting tech-
nology shock and 0 < ¢ < 1. For simplicity, we assume that the level of the

capital stock is fixed and equal across firms (i.e. K;(i) = K). This assumption

means that the demand for each good has the same form as (20), namely

vit) = |4 Ty, (28)



Analogous to g;, the technology shock, a;, is assumed to follow the Markov process
a o iid
ay = Pglr—1 + €, € ~ (O’ O-g,a) (29)
The pricing decision by the firm is a static optimisation problem, where the
first-order condition is given by

Et{a%}_@[(l_e) 2y et

=0 (30)

where II;() is firm i’s real profit function and M Cy(7) is its nominal marginal cost
of producing an extra unit of output. Firms’ conditional expectations operator

at date t is given by
Ei ()= E(|T)
where Z} is the information set of firm ¢ (see below).

Rearranging (30) yields

Eq P, e-1 P | (31)

Thus, the firm chooses its price such that its expected relative price is a constant
mark-up over expected real marginal cost. In a situation of complete common
knowledge, equation (31) reduces to the familiar condition that firms set their
price equal to a fixed mark-up over marginal cost.

A log-linear approximation of (31) around P;(i)/ P, = 1 and Si(i) = MCy(i)/ P, =
(e —1)/e gives

By [pe(i) — s:(i)] = 0 (32)

where py(1) = log(P;(i)/ ;).

Since real marginal cost is equal to the ratio of the real wage to the marginal
product of labour, and in equilibrium the real wage must also equal the marginal
rate of substitution, as given in (26), a log-linear approximation of real marginal

cost can be expressed as
St(i) = wyt(l) — (1/ + 1)@1; — >\t (33)
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where v = vy, (H) H /v, (H) is the inverse of the Frisch elasticity of labour supply

and w = (’%g) Substituting (23) into (33) and rearranging gives

si(i) = (W +0) (g — y') — wepe (i)

where y}* is the “natural rate of output”, defined as

1
(w+ o)

n
t

y [(v + a + og,] (34)

We can now substitute the expression for marginal cost, given by (33), in the

first-order condition for pricing, (32), to yield

pe(i) = Eipe + EE] (g — ) (35)

where £ = (w+0)/(1+we). This equation is analogous to (1). Following the same
steps as in Section 2, by first averaging (35) across firms, rewriting the resulting
expression in terms of nominal output, defined as ¢; = y; + p;, and solving by

repeated substitution yields
=Y -9 Ef (g — ) (36)
k=1

Next consider the information sets of firms. There are two sources of aggregate
disturbances in the model: the demand shock, ¢;, and the productivity shock,
a;. To simplify matters, we assume that each firm observes one private and one

public signal of each of these shocks. Specifically, firm i’s information set is given
by

{gt gt ) G }

where ¢¢(i) and a,(i) are private signals of ¢g; and a;, respectively, and, similarly,
gl and a!” are public signals of g; and a;. Each of the signals is assumed to have
an 1id Gaussian distribution, with conditional mean equal to the fundamental

shock; namely,
gui) = g +€l(i),  €l(i) C N(0,02) (37)
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ali) = a,+el(i),  €ii) < N(0,02,) (38)

iid

9 =gi+ni, nl~N(©0,0;,) (39)
a o id

af =G + ntu nt ~ (07 0-3],(1) (40)

The innovations in (25), (29) and (37)-(40) are assumed to be independent of
each other at all leads and lags.

Other plausible assumptions on firms’ information sets could also be incor-
porated into our framework. For example, one alternative approach would be
to have firms obtain signals of endogenous variables directly, instead of the un-
derlying fundamental shocks. For instance, firm ¢ might observe a private signal
of the price level such as py(i) = p; + €/(i). A more obvious alternative is to
allow firms to observe all of the variables involved in their own production ac-
tivities, such as their own output, hours hired and wages paid. In the current
set-up, if firms can observe their own output and hours employed when making
pricing decisions, then they can infer without error the value of the technology
shock, A; (or equivalently, a;), from the production function (27). However, by
modifying the model with the further realistic assumption that firms are subject
to idiosyncratic technology shocks and that they can only infer their own level
of productivity from their production activities, we are back to the present case
where firms do not perfectly observe aggregate productivity shocks. Thus, if we
were to introduce firm-specific technology shocks, we could also include y(7),
hy(i) and w,(z) in Z; and still obtain qualitatively similar results as in the present

set-up.

4.3 Monetary Policy

Most central banks conduct monetary policy by setting a target for a short-

term nominal interest rate.? Much of the recent monetary policy literature, both

2This interest rate is typically an overnight rate in an interbank market, for example, the

federal funds rate in the United States.
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theoretical and empirical, has assumed that the short-term rate is set according
to a rule. An example is the Taylor rule (1993), where the interest rate is a
function of the deviation of current inflation from target and current output (or
the output gap). Other rules have been investigated by various authors in a
wide range of models, including, notably, forecast-based rules (see, for example,
Batini and Haldane (1999)). In forecast-based rules, the central bank’s forecast
of inflation, and possibly output, replace observations on actual current values of
the variables. The appeal of these types of rules is that they seem to correspond
more closely to descriptions of central bank behaviour in reality. Whether or
not a central bank has an explicit numerical target for inflation, forecasts seem
to play a pivotal role in policy makers’ decisions.

In this paper we consider a forecast-based rule for monetary policy. Specif-
ically, following recent practice, we assume that the central bank sets the one-

period riskless nominal interest rate, r;, according to
ry = Oéﬂ—Et7Tt+1 + ayyt (41)

One important additional assumption we make is that the central bank has the
same information set as households.> This means that policy makers observe,
among other things, the current price level and output without error. The
reason for assuming that the central bank observes the state perfectly is, once
again, to keep our focus on the impact of differential information on firms’ pricing
behaviour and its macroeconomic consequences. Restricting monetary policy
makers to have imperfect knowledge, while an interesting case to consider in its
own right and certainly more realistic, would only serve to cloud the present

analysis.

3In particular, the conditional expectation in (41) is computed using the same probability
measure used by households. Recall that households’ information sets are maximally-specific

with regard to all random variables realized to date.
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5 General Equilibrium

The complete model is given by the behavioural equations: (24), (36) and (41);
the processes for the fundamental shocks: (25) and (29); and the processes for the
signals: (37)-(40). We begin this section by setting up the model in state-space
form, solving for the stochastic process followed by the state and then solving for
the equilibrium of the price level, output and the interest rate. This is followed
by an investigation of some of the equilibrium properties of the model, inclduing
a comparison of the differential information model to a oft used version of a sticky

price model.

5.1 Characterising Equilibrium

The first step in solving the model is to describe the state space and determine
the stochastic process followed by the state. In the present model, the state,
denoted by X, is given by

=[] -

where 0, is a vector of exogenous variables and v, is defined as
U= 19" B (0) (43)
k=1

In (43), the average expectations operator, EF (e), refers to average expectations
across firms. From equations (24) and (43), it can be seen that the exogenous

variables are

0: = [ as, 9o, NE M ]/
The vector 6, follows a Markov process given by
0, = BO, 1+ by, (44)
where

iid
w=1[et, e, nt 0l ], w < N0,Q,)
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_ - 2 2 2 2
Q, = diag ([ Ocar 990 Tna Ing ])

By 04 — | Pa 0 —
LHIES R

g

B

I, and 0,, denote the n x n identity and null matrices, respectively.

Each firm observes the vector of variables
v = [ali), g, af. g |
In terms of X, 4;"(i) can be expressed as
Y29 (i) = ZX, + zv,(3) (45)
where

itd

v (i) = [ efd), ef(i) ], wl(i) ~ N(0,9Q,)

_ _ | 12 0 _ | I
Z:[Zl Z2i|,Z1:|‘].2 12:|,Z2:04,Z:[02:|

Lemma 4 Given equations (44) and (45), the state, Xy, defined in (42) follows

the Markov process given by
Xt = MXt_l + mug

where

B 0, b
= 7mE

G H h

Y

and the matrices G, H and h are given in equations (58), (59) and (60), respec-
tively.

Proof. See Appendix A.1. m

We are now in a position to describe the equilibrium processes of p;, y; and

Tt.
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Theorem 5 Consider the model given by equations (24), (36) and (41), and
the assumptions of lemma 4. Under certain conditions on o, and o, a Markov

Perfect Equilibrium is given by

Pt = )\/Xt
vy = [(I— M) 6-)'"X,

Ty = Oé/Xt

where iy, 6, A and o are given in equations (65), (68), (71,76) and (17), respec-
tively.

Proof. See Appendix A.2. m

5.2 Model Properties

Here we examine several features of the model presented above. Before pro-
ceeding, we must choose values for the parameters. These are presented in Table
1. Putting aside the variances of the shocks, the numbers chosen for the other
parameters fall within the range of values typically used in the literature. On
the other hand, the variances have been chosen somewhat arbitrarily, since there
is not much evidence we can draw upon for these parameters. However, it is
not our objective to show that the simple version of the model investigated here
provides a good quantitative description of actual economies. We simply wish to
illustrate some properties of the model. Thus, as a baseline case, we set all the
variances equal to each other — for the innovations of the fundamental shocks,
as well as the shocks to the signals. The absolute values of the variances are not
very important. By contrast, their relative size does matter, as is born out in the

simulations we present.

5.2.1 Changing Weights on Higher-Order Beliefs

Recall that one of the key parameters of the model is &, which determines the

relative weight attached to higher-order expectations in the pricing relation (36).
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Among other things, £ depends inversely upon the elasticity of substitution, e.
Thus, an increase in €, which increases the coordination motive among firms and
produces a smaller steady-state markup, gives a more prominent role to higher-
order beliefs by lowering £.*  One feature of the macro model we wish to highlight
is the implication of changing ¢ on the sample paths of the output gap and the
price level. We do this by altering the value of €, since it enters the model only
through €.

The results of one such experiment are shown in Figure 1. Each panel of
the figure plots one sample realisation (time series) of the price level against the
output gap using the same randomly drawn sample of shocks. The cases in the
panels are distinguished by their treatment of € and the relative precision of the
public signals. A markup of 10 percent (left-hand side panels) corresponds to
our baseline parameterisation, whereas the markup has been cut to 5 percent to
produce the right-hand side panels. In addition, the top panels report cases with
high-precision public signals, whereas the lower panels are based on low-precision
public signals. The plots suggest that, conditional on the output gap, an increase
in competition (lower markup) or a decline in the precision of the public signal
spreads out prices. This is most evident in the lower right panel, where prices
depend relatively more on higher-order expectations (due to lower &), which in
turn are adversely affected by noisier information (less precise public signals).

These scatter plots intimate the potential degradation of the information value
of price as a signal of the output gap. For economies that have relatively noisy
public signals and a high degree of competition, prices convey poor quality infor-

mation about the underlying output gap.

5.2.2 Volatility and the Quality of Public Information

We next demonstrate that more precise public information does not necessarily

lead to lower volatilty among endogenous variables. This result is evident in

4 As already noted by Woodford (2002), such changes are more critical in the current setting
than in standard sticky price models (see below), where an increase in competition lowers the

elasticity of inflation to the output gap, but no more.
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Figures 2 and 3. These figures plot values of the variances of the endogenous
variables as a function of the precision of the public signals, where the precision
is defined as 1 /(7727 Figure 2 documents the case when firms’ private signals
are of high precision, whereas in Figure 3 firms’ signals are of low precision.’
The result mentioned above is shown in Figure 2. When firms observe fairly
precise private signals of aggregate shocks, the mere presence of the public signal,
interpreted as a signal with precision greater than zero, actually makes inflation
more volatile. Moreover, increases in the precision of the public signal produce
a higher variance of inflation over a certain range. These plots illustrate one
key effect of public information. From the results in section 3, recall that more
precise public signals get a higher weight in both individuals’ and average k-fold
expectations. A higher weight on a common (i.e. public) signal necessarily means
that individuals’ expectations are distributed more closely together around the
public signal. However, this can lead to greater volatility in the aggregate if
the public signal is not very precise relative to private information. This is
exactly what is shown in Figure 2 for inflation. By contrast, when firms have
sufficiently imprecise private information (Figure 3), increases in the precision of
public always lead to lower volatility.

Since higher-order beliefs play a direct role only in firms’ pricing decisions, it
is perhaps not surprising that these effects largely pertain to inflation outcomes.
These results affirm and extend the conclusions of Morris and Shin (2002) to a
dynamic macroeconomic setting, namely, that more precise public information
does not necessarily lead to better welfare outcomes. Importantly, this is not
predicated on inefficiencies that arise due to poor information available to the
central bank. On the contrary, the central bank operates with full information

on the state of the economy.

5The precisions of the public signals are set equal to each other. Similarly, the precisions
of the private signals are also set equal to each other. This value is 16 percent (high precision

case) and 0.25 percent (low precision case).
6This is true at least over the range of values considered for the precision of the public

signals.
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5.2.3 Impulse Responses

One way to illuminate the dynamic interrelationships among variables in the
model is to examine impulse responses to innovations in the fundamental shocks,
g: and a;. These responses are shown in Figure 4. In each panel, the solid line
shows the response of the variable to a one-standard deviation innovation in the
demand shock and the dashed line plots the response to a similar innovation
in the technology shock. One interesting property of equilibrium in this model
evident in the figure is stationarity of the price level (the price level converges
back to its mean in the third panel). The basic intuition for this result comes
from noticing that neither the pricing rule of firms nor the monetary policy rule
introduces any inherent dependence on past prices. Since the initial responses
of inflation to these shocks are in the direction one would expect — positive for
the demand shock, negative for the technology shock — one implication is that
inflation must overshoot its mean (see the second panel).

It is illuminating to contrast the responses in Figure 4 with those in an econ-
omy that features sticky prices. As an example, consider the standard version of

the New Keynesian Phillips Curve given by
Ty = BEme + KBy (ye — yy') (46)

This equation can be derived from either Rotemberg’s (1982) model of adjustment
costs in price setting or Calvo’s (1983) model of staggered price setting.” In
the Calvo case, the composite parameter x depends upon, among other things,
the average duration prices are held fixed (D) and the elasticity of substitution
between goods (€).8 For the simulations presented here, we set D equal to three
quarters.

Analogous to Figure 4, Figure 5 plots impulse responses to innovations in

the demand and technology shocks. It is important to recognise that precise

"See Woodford (2003) for an extensive treatment of sticky price models of this type.
8As in the differential-information model, an increase in competition (larger €) reduces the

senstivity of current prices to aggregate demand, i.e. lower . Similarly, an increase in D lowers

K.
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quantitative comparisons between Figures 4 and 5 are difficult to interpret, as no
attempt has been made to choose parameters in the models subject to a common
criteria. Nonetheless, it is worthwhile pointing out some features that are likely
to be robust under other reasonable parameter values. First, in contrast to the
differential-information model, the price level is not stationary and inflation does
not overshoot its mean. The behaviour of inflation is also matched by monotonic
responses of the interest rate to the shocks, unlike in the differential information
model. Second, the responses of output to the shocks are almost identical in the
two models, though this is largely due to the fact that we have assumed that
households have full common knowledge in both cases.

Concentrating once again on the differential information model, Figure 6 plots
impulse responses to shocks to the public signals. The effects on output are trivial
due once again to the fact that households have perfect knowledge of the state
and the indirect effects of firms’ imperfect common knowledge on consumption
is minimal. The more interesting behaviour has to do with inflation, and its
consequences for interest rates. In the face of a positive shock to the public
signal of demand (solid lines), firms initially raise prices, causing inflation to go
up. However, since actual demand has not increased (first panel), firms gradually
lower their prices back to their original level. This causes price changes to become
negative, i.e. inflation overshoots its mean. Meanwhile, anticipating the decline
in inflation, the central bank first lowers interest rates. Overall, the initial rise
in the short-term real interest rate and its later decline combine to keep the
long-term real rate relatively constant, explaining the basically flat response of
consumption. Similar, but opposite effects are at work when the public signal of

technology is perturbed.

5.2.4 Changes in the Policy Rule

In the last set of simulations we present, we illustrate the impact of changing
the coefficients in the policy rule (41). Once again, our interest is in the effects
of the relative precision of public and private signals, in this instance when we

alter the behaviour of monetary policy. Specifically, we compute the variances
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of the endogenous variables as a function of o, the policy response to expected
inflation. The results are displayed in Figure 7. The solid line shows the case
with high-precision public signals, the dashed line is the case with low-precision
public signals.

From this figure it is evident that this model exhibits the classic trade-off
between inflation (or price level) and output stabilisation. As «, increases, the
variance of inflation declines, whereas the variance of output increases. Focusing
on inflation (top right panel), the result from Figure 2 that more precise public
information can induce greater volatility in inflation is confirmed; the dashed line
is always below the solid line. However, the differences in variances between the
two cases disappears as policy responds more and more aggresively to inflation.
Notice that the more aggressive policy response has no impact on the information
that agents receive because firms’ signals are not endogenous. A policy that
reacts more strongly to expected inflation, and hence price movements, does so
by stabilising the output gap — the fundamental that firms are learning about.
The more aggressive policy response ends up making the relative precision of

public information less relevant in the firm’s filtering problem.

6 Conclusions

An economy with diverse private information has features that are not always
well captured in representative individual models where all agents share the same
information. The most distinctive of these features is the relatively greater im-
pact of common, shared information at the expense of private information. The
source of the greater impact of public information lies in the strategic complemen-
tarity of the price setting behaviour of firms, and the impact of public information
is greater for those economies where price competition is more fierce.

The observation that public signals have a disproportionately large impact in
games with coordination elements is not new, but our contribution has been to
demonstrate how the theoretical results can be embedded in a standard macroe-

conomic model that is rich enough to engage in questions of significance for policy

35



purposes. Moreover, our discussion of the theoretical background in section 3
has been motivated by the need to unravel the main mechanisms at work. By
developing the argument by means of a series of simple examples, our intention
has been to convey the main intuitions, and so show that the results do not rely
on senstive ways on specific functional forms or distributional assumptions.

In order to operationalise our model for the purpose of numerical simulations,
we have had to make a number of simplifiying assumptions, such as the fact that
consumers are fully informed, and that the central bank is also fully informed.
Nevertheless, our simulation results reveal that the impact of public information
is large, and shifts in the precision of public information has significant effects
on observable variables that enter into calculations of welfare. At the cost of
some additional complexity, it is possible to extend our model to contexts where
agents not only have noisy information of the underlying fundamentals of the
economy, but also of the endogenous variables. Also, it is possible to inject more
realism into the numerical simulations by allowing the central bank to have less
than perfect information of the fundamentals. In both cases, we conjecture that
the central bank could actually do more harm by adopting a vigorous response to
inflation or its inflation forecast through further degradation of the informational
content of signals observed by firms. We are currently at work on these two
extensions.

The results we have obtained here are suggestive, and invite further investi-
gation. The policy conclusions that flow from these results also merit further

consideration.
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A Solving for General Equilibrium

A.1 Proof of Lemma 4

Recall that X; is defined as

X, = [ Z’ft } (47)

where 6, is a vector of variables that are exogenous with respect to p;, y; and Ry,

and 1), is defined as
G= -8 E(0) (48)
k=1
0, is governed by the process

Qt = Bﬁt_l + but (49)

for known matrices B and b and where u; ~ N(0,€2,) is a vector of éid random
variables.

The state-space model is completed by specifying the observation equation.
Denoting by 37" (1) the vector of variables observed by firm i at date ¢, the

observation equation in general can be written as
Y9 (i) = ZX, + zv,(3)

for known matrices Z = [Z; 7] and z, and where v;(i) ~ N(0,€2,) is a vector
of random variables that are independently and identically distributed across
time and firms. These assumptions, and the law of large numbers, imply that
fol vy (4)di = 0.

For now assume (to be confirmed later) that the state, X, follows a process

given by
Xt = MXt_l + mug (50)

where



and the matrices G, H and h are yet to be determined. When there is no
ambiguity, the subscript will be omitted from I,, and 0,,.

Now consider the firm’s problem of estimating the state, X, using the Kalman
filter. Given the assumptions made so far, the Kalman filter produces minimum
mean squared error estimates of the state for the log-linearised version of the
model. Assume that a time-invariant filter exists that is also independent of
i, with the Kalman gain denoted by K. Let Xy,(i) = E.X;. Combining the

prediction and updating equations from the Kalman filter for firm ¢ gives
Xya(i) = MXy_1j-1(i) + K (37" (i) — ZM Xy-1-1(3)) (51)
Averaging across i and rearranging gives

Xt|t = (] — KZ) MXt—1|t—1 + KZXt
= (I—KZ)MX, 1y +KZMX, |+ K Zmu,

Defining = = [¢] (1 — ¢)I] and K = EK, first notice that ¢, = ZX;;, and
)

thus (1 —&)¥,_q,1 = Y41 — €0i—1je—1. This implies
b, = (E— KZ)MX; 1o 1 + KZM X,y + K Zmu, (52)
and
X111 = P11 + abiaj (53)
where ¢, = [0 1—;[]’ and p, = [ — 1%5[]’. Substituting (53) into (52) and

expanding gives

N N 1 ~ N
b, = [Kle + KZQG} 0,1 + {@Eg + KZQH} by

+ |:é1 - ﬁég} (91;,1“571 + |:KZ1b + KZth| Ut

If X; is governed by (50), then it must be the case that

G = KZB+KZ,G (54)
1 - N

h = KZib+ KZh (56)

= _ & =

S (57)
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Solving for G and h directly, and substituting (57) and the result for G into
(55), requires that

G = (I—KZQ)1 KZ.B
H —
((1 Y. KZQ) (1 - KZQ) k2B
h o= (I—f(zg)l KZb

provided that (I - K Zg) is nonsingular. Noting that Zs = 04, these expressions
can be simplified to yield

G = KZB (58)
H = (I—KZl)B (59)
h = KZib (60)

The last step is to determine the value of K. Under the above assumptions,

we have (see Harvey (1989))
K =%2'"(Z%7" + 20,2) "
where

S = MVM + mQ,m’ (61)
= Y -XZ'(Z%7' +20,7) " Z% (62)

Substituting (62) into (61), we obtain a Riccati equation:
S =M (2 7257 + 20,7) 7 Zz) M+ mQum’ (63)

The equation (63) can be solved for ¥ by finding the fixed point using numerical

techniques.

A.2 Proof of Theorem 5

We wish to determine equilibrium processes for p;, 3 and r; as a function of the

state, X;. First, substitute out for r, in (24) using (41) and rewrite in terms of
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nominal output, ¢;. This gives
@ = Ewq— [U_I(Oéw -1)+ 1} Ei(pey1 — pe) + U_l@y(pt —q)+ (1= pg)g:
= B + (aps + D)pe — py (g + 1) Eeprir + pa (1 — pg)ge (64)

where

1

_ _ 1
= = —1 65
Hy ola, + 1 po =0 " (a ) (65)

Next, suppose (to be confirmed later) that the price level can be written as
pe = NX, (66)
for some vector, A, to be determined. Substituting (66) into (64), we obtain
G = 1 Egrin + 0 X, (67)

where

= (G + DI = by + DM A+ | ] (69

and B=[0 p(1—pg) 0 0 ]/. Assuming that a,, > 0, so that p, < 1, we can
solve (67) forward to get

qr = 5/ZMiEtXt+i
i=0

= ¢ Z(MM)iXt

=0

= 8 —mM)"'X, (69)

It remains to be determined whether there exists a unique value for A, and

hence 8, such that (66) holds. Recall that p; is given by

pe=) =& Ef (@ —up) (70)
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Define N = (I — u; M)™" and partition N and é conformably with X; according
to

Ni1 Nig 01
N = 6=
{ Na1 Ny ] ’ { 02 ]

The natural rate of output is a function solely of exogenous variables, and thus
can be expressed as y' = +'0,, for some vector, . Substituting this expression

for yi* and (69) into (70) yields
pr=Y E(1=&) B (IN],61+ Ny 8y — 7) 0, + [N{61 + Nipbsl )
k=1

If the price level has the form p, = X' X}, as conjectured in (66), then it must

be the case

_ 0
v= 2] m
)\2 = Nh&l + Né162 - (72)

3 = —Npy'Niy6, (73)

assuming that Ny is nonsingular. Substituting out for 62 in (72) using (73) and

rearranging implies
Ay = [Nn — N12N2_21N21}/51 - (74)
By (68), and noting (71), we have
o1 =B — py(p2 + DG'Xz (75)
Define
A=T4 py(py + 1) (N1y — NiaNyg' Noy ) &,

Thus, substituting (75) into (74), and assuming that A is nonsingular, a solution

for A9 in terms of known matrices is given by

)\2 = A_l [(NH - N12N2_21N21) ﬁ — ’y} (76)
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The solution for ¢;, and hence ¥, in terms of known matrices can also be obtained
by substituting the expression for A into (69). Similarly, the solution for r; is

obtained by noting that
Ei(piy1 —p) = N (M = )X,
Therefore, by (41), we get
r =o' X,
where
a=a;(M — DA+ ay,(I — p M) 16 (77)

Finally, it remains to be shown under which conditions Ny, and A are non-
singular. However, in general, an analytical derivation of the necessary and
sufficient conditions is unwieldy. The rank of these matrices can be checked on

a case-by-case basis in numerical implementations.
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Table 1

Baseline Calibrated Parameters

Preferences Technology
o 2 ¢ 0.3
v 2 € 11
Demand Shock | Technology Shock
Py 0.8 Py 0.8
o2, | 1%/quarter | o2, | 1%/quarter

Private Signals

Public Signals

o2, | 1%/quarter | o7, | 1%/quarter
02, | 1%/quarter | o7 , | 1%/quarter
Monetary Policy

o7 | 1.5 | Qy | 0.5
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Price level

Price level

Figure 1

Effects of Changing the Markup and Precision of Public Signals

Sample Realisation of the Output Gap and Price Level

Markup = 10 percent, High-precision public signal

X

0.2 0.4 0.6
Output gap

Markup = 10 percent, Low-precision public signal

XX

% 4

>< B
XX
X ]
-0.4 -0.2 0 0.2 0.4 0.6
Output gap

Price level

Price level

Markup = 5 percent, High-precision public signal

X
Xx

0.2 0.4 0.6
Output gap

Markup = 5 percent, Low-precision public signal

X
X X

0.6
Output gap

Notes: Each panel plots one sample realisation of the price level against the
output gap. The same sample of randomly drawn shocks is used in each panel
when simulating the time-paths of the endogenous variables. Data is constructed
for 120 periods, but the first 20 observations are dropped to minimise the influence
of initial values. The price level and output gap are in percentages.
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Figure 2
Precision of Public Information and the Variances of Endogenous Variables
Case 1. High-Precision Private Signal

Real output Inflation
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Notes: The figure plots the variances of endogenous variables with respect to
the precision of the (innovation in) public signal. The precision of the private
signal is set equal to 16.0 percent. Inflation and the interest rate are expressed
in annualised percentages, while the price level, output and precision of signal
innovations are in percentages.
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Figure 3
Precision of Public Information and the Variances of Endogenous Variables
Case II. Low-Precision Private Signal

Real output Inflation
1.692 T T T T T T T 1 . . . . . . .
1.69
1.688
1.686
1.684
1.682
1.68
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Price level Interest rate
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Precision of Public Signal Precision of Public Signal

Notes: The figure plots the variances of endogenous variables with respect to
the precision of the (innovation in) public signal. The precision of the private
signal is set equal to 0.25 percent. Inflation and the interest rate are expressed
in annualized percentages, while the price level, output and precision of signal
innovations are in percentages.
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Figure 4
Impulse Responses to Demand and Technology Shocks

Real output
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Notes: The figure shows the impulse responses of the endogenous variables in
the differential-information model to a one-standard deviation innovation in the
demand shock (solid) and technology shock (dash). The zero-line is represented
by the dash-dot line. One period is equal to a quarter. Inflation and the interest
rate are expressed in annualized percentages, while the price level and output are
in percentages.
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Figure 5
Sticky Price Model
Impulse Responses to Demand and Technology Shocks

Real output
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Notes: The figure shows the impulse responses of the endogenous variables in the
sticky-price model to a one-standard deviation innovation in the demand shock
(solid) and technology shock (dash). The zero-line is represented by the dash-dot
line. One period is equal to a quarter. Inflation and the interest rate are expressed
in annualized percentages, while the price level and output are in percentages.
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Figure 6
Impulse Responses to Shocks of Public Signals

Real output
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Notes: The figure shows the impulse responses of the endogenous variables to a
one-standard deviation innovation to the public signals of demand shocks (solid)
and technology shocks (dash). One period is equal to a quarter. Inflation and
the interest rate are expressed in annualized percentages, while the price level
and output are in percentages.
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Figure 7

Effects of Changing Policy Response to Expected Inflation (o)
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Notes: The figure plots the variances of endogenous variables with respect to a,
the coefficient on E;m;;; in (41). Two cases are shown: high-precision public
signals (solid), low-precision public signals (dash). In both cases, private signals
have high precision. Inflation and the interest rate are expressed in annualised
percentages, while the price level and output are in percentages.
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