Monetary policy implications for an oil-exporting economy of lower long-run international oil prices

Jesús Bejarano Franz Hamann Diego Rodríguez

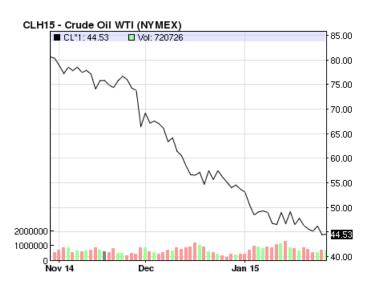
Banco de la República

BIS CCA Research Network, Mexico 2015

Outline

The policy question and the problem

Small scale Bewley Models


Single-good Economy Two-good Economy Oil Exporting Economy

Monetary policy models

Simple New Keynesian
Sectoral Financial Accelerator
Sectoral financial accelerator model

Final Remarks

Motivation

► Small, open and commodity exporting economies are subject to large and sudden commodity price swings.

- ► Small, open and commodity exporting economies are subject to large and sudden commodity price swings.
- ► How does monetary policy in an oil-exporting economy cope with a sudden and long-lasting reversal of international oil prices?

- ➤ Small, open and commodity exporting economies are subject to large and sudden commodity price swings.
- How does monetary policy in an oil-exporting economy cope with a sudden and long-lasting reversal of international oil prices?
- We conduct a quantitative assessment of the impact of an unexpected permanent change in oil prices in an oil-exporting economy and derive its monetary policy implications.

- ► Small, open and commodity exporting economies are subject to large and sudden commodity price swings.
- How does monetary policy in an oil-exporting economy cope with a sudden and long-lasting reversal of international oil prices?
- We conduct a quantitative assessment of the impact of an unexpected permanent change in oil prices in an oil-exporting economy and derive its monetary policy implications.
- Our approach: first, understand the consequences on the economy's NFA, usually assumed exogenous by many models which rely on approximation solution methods. Then, couple it with monetary policy models.

Outline

The policy question and the problem

Small scale Bewley Models Single-good Economy

Two-good Economy
Oil Exporting Economy

Monetary policy models

Simple New Keynesian
Sectoral Financial Accelerator
Sectoral financial accelerator mode

Final Remarks

The problem

A small open economy representative agent chooses consumption to maximize:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} \right]$$

subject to

$$c_t = y_t - b_{t+1} + Rb_t.$$

• y_t is stochastic with $E[y] = \bar{y}$ and $V[y] = \eta$.

6 / 36

The problem

A small open economy representative agent chooses consumption to maximize:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} \right]$$

subject to

$$c_t = y_t - b_{t+1} + Rb_t.$$

- y_t is stochastic with $E[y] = \bar{y}$ and $V[y] = \eta$.
- ▶ $b_{t+1} \in [-\phi, 0]$ with R given: incomplete financial markets and net debtor economy.

The problem

A small open economy representative agent chooses consumption to maximize:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} \right]$$

subject to

$$c_t = y_t - b_{t+1} + Rb_t.$$

- y_t is stochastic with $E[y] = \bar{y}$ and $V[y] = \eta$.
- ▶ $b_{t+1} \in [-\phi, 0]$ with R given: incomplete financial markets and net debtor economy.
- ▶ If βR < 1 then, b has a LR distribution (PS/BAH model).

A global solution: discrete dynamic program

Let e = (y, b), discretize it and find optimal rule $b_{t+1} = \tilde{b}(e)$ such that

$$v(e) = \max_{\tilde{b}(e) \in [-\phi, 0]} \frac{\left(y - b' + Rb\right)^{1 - \sigma}}{1 - \sigma} + \beta P\left(\tilde{b}(e)\right) v(e). \tag{1}$$

where $P(\tilde{b}(e))$ is the OTPM and depends on β , R, σ , ϕ , E[y] and V[y]. **Experiment**: expected income E[y] falls unexpectedly and permanently from \bar{y} to y, keeping V[y] constant.

▶ Under high oil prices $\bar{e} = (\bar{y}, \bar{b})$ there is a \bar{P} with ergodic distribution \bar{f} . Oil prices fall unexpectedly, implying a fall in expected income to y.

8 / 36

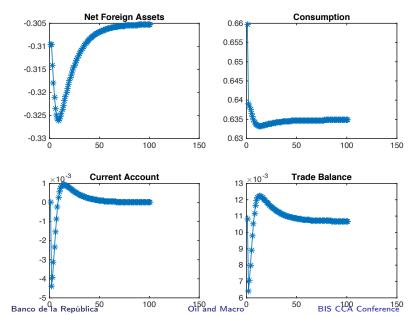
- ▶ Under high oil prices $\bar{e} = (\bar{y}, \bar{b})$ there is a \bar{P} with ergodic distribution \bar{f} . Oil prices fall unexpectedly, implying a fall in expected income to \underline{y} .
- ▶ Agents reoptimize and solve problem (1), find a new set of optimal rules, P, ergodic distribution, f, and long run value of expected debt, $E[b] = \underline{f} \times b = \underline{b}$. Thus, the economy falls from $\overline{e} = (\overline{y}, \overline{b})$, previously, to wake up at $\underline{e} = (y, \overline{b})$ and eventually settle at $\underline{e} = (y, \underline{b})$.

- ▶ Under high oil prices $\bar{e} = (\bar{y}, \bar{b})$ there is a \bar{P} with ergodic distribution \bar{f} . Oil prices fall unexpectedly, implying a fall in expected income to \underline{y} .
- Agents reoptimize and solve problem (1), find a new set of optimal rules, \underline{P} , ergodic distribution, \underline{f} , and long run value of expected debt, $E\left[b\right] = \underline{f} \times b = \underline{b}$. Thus, the economy falls from $\bar{e} = \left(\bar{y}, \bar{b}\right)$, previously, to wake up at $\underline{e} = \left(\underline{y}, \bar{b}\right)$ and eventually settle at $\underline{e} = \left(\underline{y}, \underline{b}\right)$.
- ▶ The evolution of the economy can be characterized by a sequence of probability functions, $\{f_t\}_{t=0}^{\infty}$ which can be computed iteratively $f \leftarrow f\underline{P}$ and starting from f_0 . Since \underline{P} is a well behaved Markov chain, the sequence of distributions eventually converges to \underline{f} .

- ▶ Under high oil prices $\bar{e} = (\bar{y}, \bar{b})$ there is a \bar{P} with ergodic distribution \bar{f} . Oil prices fall unexpectedly, implying a fall in expected income to \underline{y} .
- Agents reoptimize and solve problem (1), find a new set of optimal rules, \underline{P} , ergodic distribution, \underline{f} , and long run value of expected debt, $E\left[b\right] = \underline{f} \times b = \underline{b}$. Thus, the economy falls from $\bar{e} = (\bar{y}, \bar{b})$, previously, to wake up at $\underline{e} = (\underline{y}, \bar{b})$ and eventually settle at $\underline{e} = (\underline{y}, \underline{b})$.
- ▶ The evolution of the economy can be characterized by a sequence of probability functions, $\{f_t\}_{t=0}^{\infty}$ which can be computed iteratively $f \leftarrow f\underline{P}$ and starting from f_0 . Since \underline{P} is a well behaved Markov chain, the sequence of distributions eventually converges to \underline{f} .
- ▶ We use this sequence of distributions to compute the expected path of debt, $\{E_t[b] = f_t \times b\}_{t=0}^{\infty}$.

Calibration

We set E[y]=1 and $V[y]=0.026^2$ to match annual (HP-filtered) Colombian annual GDP moments. Fix R=1.035 and take $\sigma=4$ from estimated models at CB. And set $\beta=0.96$ and $\phi=0.4$ to match 30% external debt to GDP ratio and a fraction of international financial exclusion of 16%


Calibration

- We set E[y] = 1 and $V[y] = 0.026^2$ to match annual (HP-filtered) Colombian annual GDP moments. Fix R = 1.035 and take $\sigma = 4$ from estimated models at CB. And set $\beta = 0.96$ and $\phi = 0.4$ to match 30% external debt to GDP ratio and a fraction of international financial exclusion of 16%.
- Considering an autonomous level of absorption, which is present in the data but not in the model economy, the model delivers a 31% debt to GDP and a ratio of financial exclusion of 12%.

Calibration

- ▶ We set E[y] = 1 and $V[y] = 0.026^2$ to match annual (HP-filtered) Colombian annual GDP moments. Fix R = 1.035 and take $\sigma = 4$ from estimated models at CB. And set $\beta = 0.96$ and $\phi = 0.4$ to match 30% external debt to GDP ratio and a fraction of international financial exclusion of 16%.
- Considering an autonomous level of absorption, which is present in the data but not in the model economy, the model delivers a 31% debt to GDP and a ratio of financial exclusion of 12%.
- ► Consumption is procyclical and highly autocorrelated, as in the data, but is about one-third smoother. The current account and the trade balance are also highly correlated in the model as in the data, however the model results are at odds with a well-documented fact which is that both are counter-cyclical in emerging economies.

Macro response to a permanent fall in income

Outline

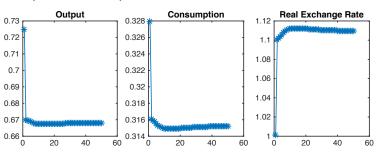
Small scale Bewley Models

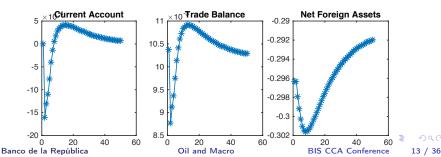
Two-good Economy

Simple New Keynesian

The model

$$v(y^{T}, b) = \max_{b' \in [-\phi, 0]} \frac{c^{1-\sigma}}{1-\sigma} + \beta E_{y^{T}} \left[v((y^{T})', b') \right]$$


$$c_{t} = \left[a \left(c_{t}^{T} \right)^{-\mu} + (1-a) \left(c_{t}^{N} \right)^{-\mu} \right]^{-\frac{1}{\mu}}$$


$$c_{t}^{T} = y_{t}^{T} + \rho_{t}^{N} y^{N} - b_{t+1} + Rb_{t} + A^{T}$$

$$c_{t}^{N} = y^{N} + A^{N}$$

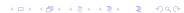
$$\rho_{t}^{N} = \frac{1-a}{a} \left(\frac{c_{t}^{T}}{c_{t}^{N}} \right)^{1+\mu}$$
(2)

Macro response to a permanent fall in income

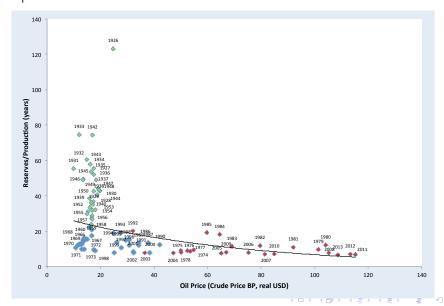
Outline

The policy question and the problem

Small scale Bewley Models


Single-good Economy
Two-good Economy

Oil Exporting Economy


Monetary policy models

Simple New Keynesian
Sectoral Financial Accelerator
Sectoral financial accelerator modernia

Final Remarks

Oil prices and reserves

Oil sector

Economy has a stock of oil $s \in [0, \bar{s}]$ and every year d units can be discovered randomly. A representative oil firm can extract $x \in [0, s]$ units of oil at a cost C(s,x) to sell internationally at the relative price p_x (in units ot tradable). The stock of oil evolves as s' = s - x + d, and the firm seeks to:

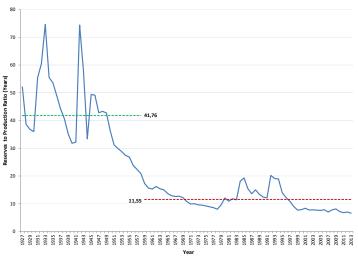
$$v(s) = \max_{x \in [0,s]} \{ p^{x}x - C(s,x) + \delta E_{d} [v(s-x+d)] \}.$$

Optimality requires that

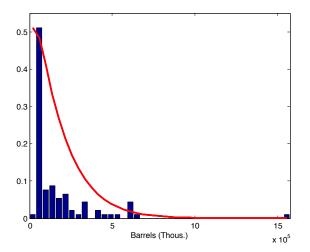
$$p^{x} = C_{x}(s,x) + \delta E_{d} [\lambda (s-x+d)]$$
$$\lambda (s) = C_{s}(s,x) + \delta E_{d} [\lambda (s-x+d)].$$

Non-oil economy

Associated with this program there is an optimal oil extraction policy, $\tilde{x}(s)$, which the rest of the economy takes as given, thus the resource constraint of the economy becomes:

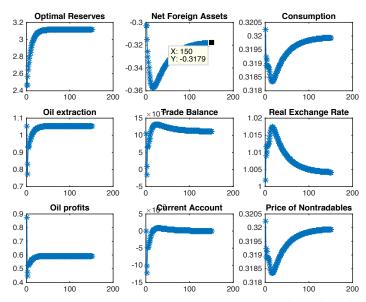

$$c_{t}^{T} = y_{t}^{T} + p^{X}\tilde{x}(s) + p_{t}^{N}y^{N} - b_{t+1} + Rb_{t} + A^{T}$$

and


$$c_t^N = y^N + A^N.$$

Thus, with two assets, optimal borrowing is $\tilde{b}'(s,b)$, and at any given point in time, NFA are not only the summary of debt history but also of oil reserves history.

Calibration I



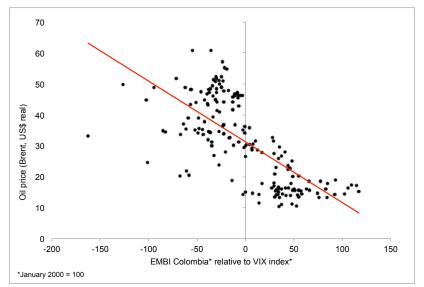
Calibration of discoveries

Macro response to a permanent fall of oil prices

▶ The financial and real structure of the economy are important when studying the net foreign position of the economy.

- ▶ The financial and real structure of the economy are important when studying the net foreign position of the economy.
- ▶ The differences between the one-good and two-good models point that RER appears to be a key variable in the adjustment process.

- ▶ The financial and real structure of the economy are important when studying the net foreign position of the economy.
- ▶ The differences between the one-good and two-good models point that RER appears to be a key variable in the adjustment process.
- ▶ The differences between the two-good model and the three-good model stresses the point that the NFA adjustment may be substantially different in an oil economy.


- ▶ The financial and real structure of the economy are important when studying the net foreign position of the economy.
- ▶ The differences between the one-good and two-good models point that RER appears to be a key variable in the adjustment process.
- ▶ The differences between the two-good model and the three-good model stresses the point that the NFA adjustment may be substantially different in an oil economy.
- ▶ However, these models leave aside many features of reality that are of interest to policy makers and central banks.

- ▶ The financial and real structure of the economy are important when studying the net foreign position of the economy.
- ► The differences between the one-good and two-good models point that RER appears to be a key variable in the adjustment process.
- ▶ The differences between the two-good model and the three-good model stresses the point that the NFA adjustment may be substantially different in an oil economy.
- ▶ However, these models leave aside many features of reality that are of interest to policy makers and central banks.
- We now turn to the reaction of monetary economies to unexpected permanent changes in oil prices, taking as given the NFA adjustment of the oil economy.

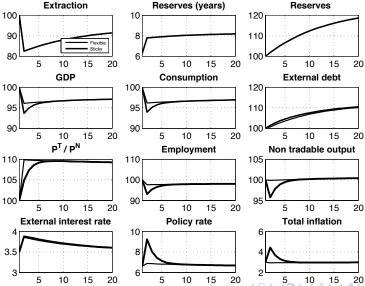
Outline

Monetary policy models Simple New Keynesian

A channel outside the previous models

▶ Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector

- ▶ Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.


- ▶ Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The economy has a stock of oil reserves and extraction is endogenous.
- ▶ T is an endowment and NT uses labor and imported inputs (gasoline) to produce.

- ► Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.
- ➤ T is an endowment and NT uses labor and imported inputs (gasoline) to produce.
- Sticky nominal prices in NT sector, flexible prices in T sector.

- ► Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The economy has a stock of oil reserves and extraction is endogenous.
- T is an endowment and NT uses labor and imported inputs (gasoline) to produce.
- Sticky nominal prices in NT sector, flexible prices in T sector.
- Central bank targets total inflation

- ► Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- The economy has a stock of oil reserves and extraction is endogenous.
- T is an endowment and NT uses labor and imported inputs (gasoline) to produce.
- Sticky nominal prices in NT sector, flexible prices in T sector.
- Central bank targets total inflation
- Key: country risk premium depends on both b and $p^x s$. Micro-founded version of this: Hamann and Restrepo (2015).

Macro response to a permanent fall of oil prices

Outline

Monetary policy models

Simple New Keynesian

Sectoral Financial Accelerator

► Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector

- ► Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.
- ▶ Sticky nominal prices in NT sector, flexible prices in T sector.

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.
- ▶ Sticky nominal prices in NT sector, flexible prices in T sector.
- ► Capital is specific to both T and NT sectors, labor can move freely between sectors.

- Small open economy DSGE with three sectors: tradable, non-tradable and oil exporting sector
- ▶ The economy has a stock of oil reserves and extraction is endogenous.
- ► Sticky nominal prices in NT sector, flexible prices in T sector.
- ► Capital is specific to both T and NT sectors, labor can move freely between sectors.
- Key: financial accelerator (BGG) in both sectors where net worth is influenced by valuation effects.

Key 1: Financial accelerator

tradable and nontradable (i = N, T)

 Perfectly competitive banks make commercial loans to entrepreneurs, b_t^{j} , by taking deposits from households, d_t , and borrowing from international financial markets, b_t^* .

Key 1: Financial accelerator

tradable and nontradable (i = N, T)

- Perfectly competitive banks make commercial loans to entrepreneurs, b_t^{j} , by taking deposits from households, d_t , and borrowing from international financial markets, b_t^{\star} .
- ▶ Financial intermediation subject to frictions (CSV problem) on the side of the asset side of the banks. Thus, spreads depend on firms' net worth, n_t^j and the value of capital, $p_t^{kj} k_t^j$.

$$\mathbb{E}_t\left[r_{t+1}^{k^j}\right] = \left(\frac{n_t^j}{\rho_t^{k^j}k_t^j}\right)^{-v_t^j} (1+r_t)(r\rho_t)$$

Banco de la República

Key 1: Financial accelerator

tradable and nontradable (i = N, T)

- Perfectly competitive banks make commercial loans to entrepreneurs, b_t^{j} , by taking deposits from households, d_t , and borrowing from international financial markets, b_t^{\star} .
- ▶ Financial intermediation subject to frictions (CSV problem) on the side of the asset side of the banks. Thus, spreads depend on firms' net worth, n_t^j and the value of capital, $p_t^{kj} k_t^j$.

$$\mathbb{E}_t\left[r_{t+1}^{k^j}\right] = \left(\frac{n_t^j}{\rho_t^{k^j}k_t^j}\right)^{-v_t^j} (1+r_t)(r\rho_t)$$

▶ We define a "regulation premium", rpt, as any policy that increases credit costs.

4 D > 4 B > 4 B > 4 B > 900

Key 2: Conventional and unconventional tools

▶ Monetary policy rule: reacts to deviations of *total* inflation relative to the target $\overline{\pi}$

$$i_t = i_{t-1}^{
ho_i} \left(\overline{i} \left(rac{\pi_t}{\overline{\pi}}
ight)^{arphi_{\pi}}
ight) \exp \left(arepsilon_t^{\mu}
ight)$$

Key 2: Conventional and unconventional tools

▶ Monetary policy rule: reacts to deviations of *total* inflation relative to the target $\overline{\pi}$

$$i_t = i_{t-1}^{
ho_i} \left(\overline{i} \left(rac{\pi_t}{\overline{\pi}}
ight)^{arphi_{\pi}}
ight) \exp \left(arepsilon_t^{\mu}
ight)$$

Key 2: Conventional and unconventional tools

Monetary policy rule: reacts to deviations of total inflation relative to the target $\overline{\pi}$

$$i_t = i_{t-1}^{
ho_i} \left(\overline{i} \left(\frac{\pi_t}{\overline{\pi}} \right)^{\varphi_{\pi}} \right) \exp \left(\varepsilon_t^{\mu} \right)$$

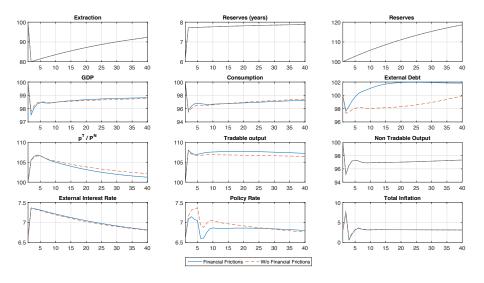
Regulation premium rule: reacts to credit deviations from its long-run value

$$rp_t = \exp\left(\mu_{rp}\left(\frac{cr_t}{\overline{cr}} - 1\right)\right)$$

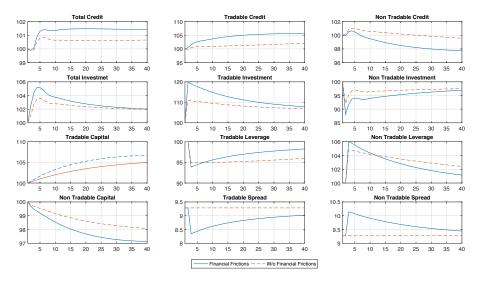
Outline

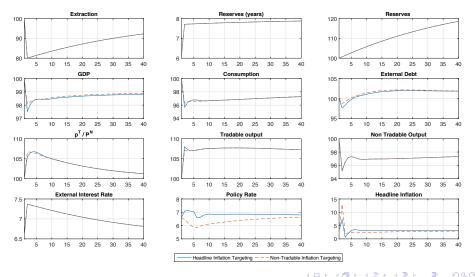
The policy question and the problem

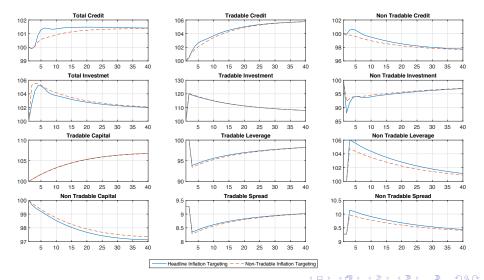
Small scale Bewley Models
Single-good Economy
Two-good Economy
Oil Exporting Economy


Monetary policy models

Simple New Keynesian
Sectoral Financial Accelerator


Sectoral financial accelerator model


Macro response to a permanent fall of oil prices I

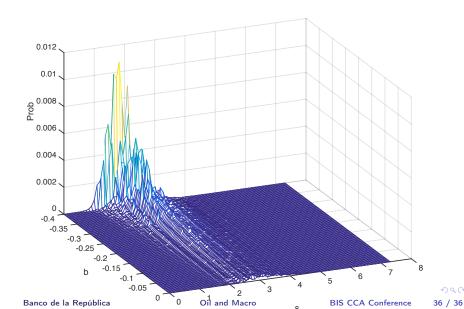

Macro response to a permanent fall of oil prices II

What if the central bank targets NT inflation?

What if the central bank targets NT inflation?

► A two-stage approach to study macro consequences of unexpected permanent changes in oil prices

- ▶ A two-stage approach to study macro consequences of unexpected permanent changes in oil prices
- Key: RER adjustment + endogenous oil extraction coupled with country risk


- ► A two-stage approach to study macro consequences of unexpected permanent changes in oil prices
- Key: RER adjustment + endogenous oil extraction coupled with country risk
- ► The shock induces additional financial needs for the economy where oil acts as a "collateral"

- ▶ A two-stage approach to study macro consequences of unexpected permanent changes in oil prices
- Key: RER adjustment + endogenous oil extraction coupled with country risk
- The shock induces additional financial needs for the economy where oil acts as a "collateral"
- ▶ It also implies a monetary policy dilemma: inflation jumps (ER pass-through) while activity tanks

- ► A two-stage approach to study macro consequences of unexpected permanent changes in oil prices
- Key: RER adjustment + endogenous oil extraction coupled with country risk
- ► The shock induces additional financial needs for the economy where oil acts as a "collateral"
- It also implies a monetary policy dilemma: inflation jumps (ER pass-through) while activity tanks
- ► This happens even under more realistic conditions, like financial accelerator (BGG) in *both sectors* where net worth is influenced by valuation effects

- ▶ A two-stage approach to study macro consequences of unexpected permanent changes in oil prices
- ► Key: RER adjustment + endogenous oil extraction coupled with country risk
- ► The shock induces additional financial needs for the economy where oil acts as a "collateral"
- ▶ It also implies a monetary policy dilemma: inflation jumps (ER pass-through) while activity tanks
- ▶ This happens even under more realistic conditions, like financial accelerator (BGG) in both sectors where net worth is influenced by valuation effects
- ▶ To do: fiscal implications. May be relevant if one drops Ricardian equivalence

Supplementary figures I

