A Policy Model for Analyzing Macroprudential and Monetary Policies

Sami Alpanda Gino Cateau Cesaire Meh

Bank of Canada

November 2013

Alpanda, Cateau, Meh (Bank of Canada) Macroprudential - Monetary Policy Model

November 2013 1 / 28

The views expressed in this paper are those of the authors. No responsibility should be attributed to the Bank of Canada.

- Recent global financial crisis was a reminder that the real economy and the financial system are closely linked
 - financial system can be a source of shocks
 - and can amplify/propagate shocks originating elsewhere

- **Theoretical front:** renewed interest in incorporating real-financial linkages into DSGE models
- **Policy front:** new emphasis on the role of macroprudential regulations and coordination with monetary policy

- Since the crisis, monetary policy in Canada has faced important challenges/tradeoffs:
 - external headwinds necessitated policy rate to remain low
 - low interest rates and safe-haven flows have led to a rise in HH debt
- *Flexible* inflation targeting framework already allows consideration of financial stability issues in setting monetary policy
- Macroprudential regulations can provide more targeted tools to achieve financial stability:
 - increase in capital requirements (Basel III); lowering regulatory LTV
 - important to assess effectiveness of these policies in reducing household debt and their macroeconomic costs

HH debt-to-income ratio increased rapidly since mid-2000s

- We build a medium scale, small-open-economy DSGE model with
 - **real-financial linkages:** balance sheet positions of banks, households, and firms affect funding/lending conditions and the real economy
 - macroprudential policies: capital requirements; LTV
 - nominal and real frictions: monetary policy and propagation
- We use the model to analyze
 - effects of macroprudential policies on real and financial variables
 - transmission of financial shocks (e.g. exuberance, risk premium)

Related literature: Balance sheet channel

- Asset prices and borrowers' balance sheet positions are key determinants of borrowing conditions (spreads; quantity constraints)
 - *agency-cost*: Carlstrom and Fuerst (1997); Bernanke et al. (1997); Aoki et al. (2004)
 - collateral constraint: Kiyotaki and Moore (1997); lacoviello (2005)
- **Financial accelerator:** shocks are amplified through their effects on asset prices/borrowing conditions

•
$$q_k \uparrow \Longrightarrow n_E \uparrow$$
, $q_k k_E / n_E \downarrow \Longrightarrow$ spread $\downarrow \Longrightarrow b_E \uparrow \Longrightarrow q_k \uparrow$

Entrepreneurs		Ho	Households	
Assets	Liabilities	Assets	Liabilities	
q _k k _E	b _E	$q_h h_l$	bı	
	n _E		nj	

Related literature: Bank capital channel

- Balance sheet/capital position of financial intermediaries is key for their funding (and lending) conditions
 - moral hazard: Holmstom and Tirole (1997); Meh and Moran (2010); Gertler and Karadi (2010)
 - bank default: Davis (2010); regulation: Gerali et al. (2010)

Assets	Liabilities	
Loans (HHs, firms)	Retail deposits	
Securities	Wholesale funding	
	Equity (bank capital)	

- Adverse feedback loop: deterioration in borrower balance sheets reduce bank capital and cause further adverse effects on lending
- **Banks' "trading book":** marked-to-market accounting; quicker pass-through of asset price fluctuations to bank capital

Related literature: Liquidity, risk-taking and exuberance

- Wholesale funding, new "bank-runs", and fire-sale externalities
 - Diamond and Rajan (2005); Kiyotaki and Moore (2012); Woodford (2012)
- Funding liquidity, search-for-yield, govt. guarantees and risk-taking
 - Brunnermeier and Pederson (2008); Rajan (2006); Farhi and Tirole (2009); Adrian and Shin (2010)
 - **risk-taking channel:** during low interest rate episodes, banks can build up risks on both asset and liability sides of their balance sheet
- Irrational exuberance and asset prices
 - Shiller (2000); Bernanke and Gertler (1999); Basant Roi and Mendes (2007); Granziera and Kozicki (2012)

Model

- Small-open-economy DSGE model with financial frictions
 - HH lending to banks, and bank lending to HHs/firms involve **monitoring costs** (Curdia and Woodford, 2011)
 - **spreads** in funding/lending rates depend on bank and borrower leverage (Bernanke et al., 1999; Davis, 2010)
 - macroprudential policies feed into spreads
 - financial shocks (e.g. capital quality; spreads; exuberance)
- Other key features
 - nominal frictions: price/wage stickiness; indexation
 - real frictions: habit formation; utilization and investment adj. costs
 - open economy: extended UIP condition; partial pass-through
 - monetary policy: Taylor rule

A (10) < A (10) </p>

Brief overview of the model

Banks

• Use deposits and bank capital to fund lending to impatient households and entrepreneurs

$$P_{I,t}b_{I,t} + P_{E,t}b_{E,t} = D_t + A_t$$

- Pay dividends to patient HHs; dividend smoothing based on adj. costs (Jermann and Quadrini, 2012)
- Bank loans are modeled as **perpetuities** with exponentially decaying coupon payments (Woodford, 2001)

Banks' cash-flow

• Bank loan issued in t-1 would be priced in period t as $(\delta/\pi_t) * P_{I,t}$; allows recursive formulation for banks' cash-flow

$$D_{B,t} + R_{d,t-1}D_{t-1} + (1 + Y_{I,t})P_{I,t}b_{I,t} + (1 + Y_{E,t})P_{E,t}b_{E,t}$$

$$\leq \left(P_{t-1} + \frac{\delta_I P_{I,t}}{\pi_t}\right)b_{I,t-1} + \left(P_{t-1} + \frac{\delta_E P_{E,t}}{\pi_t}\right)b_{E,t-1} + D_t - \operatorname{adj}.$$

- Bank assets can also be thought as asset-backed securities (ABS), backed by a portfolio of bank loans
 - inverse relation between relative price of loan and its gross nominal yield

$$R_{I,t} = rac{P_t}{P_{I,t}} + \delta_I$$
 and $R_{E,t} = rac{P_t}{P_{E,t}} + \delta_E$

Monitoring costs and spreads on lending rates

- Banks incur monitoring costs on the value of their outstanding lending (Curdia and Woodford, 2011)
 - captures "bad loans"/default; cost of purchasing default insurance
- Monitoring costs increase with borrower leverage

$$Y_{E,t} = f\left(\frac{q_{k,t}k_{E,t}}{n_{E,t}}, \varepsilon_{E,t}\right)$$

- generate lending spread similar to financial accelerator model of BGG
- Monitoring costs for bank lending to HHs and bank funding are modeled similarly
 - modeling choice captures main themes in literature while avoiding technical issues (long-term borrowing; risk-averse borrowers)

Key equilibrium conditions

• Bank funding and lending to impatient HHs:

$$1 = E_t \left[\left(\beta_B \frac{\lambda_{P,t+1}}{\lambda_{P,t}} \frac{\lambda_{B,t+1}}{\lambda_{B,t}} \right) \frac{R_{d,t}}{\pi_{t+1}} \right]$$
$$\frac{1 + Y_{I,t}}{R_{I,t} - \delta_I} = E_t \left[\left(\beta_B \frac{\lambda_{P,t+1}}{\lambda_{P,t}} \frac{\lambda_{B,t+1}}{\lambda_{B,t}} \right) \frac{R_{I,t+1}}{\pi_{t+1} \left(R_{I,t+1} - \delta_I \right)} \right]$$

• Lending rate (in log-linearized form):

$$\widehat{R}_{I,t} = \left(1 - \frac{\delta_I}{R_I}\right) \sum_{s=0}^{\infty} \left(\frac{\delta_I}{R_I}\right)^s E_t \left[\widehat{R}_{d,t+s} + \widehat{Y}_{I,t+1}\right]$$

• depends on current and expected future deposit rates and monitoring costs (based on future borrower leverage)

Patient households

- Max. PV of expected utility (consumption with external habits, housing, and labor) s.t. budget constraint
 - **expenditure:** consumption, investment in housing and capital, bank deposits, domestic and foreign gov. bonds
 - **income:** wage, rental income, interest on deposits and gov. bonds, gov. transfers from gov., dividends and profits
- Bank deposits best viewed as wholesale funding (not covered by deposit insurance); patient HHs as "institutional investors"
 - investors incur monitoring costs when lending to banks

$$Y_{d,t} = f\left(\frac{\omega_I P_{I,t} b_{I,t} + \omega_E P_{E,t} b_{E,t}}{A_t}, \varepsilon_{d,t}\right)$$

• monitoring costs increase with bank leverage where bank assets are "risk-weighted" by ω_I and ω_E

Combining bank funding and lending spreads

• Short-term bank funding rate equal to interest rate on short-term gov. bonds plus a funding spread (similar to Davis, 2010)

$$\widehat{R}_{d,t} = \widehat{R}_t + \widehat{Y}_{d,t}$$

- Long-term rates faced by borrowers depend on
 - long-term gov. bond interest rate (based on expectations hypothesis)
 - current and future bank leverage
 - current and future borrower leverage

$$\widehat{R}_{I,t} = \left(1 - \frac{\delta_I}{R_I}\right) \sum_{s=0}^{\infty} \left(\frac{\delta_I}{R_I}\right)^s E_t \left[\widehat{R}_{t+s} + \widehat{Y}_{d,t+s} + \widehat{Y}_{I,t+1}\right]$$

- Comovement in funding and lending spreads
 - adverse shocks that reduce asset prices and increase lending premia, also reduce the market value of bank assets ("adverse feedback loop")

Macroprudential policy and spreads

• Our formulation is based on the borrowing constraint framework of Kiyotaki and Moore (1997) and Iacoviello (2005)

$$p_{I,t}b_{I,t} \leq m_t q_{h,t}h_{I,t} \Longrightarrow (1-m_t) q_{h,t}h_{I,t} \leq n_{I,t}$$

• but, translates the impact of LTV policy into lending spread:

$$Y_{I,t} = f\left(\frac{(1-m_t) q_{h,t} h_{I,t}}{n_{I,t}}\right)$$

 Similarly, the impact of bank capital regulations in borrowing constraint framework, γ_t [ω_IP_{I,t}b_{I,t} + ω_EP_{E,t}b_{E,t}] ≤ A_t, is translated into funding spread

$$Y_{d,t} = f\left(\frac{\gamma_t \left[\omega_I P_{I,t} b_{I,t} + \omega_E P_{E,t} b_{E,t}\right]}{A_t}\right)$$

• regulations do not necessarily bind in the short-run

Asset quality and exuberance shocks

• Beginning-of-period capital stock is given by $(1 - \delta_k) \psi_{k,t} k_{t-1}$, where $\psi_{k,t}$ is capital-quality/depreciation shock (Gertler and Karadi, 2010)

$$k_{t} = (1 - \delta_{k}) \psi_{k,t} k_{t-1} + \left[1 - \frac{\kappa_{k}}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right)^{2} \right] i_{k,t}$$

• Expected returns also affected by "exuberance" shock, $\varkappa_{k,t}$:

$$q_{k,t} = E_t \left[\left(\beta_P \frac{\lambda_{P,t+1}}{\lambda_{P,t}} \right) \left[(1 - \delta_k) \, q_{k,t+1} + r_{kP,t+1} \right] \psi_{k,t+1} \varkappa_{k,t} \right]$$

Similar set-up for housing

$$q_{h,t} = \frac{MU_{h,t}}{MU_{c,t}} + E_t \left[\left(\beta_P \frac{\lambda_{P,t+1}}{\lambda_{P,t}} \right) (1 - \delta_h) \psi_{h,t+1} \varkappa_{h,t} q_{h,t+1} \right]$$

Borrowers

- Impatient HHs maximize PV of expected utility; $\beta_{\rm I} < \beta_{\rm B}$ to facilitate borrowing from banks
- Budget constraint:

$$c_{l,t} + q_{h,t} \left[h_{l,t} - (1 - \delta_h) \psi_{h,t} h_{l,t-1} \right] + \frac{P_{t-1} + \frac{\delta_l}{\pi_t} P_{l,t}}{P_t} b_{l,t-1} \\ \leq (1 - \tau_l) \frac{W_{l,t}}{P_t} l_{l,t} + \frac{P_{l,t}}{P_t} b_{l,t} + \frac{TR_{l,t}}{P_t} - \operatorname{adj.}$$

Net worth:

$$n_{I,t} = q_{h,t}h_{I,t} - p_{I,t}b_{I,t}$$

Similar set-up for entrepreneurs which accumulate capital, k_E
maximize PV of dividends paid to patient HHs; dividend smoothing

Domestic production

Monopolistically-competitive domestic firms produce intermediate goods:

$$y_{d,t} = z_t \left[\left(u_{P,t} k_{P,t-1} \right)^{\mu_k} \left(u_{E,t} k_{E,t-1} \right)^{1-\mu_k} \right]^{\alpha} \left[I_{P,t}^{\mu_l} I_{l,t}^{1-\mu_l} \right]^{1-\alpha} - f_d$$

 Domestic goods can be used as an input in final goods production for consumption goods, investment goods etc.:

$$c_{d,t} + i_{kd,t} + i_{hd,t} + g_{d,t} + y_{xd,t} = y_{d,t}$$

- quadratic price adjustment costs (Rotemberg, 1982)
- utilization costs affect cash-flow of firms
- distribute profits to patient households

Calibration

- Main targets for steady-state:
 - 3% risk-free rate; 14 bps. funding spread
 - 240 and 200 bps. overall spread on HH and business loans
 - mortgage debt / impatient HH housing = 95% (b_I/h_I)
 - mortgage debt / total housing = 30% (b_I/h)
 - business debt / entrep. capital = 0.5 (b_E/k_E)
 - business debt / total capital = 0.25 (b_E/k)
 - bank capital ratio = 10%
- Parameters determining dynamics:
 - nominal and real frictions: ToTEM
 - financial frictions: HRAM; MAG report (BIS)

Reducing LTV by 5 p.p.

• $R_I \uparrow \Longrightarrow q_h \downarrow \Longrightarrow$ net worth of borrowers and banks $\downarrow \Longrightarrow R_d, R_E \uparrow$ • $R \downarrow; c_P, h_P \uparrow;$ currency depreciation are moderating factors $\downarrow \Rightarrow \circ \circ \circ$ Alpanda, Cateau, Meh (Bank of Canada) Macroprudential - Monetary Policy Model November 2013 23 / 28

Increasing capital requirements by 1 p.p.

• Bank funding and lending rates $\uparrow \Longrightarrow$ loans \downarrow

• policy rate \downarrow ; $c_P, h_P, k_P \uparrow$; depreciation are moderating factors

Increasing policy rate by 100 bps.

Increase in bank funding and lending rates ⇒ loans ↓
c_P ↓ and appreciation ⇒ "broad tool" to reduce HH debt

November 2013 25 / 28

Table 3. Comparing effects of macroprudential and monetary policies					
peak effect in p.p.	5 p.p. ↓ LTV	1 p.p. ↑ cap. req.	100 bps. ↑ policy		
Output	-0.5	-0.3	-0.5		
Consumption	-0.5	-0.1	-0.2		
Business inv.	-0.8	-1.4	-1.4		
Residential inv.	-6.9	-2.0	-2.4		
Inflation	-0.08	-0.03	-0.14		
House price	-4.4	-1.3	-2.4		
HH debt	-7.6	-1.8	-1.8		

• LTV most effective in reducing HH debt with less output cost; relative to capital req. and monetary policy.

Exuberance shock to expected returns on housing

Alpanda, Cateau, Meh (Bank of Canada) Macroprudential - Monetary Policy Model

November 2013 27 / 28

- We build a medium-scale small-open-economy DSGE model with nominal, real and financial frictions
 - captures main themes in real-financial linkages literature while keeping model tractable
 - can be used to analyze effects of macroprudential policy
- Related work/possible extensions:
 - housing-related fiscal policy as a macroprudential tool
 - bank lending for working capital needs of firms
 - retail deposits vs. wholesale funding
 - modeling term-premium vs. credit risk (QE)
 - capital structure of firms and financial assets