Spillovers in the Credit Default Swap Market

Mauricio Calani

Central Bank of Chile University of Pennsylvania

Prepared for the BIS CCA Research Conference - Santiago, Chile

April 25, 2013

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

April 25, 2013 1 / 30

Contents of this presentation

Motivation & Background

- CDS in Practice and Theory
- What this paper is about

Pass Through: CDS to Bond Markets

- Literature Review
- Statistical Analysis
- Results

3 Contagion

- Literature Review
- Synchronization

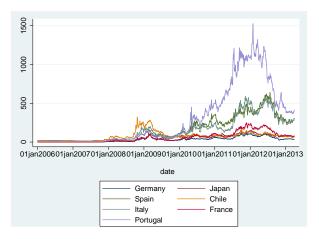
Conclusion

Motivation & Background

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

Image: A match a ma

The CDS Contract


- The credit default swap spread is the cost per annum for a kind of protection to a "credit event", namely a loan default
- It is tempting to praise the following argument: If an investor buys an asset which bears extra risk and simultaneously buys CDS protection this should be equivalent to purchasing a risk-free asset, hence the name CDS spread.
- Arbitrage tested mostly for corporate sector: Blanco et. al. (2005), Hull et. al. (2004) and may not hold

The CDS Contract

Perfect arbitrage assumes

- Participants can *quickly* short bonds or are prepared to sell these bonds, buy riskless bonds, and sell default protection (or viceversa).
- Ignores the "cheapest-to-deliver bond" option in a credit default swap. Typically a protection seller can choose to deliver any of a number of different bonds in the event of a default to meet her obligation.
- There is counterparty risk.
- The argument assumes perfectly elastic supply of CDS contracts, whereas it is more likely that this is not the case.
- What happens in the absence of a less-risky bond alternative?

Stylized fact # 1: Increased synchronization of CDS spread across countries

Figure : CDS by country (daily data) →

Mauricio Calani (CBCh & UPenn)

Spillovers in the Credit Default Swap Market

Stylized fact # 2: Bond yields do not co-move accordingly

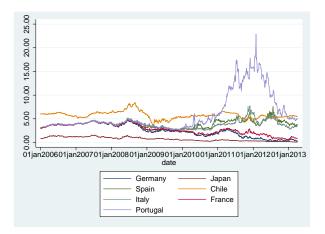


Figure : Government Bonds 5Y by country (daily data)

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

What this paper is about...

Should we worry about the apparent increased synchronization of CDS spreads across countries? Does CDS_i affect CDS_j? Can we talk about contagion?

If in fact we can make the case for contagion should we see credit spreads rising vis à vis CDS spreads?

Pass Through: CDS to Bond Markets

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

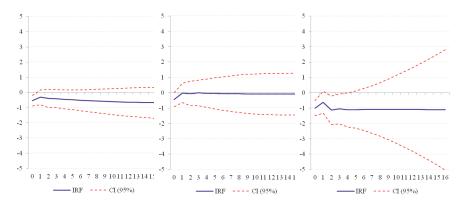
Literature Review

- A Literature on Credit Risk
 - 1. Structural models of valuation of risk: Merton (1974), Gapen et. al. (2008)
 - 2. Timing of default as a hazard ratio: Lando (1997)
- B Literature on no-arbitrage opportunities between CDS and bond yields
 - Applications to corporate spreads: Blanco et.al. (2005), Norden and Weber (2009), Hull et.al. (2004). They all assume contemporaneous adjustment though
 - I use a VAR approach to allow for non-instantaneous test of price convergence

イロト 人間ト イヨト イヨト

Statistical Analysis

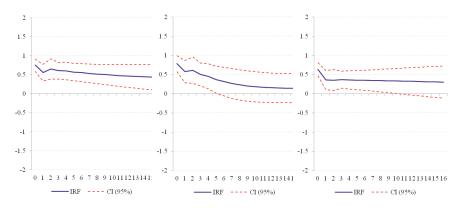
Bond Risk Premia vs. CDS


Consider the following exercise,

- Stack Bond (in Euros) yields and CDS (in %) in a VAR(p) system and calculate the Impulse Response Functions (IRF) to assess (a) size (b) average life-time (c) statistical significance of the pass-through of a shock in CDS into bond yields.
- Consider 3 time windows (for robustness)

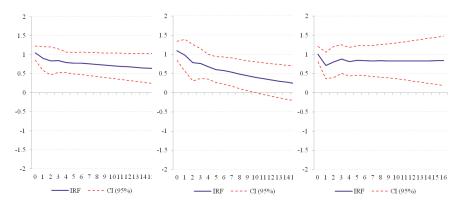
$$\begin{bmatrix} CDS_t \\ Y_t \\ x_t \end{bmatrix} = \Phi(L) \begin{bmatrix} CDS_t \\ Y_t \\ x_t \end{bmatrix} + \begin{bmatrix} \varepsilon_t^{CDS} \\ \varepsilon_t^Y \\ \varepsilon_t^X \\ \varepsilon_t^X \end{bmatrix}$$
(1)

Bond Risk Premia vs. CDS: Germany


Figure : IRF function, response of bond yields to shock in CDS in Germany

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 12 / 30

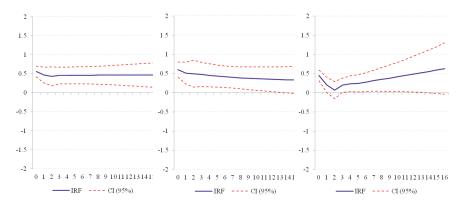
Bond Risk Premia vs. CDS: Spain


Figure : IRF function, response of bond yields to shock in CDS in Spain

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 13 / 30

Bond Risk Premia vs. CDS: Portugal

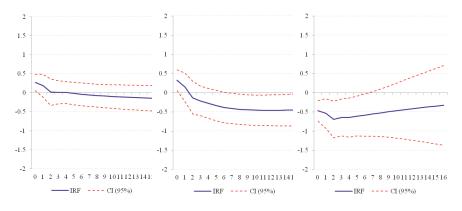
Figure : IRF function, response of bond yields to shock in CDS in Portugal



Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013

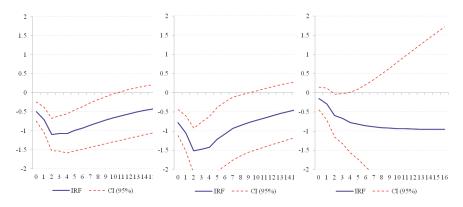
14 / 30

Bond Risk Premia vs. CDS: Italy


Figure : IRF function, response of bond yields to shock in CDS in Italy

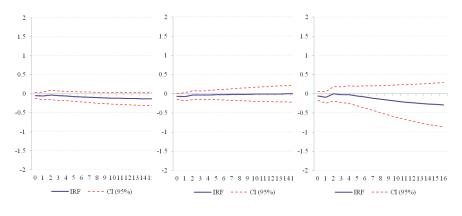
Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 15 / 30

Bond Risk Premia vs. CDS: France


Figure : IRF function, response of bond yields to shock in CDS in France

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 16 / 30

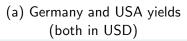
Bond Risk Premia vs. CDS: Chile


Figure : IRF function, response of bond yields to shock in CDS in Chile

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 17 / 30

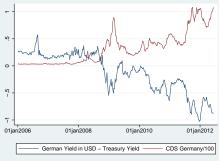
Bond Risk Premia vs. CDS: Portugal

Figure : IRF function, response of bond yields to shock in CDS in Japan




Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market April 25, 2013 18 / 30

Results


Interpretation: Risk Premia for Germany vs. CDS

The negative correlation of the German Bond yield & its associated CDS, together with assuming the supply for CDS contracts is sort of inelastic, *hints* to a demand-led escalation of CDS spreads together with rising demand for risk-free assets (flight to quality)

(b) Risk Premia for Germany vs. CDS

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

Contagion

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

April 25, 2013 20 / 30

Э

イロト イポト イヨト イヨト

Literature Review

- C Literature on Contagion: Three main reasons
 - 1. Correlated information or Price discovery channel: Dornbusch et. al (2002), Kiyotaki and Moore (2002), Longstaff (2010)
 - Liquidity channel: Cross regional deposits model of Allen and Gale (2000), Krodes and Pritsker (2002) and the funding-problem model of Brunnermeir and Pedersen (2009)
 - 3. Risk aversion channel: Vayanos (2004) and Acharaya and Pedersen (2005)

• • = • • = •

Stylized fact # 1: Increased synchronization of CDS spread across countries

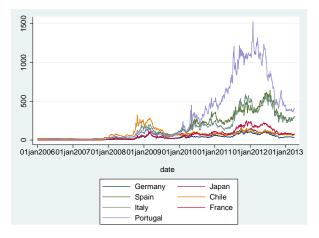


Figure : CDS by country (daily data) →

Mauricio Calani (CBCh & UPenn)

Spillovers in the Credit Default Swap Market

April 25, 2013 22 / 30

Closer look at synchronization

Take cross correlations of Germany CDS spread and other countries

Table : Pairwise correlations for Germany's and other countries' CDS: Weekly data

	2006-2007	2008-2009	2010	2011	2012
Portugal	0.44	0.90	0.63	0.79	-0.12
Spain	0.52	0.89	0.72	0.90	0.51
France	0.38	0.98	0.76	0.98	0.83
Italy	0.35	0.91	0.70	0.96	0.90
Japan	0.36	0.81	0.33	0.90	0.30
Chile	0.43	0.82	0.48	0.96	0.89

Source: Author's calculations on Bloomberg data. **Note**: All non-italic pair-wise correlations are significant to the 1% level, using the Bonferroni-adjusted significance level.

Mechanics of the Diebold-Yilmaz (2010) Index

- General idea: Stack CDS spreads for the seven economies (and other x_t) in a VAR(p), and rescue the fraction of forecast error variance that can be attributed to other countries. This is a standard measure of contagion once we have accounted for feedback in crossed dynamics
- Intuition: The larger the error in predicting variable x that can be accounted for by *other* errors, then the larger the contagion
- Consider this exercise also for volatility of the series

Synchronization

Contagion Index

Consider the simple first order two-variable VAR

$$\mathbf{x}_t = \Phi \mathbf{x}_{t-1} + \varepsilon_t \tag{2}$$

where $\mathbf{x}_t = (x_{1,t}, x_{2,t})$ and Φ is a 2 × 2 parameter matrix. Then covariance stationarity implies

$$\mathbf{x}_t = \Theta(L) \varepsilon_t$$

where $\Theta(L) = (I - \Phi L)^{-1}$. It can also be written as,

$$\mathbf{x}_t = A(L)\mathbf{u}_t \tag{3}$$

with $A(L) = \Theta(L)Q_t^{-1}$, $\mathbf{u}_t = Q_t\varepsilon_t$, $E(\mathbf{u}_t\mathbf{u}'_t) = I$ and Q_t^{-1} is the unique lower triangular Cholesky factor of the covariance matrix of ϵ_t

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー 今日の

Synchronization

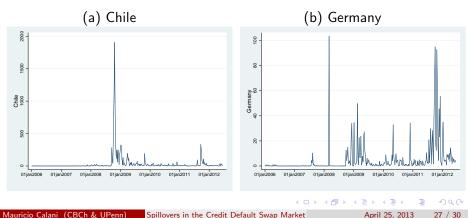
Contagion Index

• Then the one-step ahead error is

$$\mathbf{e}_{t+1,t} = \mathbf{x}_{t+1} - \mathcal{E}(\mathbf{x}_{t+1} | \mathbf{x}_t \dots \mathbf{x}_1) = \mathbf{A}_0 \mathbf{u}_{t+1} = \begin{bmatrix} \alpha_{0,11} & \alpha_{0,12} \\ \alpha_{0,21} & \alpha_{0,22} \end{bmatrix} \begin{bmatrix} u_{1,t+1} \\ u_{2,t+1} \end{bmatrix}$$

which has covariance matrix $E(\mathbf{e}_{t+1,t}\mathbf{e}'_{t+1,t}) = \mathbf{A}_0\mathbf{A}'_0$, since $E(\mathbf{u}_t \mathbf{u}'_t) = I_k$, with k = # of countries. If we were considering a one-step-ahead error in forecasting $\mathbf{x}_{1,t}$, its variance would be $\alpha_{0\,11}^2 + \alpha_{0\,12}^2$

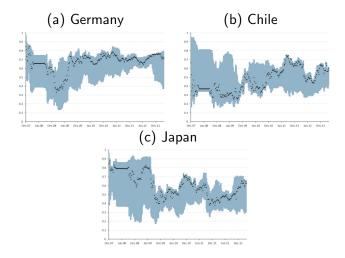
• The relative contribution to the FEVD for x_1 from x_2 is $\widehat{\alpha}_{0,12}^2 = [\alpha_{0,12}^2 / (\alpha_{0,11}^2 + \alpha_{0,12}^2)]$ with (conveniently) $\widehat{\alpha}_{0,12}^2 \in [0,1]$.


イロト 不得下 イヨト イヨト 三日

The Data: Calculating intra-week Volatility

Use Garman and Klass (1980) measure of weekly volatility

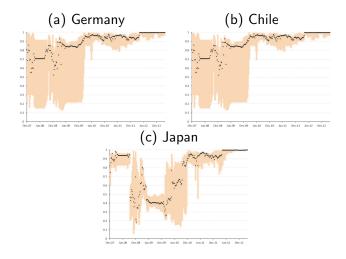
$$\sigma_{it}^{2} = 0.511(H_{it} - L_{it})^{2} - 0.383(C_{it} - O_{it})^{2}$$


$$-0.019[(C_{it} - O_{it})(H_{it} + L_{it} - 2O_{it}) - 2(H_{it} - O_{it})(L_{it} - O_{it})]$$
(4)

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

Contagion Index for returns on CDS

Index based on Diebold and Yilmaz (2010)


April 25, 2013 28 / 30

э

<ロト < 団ト < 団ト < 団ト

Contagion Index for returns on CDS

Index based on Diebold and Yilmaz (2010)

Mauricio Calani (CBCh & UPenn) Spillovers in the Credit Default Swap Market

April 25, 2013 29 / 30

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- I examine the relation of credit spreads in sovereign debt with CDS spreads in a 16 week horizon
- There exist two groups of countries
 - i) CDS shocks affect bonds yields positively: pass-through
 - ii) Safe-havens, in which effect is negligible or negative
- Possible to estimate an index of contagion in a weekly basis: No evidence for contagion in levels from troubled economies to safe-havens in 2012. Not possible to say the same regarding volatility.

→ 3 → 4 3