BIS CCA-001-2011 May 2011

The risk-taking channel and monetary transmission mechanism in Colombia

A presentation prepared for the 2nd BIS CCA Conference on

"Monetary policy, financial stability and the business cycle"

Ottawa, 12-13 May 2011

Authors*: Martha López, Fernando Tenjo and Héctor Zárate

Affiliation: Bank of the Republic (Colombia)

Email: <u>mlopezpi@banrep.gov.co</u>, <u>ftenjoga@banrep.gov.co</u>, <u>hzaratso@banrep.gov.co</u>

^{*} This presentation reflects the views of the authors and not necessarily those of the BIS or of central banks participating in the meeting.

The Risk Taking Channel and Monetary Transmission Mechanism in Colombia

M. López¹ F. Tenjo² H. Zárate³

¹Department of Macroeconomic Modelling

²Board of Directors

³Department of Statistics

Banco de la República

Second BIS CCA Conference , 2011

• □ ▶ • • □ ▶ • • □ ▶ •

Outline

Motivation

- The impact of monetary policy on risk taking behavior of financial intermediaries
- Previous Work: First empirical study for Colombia
- 2 The Model: hazard rate model
- Our Results/Contribution
 - Lower interest rates raise the probability of default on new loans but reduce that on outstanding loans
 - This channel of policy transmission depends on some bank, loan and borrower characteristics and
 - On macroeconomic conditions such as the rate of growth of the economy.
 - Effect of monetary policy is asymmetric

(日) (同) (三)

The Model: hazard rate model Our Results/Contribution Conclusions

Motivation

Basic Problem Previous Work: First empirical study for Colombia

(日) (同) (三) (三)

- The recent financial crisis has brought to the forefront the need of a better understanding of the transmission mechanisms of monetary policy.
- The main step forward in this direction has drawn on work aimed at stressing the role of the financial sector in this transmission.
- Particular emphasis has been placed on how policy actions impact risk perceptions and attitudes of banks and other financial institutions, leading to shifts in the supply of credit

The Model: hazard rate model Our Results/Contribution Conclusions

Our Work.

Basic Problem Previous Work: First empirical study for Colombia

・ロト ・ 同ト ・ ヨト ・ ヨ

- We use a data set from the Credit Register from Colombia that contains detailed information on individual bank loans during the period 2000:I-2008-IV to investigate the impact of monetary policy stance on the risk-taking behavior of banks.
- Using econometric models of duration, the present paper finds a significant link between low interest rates and banks' risk taking in Colombia.

Basic Problem Previous Work: First empirical study for Colombia

The risk taking channel of monetary policy

- The monetary policy shocks may be reinforced as the result of:
 - Variations in the health of financial intermediaries in terms of leverage and asset quality,
 - 2 Variations in perception of risk and willingness to bear risk.
- The level of interest rates may influence risk taking behavior, Borio and Zhu (2008)
- In times when interest rates are low, the search for yield is often associated with the expansion of investment into riskier assets and borrowers as downside risk are played down. Adrian and Shin (2008).

The Model: hazard rate model Our Results/Contribution Conclusions Basic Problem Previous Work: First empirical study for Colombia

The risk taking channel

López, Tenjo and Zárate The risk taking channel in Colombia

э

The Model: hazard rate model Our Results/Contribution Conclusions Basic Problem Previous Work: First empirical study for Colombia

The risk taking channel

Testing the BLC/RTC for Colombia

- Funding of banks: basically core liabilities (deposits, CDs) + repos. No wholesale market for funds.
- 2 Marked-to-market accounding, not welldeveloped. Even less for banks' liabilities

What is the relevance of concepts such as EFP and EDP?

MP regime in Colombia, Inflation Targeting: the CB sets the over-night interest rate and provides the liquidity demanded at that rate.

The Model: hazard rate model Our Results/Contribution Conclusions Basic Problem Previous Work: First empirical study for Colombia

(日) (同) (三)

Two approaches

A

Perceived probability of default as influenced by both interest rate decisions of the central bank and the state of the economy: Gambacorta (2009), Jimenez et al (2009), Altunbas et al (2009a), and López et al (2010).

В

Studies with a longer tradition that look for a direct link between changes in the policy rate and the supply of credit: Altunbas et al (2009b), Kashyap and Stein (2000), Ioannidou et al (2009) and López and Tenjo (forthcoming).

Our measure of bank risk and the data

- Our measure of credit risk is the hazard rate or the probability of loan default during each period of the life of the loan given that default did not occur before.
- The basis for the estimation of a measure of bank risk is a data set for Colombia, consisting of quarterly information on 2,095,755 individual commercial loans for the period 2000:I to 2008:IV provided by Superfinanciera.
- We were able to obtain information for borrower (age as borrower, borrower risk),
- lending bank (bank size, leverage) and
- some details of the loans (amount, collateralization, maturity and payment information)

< /₽ > < E >

How to handle the endogeneity of the policy rate

- In principle, there could be a two-way relation between loan risk and monetary policy.
- However, during the period of the study, 2000 to 2008, the central bank in Colombia did not *systematically* take into account bank risk considerations in its policy decisions on interest rates.
- Nevertheless, as a robutness excersice, we used as the stance of monetary policy the deviations of the policy rate from the natural rate of interest and from a rate implied by a Taylor rule (as in Gambacorta (2009)).

A (1) < A (1) < A (1) < A (1) </p>

The model

- We use a duration or hazard function model to study the time to default of individual bank loans.
- In duration models the dependent variable is duration, in this case, the time it takes for a loan to change from one state to another.
- Let T represent the time that elapses before the occurrence of the default of the loan. The passage of time is often referred as a spell.
- A simple way to describe the behavior of a spell is through its survivor function, $S(\xi) = P(T \ge \xi)$, which yields the probability that the spell T lasts at least to time ξ

4 🗇 🕨 4 🖻 🕨 4

The model

• Alternatively, the hazard function determines the conditional probability that the spell ends in a short time after, provided that it has reached time

$$\lambda(\xi) = \lim_{\Delta \xi \to 0} \frac{P(\xi \le T + \Delta \xi | T \ge \xi)}{\Delta \xi} = \frac{f(\xi)}{S(\xi)}$$
(1)

where $f(\xi)$ es the density function associated with the distributions of spells.

The model

• Usually, when estimating hazard functions it is convenient to assume a proportional hazard specification:

$$\lambda(\xi, x, \beta) = \lambda_0(\xi) \exp(x'\beta)$$
(2)

4 🗇 🕨 4 🖻 🕨 4

- where x is a vector of covariates, β a vector of parameters and λ_0 is a baseline hazard function
- The test of proportional hazard specification was rejected when we used the test proposed by Shoenfeld and graphical analysis of the residuals.
- Therefore we use an Accelerator Failure Time Model by modelling *Int* instead of *t*

The baseline hazard rate

- In our benchmark model we use a Weibull specification for the baseline hazard rate λ_0 , where $\lambda_0 = \lambda \alpha \xi^{\alpha}$, which is monotonically increasing if $\alpha > 1$, and monotonically decreasing if $\alpha < 1$
- Our benchmark model has this specification because after one or two initial quarters overdue, repayments could become conditionally more likely over the life of the loan.
- We estimate different models with different specifications for the baseline hazard rates.

A (1) < A (1) < A (1) < A (1) </p>

Variables

The Model: Variables

López, Tenjo and Zárate The risk taking channel in Colombia

3 k 3

Variables

Table 1. Descriptive Satistics

Variables	Definition	Mean	Std.Dev	Min	Мах
Default	1 if default, i.e. if three months after the date of maturity or the date of an interest pay ment, the debt balance remains unpaid	0.099	0.298	0.000	1.000
INTEREST RATE (%)	Real TIB (interbank rate)	2,183	1.711	-0.593	4.764
BANK SIZED (%) OWN FUNDSITOTAL ASSETSD (%) INTERBANK POSITIONITOTAL ASSETSD(%) BANK NPLD-NPL(%)	Relative size of the bank vis-a vis the other banks The amount of bank equity over total bank assets The net amount of interbank lending by the bank over total assets The difference between the bank and the other banks level of NPLs	8.467 5.096 -1.028 0.000	5.366 2.752 2.880 11.394	0.034 0.093 -23.330 -80.440	20.672 101.080 10.461 29.743
BORROWER RISKF (0/1) LN(2+AGE AS BORROWERF)	1 if the borrower was overdue any time before on another loan Age is the number of years from the first time the firm borrowed from a bank	15.184 2.889	35.886 0.683	0.000 1.386	100.000 3.727
LN(SIZE OF THE LOANI) COLLATERALI(0/1) MATURITY 3m-1y (0/1) MATURITY 1y-3y (0/1) MATURITY 3y-5y (0/1)	The log of the loan amount 1 if the loan is collaterized 1 if the loan matures between 3 months and 1 year 1 if the loan matures between 1 year and 3 years 2 if the loan matures between 3 year and 5 years	16.308 0.522 0.058 0.148 0.206	1.510 0.500 0.234 0.355 0.404	12.467 0.000 0.000 0.000 0.000 0.000	19.499 1.000 1.000 1.000 1.000
GDPG(%) EFFICIENCY RATIO (%) FINANCIAL INCOME/ATA(%)	Growth in real gross domestic product Operating Margin/Total Assets Interest income plus dividends received over average total assets	0.048 0.392 2.558	0.023 0.458 0.300	-0.005 -0.975 1.988	0.084 0.994 3.133

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

Non Time-Varying Duration Models

Independent Variables	Weibull		Lognormal		Logistic		Normal	
independent variables	Coefficient	Sig.	Coefficient	Sig.	Coefficient	Sig.	Coefficient	Sig.
	\frown							
INTEREST RATE 4-1	-0,0131	••••	-0,0200	***	-0,0180	***	-0,1262	••••
INTEREST RATE (+T-1	0,1330	***	0,1011	***	0,1188	***	0,7987	***
INTEREST RATE 4-1 * BANK SIZE 64-1 INTEREST RATE 4-1 * OWN FUNDS64-1								
BANK SIZE bC-1	-0,0232	***	-0,0217	***	-0,0243	***	-0,1535	***
OWN FUNDS/TOTAL ASSETS b(-1	-0,0228	***	-0,0349	***	-0,0466	***	-0,2347	***
INTERBANK POSITION /TOTAL ASSETS b 1	0,0206	•••	0,0238	•••	0,0195	•••	0,1679	••••
BANK NPL bg-1 - NPL g-1	0,0054	***	0,0055	***	0,0059	***	0,0393	***
BORROWER RISK 15-1 (0/1) LN (2+AGE AS BORROWER 15)	0,0005 0,0375	••••	0,0003 0,0054	***	0,0003	••••	0,0029 0,3271	***
LN (SIZE OF THE LOAN IC)	-0,0114		-0,0111	***	-0,0102		-0,0337	***
COLLATERAL (0/1)	0,3437		0,3329		0,3330		2,0724	
FINANCIAL CREDIT (0/1)								
MATURITY 0m3m. (0/1)	-1,0102	***	-0,8798	***	-0,8753	***	-4,8370	***
MATURITY 3m1y. (0/1)	-0,3250	***	-0,2508	***	-0,2352	***	-2,1767	••••
MATURITY 1939. (0/1)	0,0251	***	0,0333	***	0,0459	***	-0,0024	***
MATURITY 3y5y. (0/1)								
GPDG Z-1	0,9547	***	1,0746	***	0,7250	***	7,7296	***
GPDG 7+Te1	-12,5974	***	-13,6722	***	-14,8366	***	-97,3673	***
TIME TREND	-0,0058	***	0,0037	***	0,0020	***	0,0033	***
TIME TREND ²	-0,0002	•••	-0,0008	•••	-0,0011	•••	-0,0086	••••
EFFICIENCY RATIO g								
FINANCIAL INCOME/ATA ig								
CONSTANT	2,6345	***	2,6273	***	2,7490	***	12,0662	***
In(ά) (duration dependence)	0,5703	***	0,6629	***	0,3850	***	4,3274	***
Lot steudolikebood	-609386		.579179		-588617		-1456861	

López, Tenjo and Zárate

The risk taking channel in Colombia

-

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

Non Time-Varying Duration Models - Part Two

Independent Variables	Weibull		Weibull with interaction		Weibull with interaction	
	Coefficient	Sig.	Coefficient	Sig.	Coefficient	Sig.
NTEREST RATE (J			-0,0430		-0,0154	
INTEREST RATE (+T-1			0,1342	***	0,1328	•••
NATURAL 7.1	0.0045					
NATURAL CT	0.1754					
NTEREST RATE 11 * BANK SIZE 11	\square		0.0036			
NTEREST RATE 4.1 * OWN FUNDS 64.1					0,0006	•••
BANK SIZE bL-1	-0,0237	***	-0,0308	***	-0,0235	***
OWN FUNDS/TOTAL ASSETS b2-1	-0,0226	***	-0,0225	***	-0,0252	***
NTERBANK POSITION /TOTAL ASSETS 10-1	0,0192	***	0,0200	***	0,0199	***
BANK NPL MAT - NPL 7.1	0,0056	***	0,0053	***	0,0054	***
BORROWER RISK 15-1 (0/1)	0,0005	***	0,0005	***	0,0005	***
LN (2+AGE AS BORROWER fg)	0,0409	***	0,0383	***	0,0373	***
LN (SIZE OF THE LOAN g)	-0,0112	••••	-0,0109	••••	-0,0114	••••
COLLATERAL (0/1)	0,3422	•••	0,3440	••••	0,3429	•••
FINANCIAL CREDIT (0/1)						
MATURITY 0m3m. (0/1)	-1,0141	•••	-1,0083	••••	-1,0102	•••
MATURITY 3m1y. (0/1)	-0,3214	•••	-0,3237	••••	-0,3252	•••
MATURITY 1939. (0/1)	0,0211	•••	0,0263	••••	0,0251	•••
MATURITY 3y5y. (0/1)						
GPDG (-1	0,8327	•••	0,9013	••••	0,9446	•••
GPDG (+T-1	-9,4598	•••	-12,6153	••••	-12,5946	***
TIME TREND	-0,0061	***	-0,0059	***	-0,0058	***
TIME TREND ²	-0,0003	•••	-0,0002	••••	-0,0002	•••
EFFICIENCY RATIO						
FINANCIAL INCOME/ATA g	1					
CONSTANT	2,7283	***	2,6832	***	2,6491	***
In(d) (duration dependence)	0,5696		0,5703		0,5703	
Log pseudolikehood	-609386		-609144		-609379	

López, Tenjo and Zárate

The risk taking channel in Colombia

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

Our Results/Contribution

- More Interesting results:
 - Lower policy interest rates are associated with:
 - Higher HR on new loans
 - Lower HR on existing loans
 - Higher GDP growth is associated with:
 - Higher HR on new loans
 - Lower HR on exisint loans

- Other more intuitive results:
 - Smaller and more highly leveraged banks are more willing to take risks
 - More reliance on interbank market and higher incidence of non-performance loans increase hazard rates
 - Size and maturity of loans, negatively correlated with probability of default
 - There is a sort of "path dependence" in borrowers' probability of default on their loans.

< ロ > (同 > (回 > (回 >))

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

A (1) < A (1) < A (1) < A (1) </p>

From the conceptual to the empirical model

- HRs, sensitive to balance sheet strength:
 - leverage
 - asset quality (non-performing loans)
 - reliance on inter-bank market
- Risk-taking affected by monetary policy and GDP growth and translated into looser lending standards, lower quality borrowers and higher HRs.
- Amplification mechanisms: effect of lower policy rates and GDP growth on outstanding loans, and joint effect of policy shocks with leverage and small bank-size.

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

Implications for Monetary Policy

- Asymmetric effects of monetary policy:
 - Hazard rates on outstanding loans are more sensitive to shifts to an expansive stance than to shifts to a restrictive stance.
 - This asymmetry is stronger the higher is GDP growth.

▲ 同 ▶ ▲ 国 ▶

Lower interest rates raise the probability of default on new loa Effect of monetary policy is asymmetric

(日) (同) (三) (

Implications for Monetary Policy

- Closely linked with the asymmetry of monetary policy...
 - Literature on transmission mechanism emphasizes effects of short term rates on: cost of funds or financing conditions, long-term interest rates, or inflation expectations
 - From the risk-taking channel perspective: transmission of MP shocks goes through the revision of risk perceptions (the price of risk, hazard rates, perceived default probabilities, etc.) by lending institutions.
 - The relationship interest rates risk perceptions, however, most probably is not linear.

Conclusions

- Financial intermediaries play an important role in the transmission of monetary policy in Colombia.
- Furthermore, there is evidence in support of the relevance of risk considerations in the response of banks to monetary policy shocks.
- More concretely, monetary policy in Colombia affects banks' perceptions and attitudes toward risk.
- Low levels of interest rates are an incentive for banks to take more risk in their lending decisions.

A (1) < A (1) < A (1) < A (1) </p>

Conclusions cont.

- This incentive goes through particular bank characteristics (size and liquidity) and also depends on some loan and borrower characteristics.
- Banks' attitude towards risk is also affected positively by on macroeconomic conditions.
- Together, these patterns give monetary policy an asymmetric effect , which should be taken into account by the central banks when deciding on its policy stance at different stages of the cycle of the economy.

A (1) < A (1) < A (1) < A (1) </p>