Overview Contribution Comments and Suggestions

The Effects of Foreign Exchange Intervention Using Intraday Data: Evidence from Peru Marylin Choy, Erick Lahura and Marco Vega

Discussion: Cartagena, 30 November 2012

by Paolo Vitale

Ud'A

(4月) (4日) (4日)

Overview

- Contribution: Provide analysis of CB intervention in Peruvian FX spot market.
 - ★ Describe the local FX market structure.
 - ★ Discuss mechanisms and motives of FX intervention.
 - ★ Propose estimation of VAR model for FX intervention and exchange rate dynamics.
- Comments: Paper interesting (analysis and results are clear)
 - \star The identification restrictions for the VAR model are strong.
 - * Alternative ways to deal with reverse causality are available.
 - Asymmetry of FX intervention needs analysis: could it suggest a different reaction function?

・ロト ・同ト ・ヨト ・ヨト

Data Analysis Results

The Peruvian FX Market and CB Intervention

- FX market:
 - $\star\,$ Small size, most transactions are spot.
 - ★ Electronic limit book trading platform: trades are anonymous.
- Intervention is fully sterilized and aimed at reducing exchange rate volatility.
- Intervention is announced; details are published ex-post.
- Questions/Comments:
 - ★ What is the timing of sterilization? Could it suggest a different frequency for the analysis?
 - \star What is the accuracy of the timing of the intervention data?
 - * Are intervention and market operations kept distinct?
 - ★ What about some descriptive statistics?

Data Analysis Results

The Econometric Analysis

• Three-variate VAR model of spot return, *r*_t, purchase, *P*_t, and sale interventions, *S*_t:

for $\mathbf{z}_t \equiv (r_t, P_t, S_t)'$ $\mathbf{A}\mathbf{z}_t = \mathbf{B}(L)\mathbf{z}_{t-1} + \boldsymbol{\epsilon}_t$.

- The VMA representation, $\mathbf{z}_t = \sum_{i=0}^{\infty} \Phi(i) \boldsymbol{\epsilon}_{t-i}$, is identified by imposing long-run restrictions, among which:
 - * Purchase intervention innovations, ϵ_t^P , have *no* permanent impact on the spot rate, $\sum_{i=0}^{\infty} \phi_{1,2}(i) = 0$.
 - * Sale intervention innovations, ϵ_t^S , have no permanent impact on the spot rate, $\sum_{i=0}^{\infty} \phi_{1,3}(i) = 0$.

Results

- Coefficients are as expected:
 - \star Intervention innovations, ϵ_t^P and ϵ_t^S , have a significant impact on the spot rate.
 - * Sale interventions have a *larger* impact on the spot rate than purchase interventions.
 - * CB leans against the wind: a positive (negative) spot rate innovation, $\epsilon_t^r > 0$ ($\epsilon_t^r < 0$), generates official sales of USDs.
- Questions/Comments:
 - ★ What is the estimated impact of sale and purchase interventions on the spot rate?
 - * What about testing the individual long-run restrictions?

Portfolio-balance Effect and Signaling Channel

- Long-run restrictions contradict the the portfolio-balance effect and signaling channels of transmission of FX intervention.
- Assume $e_t = E[e_{t+1} \mid \Omega_t] + (i_t i_t^*) + \rho_t$.
- As the information set contains intervention data, I_t ,

$$e_{t} = \sum_{j=0}^{T-1} E\left[(i_{t+j} - i_{t+j}^{*}) + \rho_{t+j} \mid I_{t}\right] + E\left[e_{T} \mid I_{t}\right].$$

- \star If domestic and foreign assets are imperfect substitutes larger risk premia, ρ_{t+j} , are imposed to absorb FX purchases.
- * If assets are perfect substitutes, FX intervention can signal future interest rates, $i_{t+j} - i_{t+j}^*$, or long-run spot rates, e_T .

The Portfolio-balance Effect Channel

- Dominguez and Frankel (1993a) and Gosh (1992) show that FX intervention presents a significant impact on risk-premia.
- Breedon and Vitale (2011) show that the strong contemporaneous correlation between order flow and exchange rates in the inter-dealer FX market is due to the portfolio-balance effect.
- The dimension of the Peruvian financial markets could mean the portfolio-balance effect is sizeable for the USD/PEN cross.

A (1) > A (2) > A

The Signaling Channel

- Payne and Vitale (2003) show that intervention operations have a much bigger impact on spot rates than market operations.
- Dominguez and Frankel (1993c) show that intervention operations affect market expectations of future spot rates.
- Lewis (1995), Kaminsky and Lewis (1996) show that intervention operations convey information on future monetary policy.
- Leahy (1995), Sweeney (2000) and Ito (2002) show that FX intervention is profitable.

・ロト ・同ト ・ヨト ・ヨト

Non-structural Analysis: An Event Study Approach

- Because of high frequency, simultaneity less of an issue.
- Apply an event study approach:

$$r_t = \alpha + \sum_{i=-k}^k \beta_j I_{t-j} + \sum_{i=1}^m \gamma_i r_{t-i} + \epsilon_t.$$

- \star Main advantage: the absence of identification restrictions.
- * Main drawback: the reverse causality from r_t to l_t which may bias downward the estimated impact of FX intervention.

(4月) (4日) (4日)

Structural Analysis: A VAR model à la Hasbrouck (1991)

- Because of high frequency, reverse causality only via lag terms.
- Identify the VAR model, $\mathbf{A}\mathbf{z}_t = \mathbf{B}(L)\mathbf{z}_{t-1} + \boldsymbol{\epsilon}_t$, via Hasbrouck restrictions: $a_{2,1} = a_{3,1} = 0$ and $\operatorname{Var}[\boldsymbol{\epsilon}_t]$ diagonal.
 - * Main advantage: no long-run restrictions are required.
 - ★ Main drawback: the timing of intervention may be triggered by short-term spot rate movements.
- Hasbrouck's identification is appropriate for tick-by-tick data.
- To capture the contemporaneous feedback effect of r_t to l_t one should use instruments (Danielsson and Love (2006)).

・ロト ・ 同ト ・ ヨト ・ ヨト

A Structural Model à la Kearns and Rigobon (2005)

• Define a threshold model for FX intervention:

$$r_t = \beta I_t + \gamma y_t + \epsilon_t^r,$$

$$I_t = \mathcal{I}(|I_t^*| > \overline{I})I_t^*,$$

$$I_t^* = \lambda r_t + \theta y_t + \epsilon_t^I.$$

• Identify it by assuming that the intervention reaction function shifts between *two* regimes (such as low and high 7):

$$I_t = \begin{cases} (|I_t^*| > \bar{I}_l) I_t^* & t < \tau \\ (|I_t^*| > \bar{I}_h) I_t^* & t \ge \tau \end{cases}.$$

• Could it be the case for Peru?

Overview Contribution Comments and Suggestions

A model à la Kearns and Rigobon (2005) for Peru?

Does the CB policy shift from pure lean-against-the-wind (vis-a-vis a reference rate of 3) to a stabilizing one in the Spring of 2009?

・ロト ・ 同ト ・ ヨト ・ ヨト