Risk in Financial Reporting

Philippe Jorion University of California at Irvine 2005

© 2005 P.Jorion E-mail: pjorion@uci.edu

I. Information Set

(1) First moments:

e.g. balance sheet values

- (2) Risk information (second moments):e.g. VAR, stress tests
- (3) Measurement error in variables (first and second moments)

Information Set: Practice

- (1) First moments: commonly used, albeit with disputes in measurement methods
- (2) Risk information: now reported by some firms, especially financials and derivatives users (SEC rule)
- (3) Measurement error in variables: rarely reported, except for backtesting

"En pratique, ça marche, mais en théorie?"

(attributed to a French mathematician)

Information Set: Theory

- (1) Report first moments:
 - » historical cost: backward-looking
 - » market values: forward-looking
- (2) Report risk information
- (3) Report measurement error in variables (first and second moments)
 - » model error (estimation error, noise)
 - » reporting bias should be reported (maybe not, but then disclose conflicts of interest)

http://www.cts.com/~borderIn/

Ē

Disclosures of Market Risk: 1993-2002

	Total	Total Percent		
Year	Examined	Provide Quant. Info.		
2002	44	43	98%	
2001	54	48	89%	
2000	55	47	85%	
1999	57	49	86%	
1998	71	47	66%	
		Disclose VAR Data		
1997	78	63	81%	
1996	79	50	63%	
1995	79	36	46%	
1994	79	18	23%	
1993	79	4	5%	

Source: Basel Committee Surveys

Risk Management - P.Jorion

Deutsche Bank: Economic and Regulatory Capital (in €millions)

Economic capital usage in € m.	2004	2003
Credit risk	5,971	7,363
Market risk	5,476	5,912
Trading market risk	1,581	972
Nontrading market risk	3,895	4,940
Diversification across credit, market risk	(870)	(1,152)
Sub-total credit and market risk	10,577	12,123
Business risk	381	1,117
Operational risk	2,243	2,282
Total economic capital usage	13,201	15,522

"Very severe" means a 0.02% probability that our aggregated losses within one year will exceed our economic capital for that year.

Regulatory Capital	2004	2003	
Risk-weighted positions	206,718	206,142	
Market risk equivalent ¹	10,069	9,530	
Risk position	216,787	215,672	
Core capital (Tier I)	18,727	21,618	Tier 1?
Supplementary capital (Tier II)	9,885	8,253	
Available Tier III capital	_	—	
Total regulatory capital	28,612	29,871	
Core capital ratio (Tier I)	8.6%	10.0%	
Capital ratio (Tier I + II + III)	13.2%	13.9%	

MEASURING VAR: Comparison of Methods

- (1) Non-parametric: sample quantile q(c)
- (2) Parametric: use the std. deviation σ in $q_s = \alpha \sigma$, assuming a normal distribution, or other (e.g. α (c)=1.645 for c=95% and a normal distribution)
- Is any method superior to the other?
 - » the parametric approach is superior if the underlying assumptions are correct
 - » the efficiency gain stems from the additional information

ASSESSING VAR: Estimation Error in Quantiles

• Method 1: the c-th sample quantile q(c)

» asymptotic std err is

 $\operatorname{se}(\widehat{q}) = \sqrt{\frac{c(1-c)}{T f(q)^2}}$ • Method 2: the quantile is measured as $q_s = \alpha \hat{\sigma}$ » asymptotic std err is $\operatorname{se}(\alpha \widehat{\sigma}) = \alpha \sigma \sqrt{\frac{1}{2T}}$

 Method 2 is more precise because the standard deviation uses data from the entire distribution, not just adjoining points

Risk Management - Philippe Jorion

Risk Management - Philippe Jorion

Standard Error of VAR for Different Methods

Risk Management - Philippe Jorion

The Effect of Sample Size on Standard Errors

		Standard Error Replications:			
left	Expected	100	500	1000	10 000
Tail	Quantile		000	1000	10,000
1%	-2.326	0.409	0.170	0.119	0.037
5%	-1.645	0.216	0.092	0.066	0.021
10%	-1.282	0.170	0.075	0.052	0.017
Std.Dev.	1.000	0.069	0.032	0.022	0.007

Relative Precision for 99% VAR

		Relative Error (Percent)			
		Replications:			
Distribution	Skewness	100	500	1000	10,000
Normal	0.00	17.6	7.3	5.1	1.5
Right skew	0.76	9.3	4.2	3.0	0.9
Left skew	-0.76	23.4	9.2	6.3	1.9

II. Unbiased Valuations

- (1) Market prices: objective and tradable
 - » except perhaps for liquidity adjustment
 - » may not reflect economic fundamentals (?)
- (2) Close market counterparts
- (3) Model prices, based on NPV or option valuation models using risk forecasts
 - » however, valuation operates in a risk-neutral world whereas risk management uses the physical distributions

Risk in Financial Reporting - Philippe Jorion

III. Risk and Artificial Volatility

- Accounting rules are not always consistent for recognition and valuation of assets and liabilities
 - » e.g. hedge of anticipated exposure or FAS 133 treatment of macro-hedges
- This could create "artificial" volatility in earnings, which seems to worry CFOs
 - » e.g. opposition to IAS 39
- Quest for low reported earnings volatility motivates "earnings management"

Risk in Financial Reporting - Philippe Jorion

Artificial Volatility

- Issue is whether such volatility:
- (1) represents true economic volatility and
- (2) if not, whether penalized in financial markets
- Evidence that the apparent "tightening" of credit standards is explained by increased earnings management
 - "Tightening Credit Standards: Fact of Fiction?,"
 (2005), Jorion, Shi, and Zhang

CONCLUSIONS

- The trend is toward mark-to-market valuation
- Risk measures are the next step, or changes in mtm values
- Risk measures are bound to take an increasing role in financial reporting

» accounting should incorporate risk measurement

 Measurement error in risk measures (Risk^2) should be described as well

» failure to address this issue is costly, e.g. nonrecognition of portfolio credit risk models Risk Management - Philippe Jorion