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Abstract 

In this paper, we compare value-at-risk (VaR) and expected shortfall under market stress. Assuming 
that the multivariate extreme value distribution represents asset returns under market stress, we 
simulate asset returns with this distribution. With these simulated asset returns, we examine whether 
market stress affects the properties of VaR and expected shortfall. 

Our findings are as follows. First, VaR and expected shortfall may underestimate the risk of securities 
with fat-tailed properties and a high potential for large losses. Second, VaR and expected shortfall may 
both disregard the tail dependence of asset returns. Third, expected shortfall has less of a problem in 
disregarding the fat tails and the tail dependence than VaR does. 

1. Introduction 

It is a well known fact that value-at-risk2 (VaR) models do not work under market stress. VaR models 
are usually based on normal asset returns and do not work under extreme price fluctuations. The case 
in point is the financial market crisis of autumn 1998. Concerning this crisis, CGFS (1999) notes that �a 
large majority of interviewees admitted that last autumn�s events were in the �tails� of distributions and 
that VaR models were useless for measuring and monitoring market risk�. Our question is this: Is this 
a problem of the estimation methods, or of VaR as a risk measure? 

The estimation methods used for standard VaR models have problems for measuring extreme price 
movements. They assume that the asset returns follow a normal distribution. So they disregard the 
fat-tailed properties of actual returns, and underestimate the likelihood of extreme price movements. 

On the other hand, the concept of VaR as a risk measure has problems for measuring extreme price 
movements. By definition, VaR only measures the distribution quantile, and disregards extreme loss 
beyond the VaR level. Thus, VaR may ignore important information regarding the tails of the 
underlying distributions. CGFS (2000) identifies this problem as tail risk. 

To alleviate the problems inherent in VaR, Artzner et al (1997, 1999) propose the use of expected 
shortfall. Expected shortfall is the conditional expectation of loss given that the loss is beyond the VaR 
level. 3 Thus, by definition, expected shortfall considers loss beyond the VaR level. Yamai and Yoshiba 
(2002c) show that expected shortfall has no tail risk under more lenient conditions than VaR.  

                                                      
1 The views expressed here are those of the authors and do not reflect those of the Bank of Japan. (E-mail: 

yasuhiro.yamai@boj.or.jp; toshinao.yoshiba@boj.or.jp.) This paper is a revised version of the paper presented at the Third 
Joint Central Bank Research Conference on Risk Measurement and Systemic Risk on 7-8 March 2002 in Basel. The 
content of this paper is the same as Yamai, Y and T Yoshiba, �Comparative analyses of expected shortfall and value-at-
risk (3): their validity under market stress�, IMES Discussion Paper No 2002-E-2, Bank of Japan, 2002. 

2  VaR at the 100(1-α)% confidence level is the upper 100α percentile of the loss distribution. We denote the VaR at the 
100(1�α)% confidence level as VaRα(Z), where Z is the random variable of loss. 

3  When the distributions of loss Z are continuous, expected shortfall at the 100(1�α)% confidence level (ESα(Z)) is defined by 
the following equation: 
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The existing research implies that the tail risk of VaR and expected shortfall may be more significant 
under market stress than under normal market conditions. The loss under market stress is larger and 
less frequent than that under normal conditions. According to Yamai and Yoshiba (2002a), the tail risk 
is significant when asset losses are infrequent and large.4 

In this paper, we examine whether the tail risk of VaR and expected shortfall is actually significant 
under market stress. We assume that the multivariate extreme value distributions represent the asset 
returns under market stress. With this assumption, we simulate asset returns with those distributions, 
and compare VaR and expected shortfall.5,6 

Our assumption of the multivariate extreme value distributions is based on the theoretical results of 
extreme value theory. This theory states that the multivariate exceedances over a high threshold 
asymptotically follow the multivariate extreme value distributions. As extremely large fluctuations 
characterise asset returns under market stress, we assume that the asset returns under market stress 
follow the multivariate extreme value distributions. 

Following this Introduction, Section 2 introduces the concepts and definitions of the tail risk of VaR and 
expected shortfall based on Yamai and Yoshiba (2002a, 2002c). Section 3 provides a general 
introduction to multivariate extreme value theory. Section 4 adopts univariate extreme value 
distributions to examine how the fat-tailed properties of these distributions result in the problems of 
VaR and expected shortfall. Section 5 adopts simulations with multivariate extreme value distributions7 
to examine how tail dependence results in the tail risk of VaR and expected shortfall. Section 6 
presents empirical analyses to examine whether past financial crisis have resulted in the tail risk of 
VaR and expected shortfall. Finally, Section 7 presents the conclusions and implications of this paper. 

2. Tail risk of VaR and expected shortfall 

A. The definition and concept of the tail risk of VaR 
In this paper, we say that VaR has tail risk when VaR fails to summarise the relative choice between 
portfolios as a result of its underestimation of the risk of portfolios with fat-tailed properties and a high 
potential for large losses.8,9 The tail risk of VaR emerges since it measures only a single quantile of 
the profit/loss distributions and disregards any loss beyond the VaR level. This may lead one to think 
that securities with a higher potential for large losses are less risky than securities with a lower 
potential for large losses. 

For example, suppose that the VaR at the 99% confidence level of portfolio A is 10 million and that of 
portfolio B is 15 million. Given these numbers, one may conclude that portfolio B is more risky than 
portfolio A. However, the investor does not know how much may be lost outside of the confidence 

                                                                                                                                                                      
 When the underlying distributions are discontinuous, see Definition 2 of Acerbi and Tasche (2001). 
4  Jorion (2000) makes the following comment in analysing the failure of Long-Term Capital Management (LTCM): �The payoff 

patterns of the investment strategy [of LTCM] were akin to short positions in options. Even if it had measured its risk 
correctly, the firm failed to manage its risk properly.� 

5 Prior comparative analyses of VaR and expected shortfall focus on their sub-additivity. For example, Artzner et al (1997, 
1999) show that expected shortfall is sub-additive, while VaR is not. Acerbi et al (2001) prove that expected shortfall is sub-
additive, including the cases where the underlying profit/loss distributions are discontinuous. Rockafeller and Uryasev 
(2000) utilise the sub-additivity of the expected shortfall to find an efficient algorithm for optimising expected shortfall. 

6 The other important aspect of the comparative analyses of VaR and expected shortfall is their estimation errors. Yamai and 
Yoshiba (2002b) show that expected shortfall needs a larger size sample than VaR for the same level of accuracy. 

7  For other financial applications of multivariate extreme value theory, see Longin and Solnik (2001), Embrechts et al (2000) 
and Hartmann et al (2000). 

8  We only consider whether VaR and expected shortfall are effective for the relative choice of portfolios. We do not consider 
the issue of the absolute level of risk, such as whether VaR is appropriate as a benchmark of risk capital.  

9  For details regarding the general concept and definition of the tail risk of risk measures, see Yamai and Yoshiba (2002c).  
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interval. When the maximum loss of portfolio A is 1 trillion and that of B is 16 million, portfolio A should 
be considered more risky since it loses much more than portfolio B under the worst case. In this case, 
VaR has tail risk since VaR fails to summarise the choice between portfolios A and B as a result of its 
disregard of the tail of profit/loss distributions. 

We further illustrate the concept of the tail risk of VaR with two examples.  

Example 1: Option portfolio (Danielsson (2001)) 

Danielsson (2001) shows that VaR is conducive to manipulation since it measures only a single 
quantile. We introduce his illustration as a typical example of the tail risk of VaR. 

The solid line in Figure 1 depicts the distribution function of the profit/loss of a given security. The VaR 
of this security is VaR0 as it is the lower quantile of the profit/loss distribution. 

One is able to decrease this VaR to an arbitrary level by selling and buying options of this security. 
Suppose the desired VaR level is VaRD. One way to achieve this is to write a put with a strike price 
right below VaR0 and buy a put with a strike price just above VaRD. The dotted line in Figure 1 depicts 
the distribution function of the profit/loss after buying and selling the options. The VaR is decreased 
from VaR0 to VaRD. This trading strategy increases the potential for large loss. The right end of 
Figure 1 shows that the probability of large loss is increased.  

This example shows that the tail risk of VaR can be significant with simple option trading. One is able 
to manipulate VaR by buying and selling options. As a result of this manipulation, the potential for 
large loss is increased. VaR fails to consider this perverse effect since it disregards any loss beyond 
the confidence level. 

Example 2: Credit portfolio (Lucas et al (2001)) 

The next example demonstrates the tail risk of VaR in a credit portfolio, using the result of Lucas et al 
(2001). 

Lucas et al (2001) derive an analytic approximation to the credit loss distribution of large portfolios. To 
illustrate their general result, they provide a simple example of credit loss calculation.10 They consider 
a bond portfolio where the amount of credit exposure for individual bonds is identical and the default is 
triggered by a single factor. For simplicity, they assume that the loss is recognised in the default mode 
and that the factor sensitivities of the latent variables and default probabilities are homogeneous.11 
They show that the credit loss of the bond portfolio converges almost surely to C, as defined in the 
following equation, when the number of bonds approaches infinity (Lucas et al (2001, p 1643, equation 
(14)).  
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YsC  (1) 

�  :The distribution function of the standard normal distribution 

Y  :Random variable following the standard normal distribution 

s  :The value of )(1 p�

�  when the default rate is p , and 1�� is the inverse of � . 

�  :Correlation coefficient among the latent variables 

Based on this result, we calculate the distribution functions of the limiting credit loss C for ρ = 0.7 
and 0.9, and plot them in Figure 2. 

The results show that VaR has tail risk. The bond portfolio is more concentrated when ρ = 0.9 than 
when ρ = 0.7. The tail of the credit loss distribution is fatter when ρ = 0.9 than when ρ = 0.7. Thus, the 

                                                      
10  Lucas et al (2001) also develop more general analyses in their paper.  
11  The total exposure of the bond portfolio is 1. 
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bond portfolio is more risky when ρ = 0.9 than when ρ = 0.7. However, the VaR at the 95% confidence 
interval is higher when ρ = 0.7 than when ρ = 0.9. This shows that VaR fails to consider credit 
concentration since it disregards the loss beyond the confidence level.  

The preceding examples show that VaR has tail risk when the loss distributions intersect beyond the 
confidence level. In such cases, one is able to decrease VaR by manipulating the tails of the loss 
distributions. This manipulation of the distribution tails increases the potential for extreme losses, and 
may lead to a failure of risk management. This problem is significant when the portfolio profit/loss is 
non-linear and the distribution function of the profit/loss is discontinuous.12 

B. The tail risk of expected shortfall 
We define the tail risk of expected shortfall in the same way as the tail risk of VaR. In this paper, we 
say that expected shortfall has tail risk when expected shortfall fails to summarise the relative choice 
between portfolios as a result of its underestimation of the risk of portfolios with fat-tailed properties 
and a high potential for large losses. 

To illustrate our definition of the tail risk of expected shortfall, we present an example from Yamai and 
Yoshiba (2002c). Table 1 shows the payoff and profit/loss of two sample portfolios A and B. The 
expected payoff and the initial investment amount of both portfolios are equal at 97.05.  

In most of the cases, both portfolios A and B do not incur large losses. The probability that the loss is 
less than 10 is about 99% for both portfolios. 

The magnitude of extreme loss is different. Portfolio A never loses more than half of its value while 
Portfolio B may lose three quarters of its value. Thus, portfolio B is more risky than Portfolio A when 
one is worried about extreme loss. 

Table 2 shows the VaR and expected shortfall of the two portfolios at the 99% confidence level. Both 
VaR and expected shortfall are higher for Portfolio A, which has a lower magnitude of extreme loss. 
Thus, expected shortfall has tail risk since it chooses the more risky portfolio as a result of its 
disregard of extreme losses.  

The example above shows that expected shortfall may have tail risk. However, the tail risk of expected 
shortfall is less significant than that of VaR. Yamai and Yoshiba (2002c) show that expected shortfall 
has no tail risk under more lenient conditions than VaR. This is because VaR completely disregards 
any loss beyond the confidence level while expected shortfall takes this into account as a conditional 
expectation. 

3. Multivariate extreme value theory 

In this section, we give a brief introduction to multivariate extreme value theory.13 We use this theory to 
represent asset returns under market stress in the following sections. 

Multivariate extreme value theory consists of two modelling aspects: the tails of the marginal 
distributions and the dependence structure among extreme values. 

We restrict our attention to the bivariate case in this paper.  

                                                      
12  Yamai and Yoshiba (2002c) show that VaR has no tail risk when the loss distributions are of the same type of an elliptical 

distribution.  
13  For detailed explanations of extreme value theory, see Coles (2001), Embrechts et al (1997), Kotz and Nadarajah (2000) 

and Resnick (1987). 
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A. Univariate extreme value theory 
Let Z denote a random variable and F the distribution function of Z. We consider extreme values in 
terms of exceedances with a threshold � ( 0�� ). The exceedances are defined as ),max()( ��

�
ZZm . 

Z is larger than θ with probability p, and smaller than θ with probability 1 � p. Then, by the definition of 
exceedances, )(1 ��� Fp . We call p tail probability. 

The conditional distribution Fθ defined below gives the stochastic behaviour of extreme values.  

)(1
)()(}Pr{)(

��

��
�������

� F
FxFZxZxF , x�� . (2) 

This is the distribution function of (Z � θ) given that Z exceeds θ. Fθ is not known precisely unless F is 
known. 

The extreme value theory tells us the approximation to Fθ that is applicable for high values of threshold 
θ. The Pickands-Balkema-de Haan theorem shows that as the value of θ tends to the right end point of 
F, Fθ converges to a generalised Pareto distribution. The generalised Pareto distribution is 
represented as follows:14, 15 

��
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�

�����
1

, )1(1)( xxG , 0�x . (3) 

With equations (1) and (2), when the value of θ is sufficiently large, the distribution function of 
exceedances mθ(Z), denoted by Fm(x), is approximated as follows:  
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�����������	

1
, )1(1)()())(1()( xpFxGFxFm , ��x . (4) 

In this paper, we call Fm(x) the distribution of exceedances. 

The distribution of exceedances is described by three parameters: the tail index � , the scale 
parameter σ, and the tail probability p. The tail index �  represents how fat the tail of the distribution is, 
so the tail is fat when �  is large (see Figure 3). The scale parameter σ represents how dispersed the 
distribution is, so the distribution is dispersed when σ is large (see Figure 4). The tail probability p 
determines the threshold θ as pFm ��� 1)( . 

When the confidence level of VaR and expected shortfall is less than p, the distribution of 
exceedances is used to calculate VaR and expected shortfall. (See Section 4 for the specific 
calculations.) 

B. Copula 
As a preliminary to the dependence modelling of extreme values, we provide a simple explanation of 
copula.16 

Suppose we have two-dimensional random variables (Z1,Z2). Their joint distribution function 
],[),( 221121 xZxZPxxF ���  fully describes their marginal behaviour and dependence structure. The 

main idea of copula is that we separate this joint distribution into the part that describes the 
dependence structure and the part that describes the marginal behaviour. 

Let (F1(x1),F2(x2)) denote the marginal distribution functions of (Z1,Z2). Suppose we transform (Z1,Z2) to 
have standard uniform marginal distributions.17 This is done by ))(),((),( 221121 ZFZFZZ � . The joint 

                                                      
14  See Coles (2001) and Embrechts et al (1997) for a detailed explanation of this theorem. 
15 In this paper we assume that 0�� . 
16  For the precise definition of copula and proofs of the theorems adopted here, see eg Embrechts et al (2002), Joe (1997), 

Nelsen (1999) and Frees and Valdez (1998). 
17  The standard uniform distribution is the uniform distribution over the interval [0,1]. 
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distribution function C of the random variable (F1(Z1),F2(Z2)) is called the copula of the random vector 
(Z1,Z2). It follows that: 

))(),((],[),( 2211221121 xFxFCxZxZPxxF ���� . (5) 

Sklar�s theorem shows that (4) holds with any F for some copula C and that C is unique when F1(x1) 
and F2(x2) are continuous. 

In general, the copula is defined as the distribution function of a random vector with standard uniform 
marginal distributions. In other words, the distribution function C is a copula function for the two 
random variables 21,UU  that follow the standard uniform distribution.  

],Pr[),( 221121 uUuUuuC ��� . (6) 

One of the most important properties of the copula is its invariance property. This property says that a 
copula is invariant under increasing and continuous transformations of the marginals. That is, when 
the copula of (Z1,Z2) is C(u1,u2) and )(),( 21 

 hh  are increasing continuous functions, the copula of 
(h1(Z1),h2(Z2)) is also C(u1,u2). 

The invariance property and Sklar�s theorem show that a copula is interpreted as the dependence 
structure of random variables. The copula represents the part that is not described by the marginals, 
and is invariant under the transformation of the marginals.  

C. Multivariate extreme value theory 
We give a brief illustration of the bivariate exceedances approach as a model for the dependence 
structure of extreme values.18  

Let ),( 21 ZZZ �  denote the two-dimensional vector of random variables and ),( 21 ZZF  the distribution 
function of Z . The bivariate exceedances of Z  correspond to the vector of univariate exceedances 
defined with a two-dimensional vector of threshold ),( 21 ����  (see Figure 5). These exceedances are 
defined as follows: 

)),max(),,(max(),( 221121),( 21
���

��
ZZZZm . (7) 

The marginal distributions of the bivariate exceedances defined in (6) converge to the distribution of 
exceedances introduced in Section 3.A when the thresholds tend to the right end points of the 
marginal distributions. This is because the bivariate exceedance is the vector of univariate 
exceedances whose distribution converges to a generalised Pareto distribution. 

The copula of bivariate exceedances also converges to a class of copula that satisfies several 
conditions. Ledford and Tawn (1996) show that this class is represented by the following equation (see 
Appendix A for details): 

)}
log

1,
log

1(exp{),(
21

21 uu
VuuC ���� , (8) 

where  

�
��

��

1

0
1

2
1

121 )(})1(,max{),( sdHzsszzzV , (9) 

and H is a non-negative measure on [0,1] satisfying the following condition: 

1)()1()(
1

0

1

0
��� �� sdHsssdH . (10) 

Following Hefferman (2000), we call this type of copula the bivariate extreme value copula or the 
extreme value copula.  

                                                      
18  For more detailed explanations of multivariate extreme value theory, see Coles (2001) Ch 8 , Kotz and Nadarajah (2000) 

Ch 3, McNeil (2000), Resnick (1987) Ch 5, etc. 
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The class of the extreme value copula is wide, being constrained only by (9). We have an infinite 
number of parameterised extreme value copulas. In practice, we choose a parametric family of copula 
that satisfies (9), and use the copula for the analysis of bivariate extreme values.  

One standard type of bivariate extreme value copula is the Gumbel copula. The Gumbel copula is the 
most frequently used extreme value copula for applied statistics, engineering and finance (Gumbel 
(1960), Tawn (1988), Embrechts et al (2002), McNeil (2000), Longin and Solnik (2001)). The Gumbel 
copula is expressed by:  

}])log()log[(exp{),( 1
2121

���

����� uuuuC , (11) 

for a parameter ],1[ ��� . We obtain (10) by defining V in (8) as follows: 

�����

��
1

2121 )(),( zzzzV . (12) 

The dependence parameter α controls the level of dependence between random variables. α = 1 
corresponds to full dependence and ���  corresponds to independence. 

The Gumbel copula has several advantages over other parameterised extreme value copulas.19 It 
includes the special cases of independence and full dependence, and only one parameter is needed 
to model the dependence structure. The Gumbel copula is tractable, which facilitates simulations and 
maximum likelihood estimations. Given these advantages, we adopt the Gumbel copula as the 
extreme value copula.  

To summarise, extreme value theory shows that the bivariate exceedances asymptotically follow a 
joint distribution whose marginals are the distributions of exceedances and whose copula is the 
extreme value copula.  

D. Tail dependence 
We introduce the concept of tail dependence between random variables. Suppose that a random 
vector (Z1,Z2) has a joint distribution function F(Z1,Z2) with marginals F1(x1),F2(x2). 

Assume that marginals are equal. We define a dependence measure �  as follows: 

}Pr{lim 21 zZzZ
zz

����
�

�

, (13) 

where �z  is the right end point of F. 

�  measures the asymptotic survival probability over one value to be large given that the other is also 
large. When 0�� , we say Z1 and Z2 are asymptotically independent. When 0�� , we say Z1 and Z2 
are asymptotically dependent. �  increases with the strength of dependence within the class of 
asymptotically dependent variables. 

When F has different marginals 
1ZF  and 

2ZF , �  is defined as follows: 

})()(Pr{lim 211 21
uZFuZF ZZu

����
�

. (14) 

Further defining the other dependence measure )(u�  as in (14), the relationship )(lim
1

u
u

���
�

 holds 

(Coles et al (1999)). 

})(Pr{log
})(,)(Pr{log
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uZFuZF
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��
��� , for 10 �� u . (15) 

                                                      
19  For other parameterised extreme value copulas, see, for example, Joe (1997) and Kotz and Nadarajah (2000). 
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Although �  measures dependence when random variables are asymptotically dependent, it fails to do 
so when random variables are asymptotically independent. When random variables are asymptotically 
independent, 0��  by definition and �  is unable to provide dependence information. 

The class of asymptotically independent copulas includes important copulas such as the Gaussian 
copula and the Frank copula, which are introduced in the next section. Ledford and Tawn (1996, 1997) 
and Coles et al (1999) say that the asymptotically independent case is important in the analysis of 
multivariate extreme values. 

To counter this shortcoming of the dependence measure � , Coles et al (1999) propose a new 
dependence measure �  as defined below.  

)(lim
1

u
u

���
�

 (16) 

where 1
})(,)(Pr{log

})(Pr{log2
)(

21

1

21

1 �
��
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��

uZFuZF
uZF

u
ZZ

Z  (17) 

�  measures dependence within the class of asymptotically independent variables. For asymptotically 
independent random variables, 11 ���� . For asymptotically dependent random variables, 1�� .  

Thus, the combination ),( ��  measures tail dependence for both asymptotically dependent and 
independent case (see Table 3). For asymptotically dependent random variables, 1��  and �  
measures tail dependence. For asymptotically independent random variables, 0��  and �  measures 
tail dependence. 

E. Copula and tail dependence 

With some calculations, it is shown that )(u�  is constant for the bivariate extreme value copula as 
follows: 

)1,1(2)( Vu ����� . for all 10 �� u . (18) 

For the Gumbel copula, this becomes �

���
122 ( 1�� ) (see Table 4). Thus, for the bivariate extreme 

value copula, random variables are either independent or asymptotically dependent. In other words, 
the bivariate extreme copula is unable to represent the dependence structure when random variables 
are asymptotically independent. 

Ledford and Tawn (1996, 1997) and Coles (2001) say that multivariate exceedances may be 
asymptotically independent and that modelling multivariate exceedances with the extreme value 
copula is likely to lead to misleading results in this case. They say that the use of asymptotically 
independent copulas is effective when the multivariate exceedances are asymptotically independent. 
Hefferman (2000) provides a list of asymptotically independent copulas that are useful for modelling 
multivariate extreme values. 

In this paper, we adopt the Gaussian copula and the Frank copula as asymptotically independent 
copulas. These are defined as follows (see Table 4).  

Gaussian copula 

))(),((),( 11 vuvuC ��

�
����  (19) 

where 
�

�  is the distribution function of a bivariate standard normal distribution with a correlation 

coefficient ρ, and 1�
�  is the inverse function of the distribution function for the univariate standard 

normal distribution. 
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Frank copula20 
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The dependence parameters ρ and �  control the level of dependence between random variables. For 
the Gaussian copula, 1���  corresponds to full dependence and 0��  corresponds to independence. 
For the Frank copula, ����  corresponds to full dependence and 0��  corresponds to 
independence. 

For both of these copulas, random variables are asymptotically independent. For the Gaussian copula 
with 11 ���� , 0��  and ��� . For the Frank copula, 0���� .21 The latter shows that the Frank 
copula has very weak tail dependence. 

The use of asymptotically independent copula for modelling multivariate exceedances may bring some 
doubt since extreme value theory shows that the asymptotic copula of exceedances is the extreme 
value copula. However, the rate of convergence of marginals may be higher than that of the copula. In 
this case, the generalised Pareto distribution well approximates the marginals of exceedances while 
the extreme value copula does not approximate the dependence structure of exceedances. Thus, in 
some cases, it is valid to assume that marginals are modelled by the generalised Pareto distribution 
while dependence is modelled by asymptotically independent copula. 

4. The tail risk under univariate extreme value distribution 

In this section, we examine whether VaR and expected shortfall have tail risk when asset returns are 
described by the univariate extreme value distribution. We use (4) to calculate the VaR and expected 
shortfall of two securities with different tail fatness, and examine whether VaR and expected shortfall 
underestimate the risk of securities with fat-tailed properties and a high potential for large loss. 

Suppose Z1 and Z2 are random variables denoting the loss of two securities. Using the univariate 
extreme value theory introduced in Section 3.A, with high thresholds, the exceedances of Z1 and Z2 
follow the distributions below: 

1

1

1

1

1
11)( )1(1)( ��

�

��
�����
xpxF Zm , (21) 

2

2

1

2

2
22)( )1(1)( ��

�

��
�����
xpxF Zm . (22) 

As an example of the tail risk of VaR, we set the parameter values as follows: the tail probability is 
p1 = p2 = 0.1; the threshold value is θ1 = θ2 = 0.05; the tail indices are 1.01 ��  and 5.02 �� ; and the 
scale parameters are σ1 = 0.05 and σ2 = 0.035. Figure 6 plots (21) and (22) with this parameter 
setting. 

Figure 6 shows that VaR has tail risk in this example. Given 12 ��� , Z2 has a fatter tail than Z1 (see 
Section 3.A). Thus, Z2 has a higher potential for large loss than Z1. However, Figure 6 shows that the 
VaR at the 95% confidence level is higher for Z1 than for Z2. Thus, VaR indicates that Z1 is more risky 
than Z2. As in the two examples in Section 2.A, VaR has tail risk as the distribution functions intersect 
beyond the VaR confidence level. 

                                                      
20 This definition of the Frank copula follows Joe (1997). 

21  See Ledford and Tawn (1996, 1997), Coles et al (1999) and Hefferman (2000) for the definition and concepts of tail 

dependence, including the derivations of �  and �  for each copula. 
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We derive the conditions for the tail risk of VaR. Following McNeil (2000), we calculate the VaR from 
(21) and (22). Let VaRα(Z) denote the VaR of Z at the (1 � α) confidence level. Since VaR is the upper 
(1 � α) quantile of the loss distribution, the following holds: 

���

�

��
�������

1))(1(11 ZVaRp . (23) 

We then solve (23) to obtain the following: 
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With (24), we derive the condition of the tail risk of VaR as follows. Without the loss of generality, we 
assume 12 ��� , or that the tail of Z2 is fatter than the tail of Z1. In other words, Z2 has higher potential 
for extreme loss than Z1. VaR has tail risk when the VaR of Z2 is smaller than that of Z1, or when the 
following inequality holds: 

)()( 21 ZVaRZVaR
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 . (25) 

Assuming θ1 = θ2 and p1 = p2 = p for simplification, we obtain the following condition from (24) and 
(25): 
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The value VaR�  indicates how strict the condition for the tail risk of VaR is. When VaR�  is small, a 
small difference between the scale parameters σ1 and σ2 brings about tail risk of VaR. When VaR�  is 
large, a large difference between σ1 and σ2 is needed to bring about tail risk of VaR. 

Table 5 shows the value of VaR�  with varying ),( 21 ��  for VaR at the 95% and 99% confidence levels, 
when p is 0.05 and 0.1.22 This table shows two aspects of this condition. 

First, the scale parameter of the thin-tailed distribution σ1 must be larger than the scale parameter of 
the fat-tailed distribution σ2. This is because 1��VaR  for all combinations of ),( 21 �� .  

Figure 7 illustrates this point. The figure plots the distribution of exceedance with parameter values 
1,5.0 11 ���� . The figure also plots the distribution of exceedances with parameter values 1.02 ��  

and 12 �� , 1.5 and 2. Here, we denote the VaR for 1,5.0 11 ����  as )1,5.0( 11 ����VaR  and that 
for ����� 22 ,1.0  as ),1.0( 22 �����VaR . The distribution with 5.01 ��  has a fatter tail and higher 
potential for large loss than the distribution with 1.02 �� . Thus, VaR has tail risk if 

),1.0()1,5.0( 2211 ���������� VaRVaR .  

From the figure, we find )2,1.0()1,5.0( 2211 ��������� VaRVaR  with a confidence level below 
99%, and )5.1,1.0()1,5.0( 2211 ��������� VaRVaR  with a confidence level below 98%. On the 
other hand, )1,1.0()1,5.0( 2211 ��������� VaRVaR  with a confidence level above 95%. Therefore, 
VaR has tail risk with a high confidence level when the difference between the scale parameters is 
large. 

Second, the smaller the difference between the tail indices 1�  and 2� , the more lenient the conditions 
for the tail risk of VaR. This is because VaR�  is small when the difference between the tail indices is 
small.  

Figure 8 illustrates this point. The figure plots the distribution of exceedances with parameter values 
1,1.0 11 ���� . The figure also plots the distribution of exceedances with parameter values 75.02��  

                                                      
22  When the tail probability is p = 0.05, the VaR at the confidence level of 95% is not beyond the threshold, so we do not 

calculate VaR at the confidence level of 95% when p = 0.05. 
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and 9.0,5.0,3.02 �� . Here, we denote the VaR for 1,1.0 11 ����  as )1,1.0( 11 ����VaR  and that 
for 75.0, 22 �����  as )75.0,( 22 �����VaR . As the distribution tail is fatter with 75.0, 22 �����  
than with 1,1.0 11 ���� , VaR has tail risk if )75.0,()1,1.0( 2211 ���������� VaRVaR . We find 

)1,1.0( 11 ����VaR )75.0,3.0( 22 ����VaR  with a confidence level below 99%, and 
)75.0,5.0()1,1.0( 2211 ��������� VaRVaR  with a confidence level below 97%. On the other hand, 
)75.0,9.0()1,1.0( 2211 ��������� VaRVaR  with a confidence level above 95%. Therefore, VaR has 

tail risk with a high confidence level when the difference between the tail indices is small. 

We analyse the condition for the tail risk of expected shortfall as we analysed that of VaR. Following 
McNeil (2000), we can calculate the expected shortfall of Z at the (1 � α) confidence level (denoted by 
ESα(Z)) from (24).23 
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Given 12 ��� , expected shortfall has tail risk when the following inequality holds: 

)()( 21 ZESZES
��

� . (28) 

Assuming θ1 = θ2 and p1 = p2 = p for simplification, we obtain the following condition from (27) and 
(28): 
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Table 6 shows the value of ES�  with varying ),( 21 ��  for expected shortfall at the 95% and 99% 
confidence levels, when p is 0.05 and 0.1.24 This table shows that the conditions for the tail risk of 
expected shortfall are stricter than those for the tail risk of VaR. This confirms the result of Yamai and 
Yoshiba (2002c) that expected shortfall has no tail risk under more lenient conditions than VaR. 

To summarise, VaR and expected shortfall may underestimate the risk of securities with fat-tailed 
properties and a high potential for large loss. The condition for tail risk to emerge depends on the 
parameters of the loss distribution and the confidence level. 

5. The tail risk under multivariate extreme value distribution 

The use of risk measures may lead to a failure of risk management when they fail to consider the 
change in dependence between asset returns. The credit portfolio example in Section 2.A shows that 
VaR disregards the increase in default correlation and thus fails to note the high potential for extreme 
loss in concentrated credit portfolios. In this case, the use of VaR for credit portfolios may lead to 
credit concentration. 

In this section, we examine whether VaR and expected shortfall disregard the changes in dependence 
under a multivariate extreme value distribution. As the multivariate extreme value distribution, we use 
the joint distribution of exceedances introduced in Section 3.C. The marginal of this distribution is the 

                                                      
23  The third equality is based on Embrechts et al (1997), Theorem 3.4.13 (e). 
24  We do not calculate expected shortfall at the confidence level of 95% when p = 0.05 (see footnote 22). 
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generalised Pareto and its copula is the Gumbel copula. We also use the Gaussian and Frank copulas 
for the copulas of exceedances for the case where the exceedances are asymptotically independent. 

A. The difficulty of applying multivariate extreme value distribution to risk measurement 
The application of multivariate extreme value distribution to financial risk measurement has some 
problems that the univariate application does not. In the univariate case, the model for exceedances 
enables us to calculate VaR and expected shortfall as in Section 4. This is because the VaR and 
expected shortfall of exceedances are equal to the VaR and expected shortfall of the original loss 
data. However, in the multivariate case, the model for exceedances is not sufficient to calculate VaR 
and expected shortfall. This is because, in the multivariate case, the sum of exceedances is not 
necessarily equal to the exceedances of the sum. To calculate VaR and expected shortfall, we need 
the exceedances of the sum, which are unavailable from the model for exceedances alone.25, 26, 27 

A simple example illustrates this point (Figure 9). Let (U1,U2) denote a vector of independent standard 
uniform random variables. With a threshold value of )9.0,9.0(),( 21 ��� , the exceedances of (U1,U2) are 

))(),(( 29.019.0 UmUm  ))9.0,max(),9.0,(max( 21 UU� . With the convolution theorem, the 95% upper 
quantile of U1 + U2 is calculated to be 1.68, while that of )()( 21 21

UmUm
��

�  is calculated to be 1.88.28 
Thus, the sum of exceedances is larger than the exceedances of the sum. 

This example shows that, to calculate VaR and expected shortfall in the multivariate case, we need a 
model for non-exceedances as well as one for exceedances.  

In this paper, we assume that the marginal distribution of the non-exceedances is the standard normal 
distribution as we interpret the non-exceedances as asset loss under normal market conditions. That 
is, we assume that the marginal distribution is expressed by (30) below (Figure 10): 29 

                                                      
25 This is also a problem when the model for maxima is used for calculating VaR and expected shortfall. This is because the 

sums of maxima are not necessarily equal to the maxima of sums. Hauksson et al (2000) and Bouyé (2001) propose the 
use of multivariate generalised extreme value distributions for financial risk measurement, but they do not address this 
problem. 

26  The quantile of the sum of exceedances is equal to that of the original data when the underlying random variables are fully 
dependent.  

27  McNeil (2000) says that multivariate extreme value modelling has the problem of �the curse of dimensionality�. He notes 
that, when the number of dimension is more than two, the estimation of copula is not tractable. 

28  The upper 95% quantile of U1 + U2 is calculated as follows. Denote the distribution function of U1 + U2 as G(x). Clearly, the 
upper 95% quantile of U1 + U2 is greater than 1. So assuming x > 1, G(x) is calculated by the convolution theorem as 
follows: 

 1)2(
2
1]Pr[)( 21

0 1 ������� � xduuxUxG  

 The upper 95% quantile is x that satisfies G(x) = 0.95, which is calculated as 6838.1�x . 

 The upper 95% quantile of the sum of the exceedances is calculated as follows. Define 
�)(xH ])9.0,max()9.0,Pr[max( 21 xUU �� . Using the convolution theorem, this is restated as follows: 

 ��

�
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�

����

��
		
��	 � )9.1(12)2(

)9.1(81.02])9.0,Pr[max(])9.0,Pr[max()( 2

21

0 21 xx
xxduuUuxUxH  

 The upper 95% quantile is x that satisfies G(x) = 0.95, which is calculated as 8761.1�x . 
29  A different assumption might be that the marginal distribution of exceedances is a non-standard normal distribution, a 

t-distribution, a generalised Pareto distribution, or an empirical distribution produced from actual data. Assuming a 
non-standard normal distribution, a t-distribution, and a generalised Pareto distribution, we simulated asset loss as in 
sections B and C of this chapter, and found the same result as in those sections. Furthermore, under the assumption of a 
generalised Pareto distribution, the convolution theorem is applied to obtain the analytics of the tail risk of VaR (see 
Appendix B for the details).  
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�  :the distribution function of the standard normal 
1��  :the inverse function of �   

In the following analysis, we simulate two dependent asset losses to analyse the tail risk of VaR and 
expected shortfall.30 In the simulation, we assume that the marginal distribution of asset loss is (30). 
We also assume that the copula of asset loss is one of three copulas introduced in Section 3.E: 
Gumbel, Gaussian and Frank. We set the marginal distribution of each asset loss as identical so that 
we can examine the pure effect of dependence on the tail risk of VaR and expected shortfall. We limit 
our attention to the cases where the tail index is 10 ��� .31 

B. One specific copula case 
In this section, we assume that the change in the dependence structure of asset loss is represented by 
the change in the dependence parameters within one specific copula. Under this assumption, we 
examine whether VaR and expected shortfall consider the change in dependence by taking the 
following steps. First, we take one of the three copulas introduced in Section 3.E: Gumbel, Gaussian 
or Frank. Second, we simulate asset losses under the one copula for varied dependence parameter 
levels (Gumbel: α, Gaussian: ρ, and Frank: � ). Third, we calculate VaR and expected shortfall with 
the simulated asset losses for each dependence parameter level. 

If VaR and expected shortfall do not increase with the rise in the level of dependence, VaR and 
expected shortfall disregard dependence and thus have tail risk. 

Figure 11 shows an example of this analysis. The figure plots the empirical distribution of the sum of 
two simulated asset losses. These losses are simulated adopting (30) as the marginals and the 
Gumbel copula as the copula. The parameters of the marginal are set at 1.0,1,5.0 ����� p , and 
the dependence parameter α of the Gumbel copula is set at 1.0, 1.1, 1.5, 2.0 and � .32 For each 
dependence parameter, we conduct one million simulations. 

The result shows that the distribution tail gets fatter as the value of the dependence parameter α 
increases, or the asset losses are more dependent. Furthermore, the empirical distributions do not 
intersect with each other. This shows that the portfolio diversification effect works to decrease the risk 
of the portfolio and that VaR has no tail risk regardless of its confidence level. 

Table 7 provides a more general analysis. The figure gives the VaR and expected shortfall under one 
million simulations for each copula with various dependence parameter levels. Two of the three 
marginal distribution parameters ),,( p��  are set at σ = 1, p = 0.1, and the tail index �  is set at 0.1, 
0.25, 0.5 and 0.75. One of the copulas (Gumbel, Gaussian and Frank) is adopted. With these 
marginals and copulas, asset losses are simulated. VaR and expected shortfall are calculated for 
varied dependence parameter levels (Gumbel: α, Gaussian: ρ, and Frank: � ).  

                                                      
30  We use the Mersenne Twister for generating uniform random numbers, and the Box-Müller method for transforming the 

uniform random numbers into normal random numbers. We follow Frees and Valdez (1998) in simulating the Gumbel 
copula, and Joe (1997) for simulating the Gaussian and Frank copulas. 

31 The generalised Pareto distribution with 1��  is so fat-tailed that its mean is infinite (Embrechts et al (1997), 
Theorem 3.4.13 (a)). 

 The generalised Pareto distribution with 1��  has several interesting properties. However, it is not considered in this paper 
because such a fat-tailed distribution is rarely observed in financial data. For details, see Appendix B. 

32  Under the Gumbel copula �
���

122 , so the corresponding values of �  become 1,59.0,41.0,12.0,0�� .  
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Table 7 shows that VaR and expected shortfall consider the change in dependence and have no tail 
risk in most of the cases. VaR and expected shortfall increase as the value of the dependence 
parameter rises, except for the Frank copula with extremely high dependence parameter levels.33 

To summarise, VaR and expected shortfall have no tail risk when the change in dependence is 
represented by the change in parameters using one specific copula. Thus, if we select portfolios 
whose dependence structure is nested in one of the three copulas above, we can depend on VaR and 
expected shortfall for measuring dependent risks. 

C. Different copulas case 
In the previous section, we assume that the change in the dependence of asset losses is represented 
by the change in the parameters using one specific copula. However, this assumption has a problem. 
One specific copula does not represent both asymptotic dependence and asymptotic independence.  

Let us consider an example of this problem. Suppose we have two portfolios both composed of two 
securities. Also suppose that the security returns of one portfolio are asymptotically dependent while 
those of the other are asymptotically independent. Adopting one specific copula and changing the 
dependence parameters to describe the change in dependence does not work in this case. This is 
because one specific copula does not represent the change from asymptotic dependence to 
asymptotic independence. We need different types of copulas to compare asymptotic dependence 
with asymptotic independence.  

In this section, we assume that the change in dependence is represented by the change in copula. We 
adopt the Gumbel, Gaussian and Frank copulas introduced in Section 3.E since the Gumbel copula 
corresponds to asymptotic dependence and the Gaussian and Frank copulas correspond to 
asymptotic independence. By changing copula from Gumbel to Gaussian and Frank, we can change 
the dependence structure from asymptotic dependence to asymptotic independence.  

In comparing the results with three copulas, we set the values of the dependence parameters of those 
copulas (Gumbel: α, Gaussian: ρ, and Frank: � ) so that the Spearman�s rho (ρs) is equal across those 
copulas.34,35 By setting the Spearman�s rho equal, we can eliminate the effect of global dependence 
and examine the pure effect of tail dependence since the Spearman�s rho is a measure of global 
dependence.  

The upper half of Figure 12 shows the empirical distributions of the sums of two simulated asset 
losses for the Gumbel, Gaussian and Frank copulas. This is generated from one million simulations for 
each copula where the parameters are fixed at 1.0,5.0,1,5.0 ������� pS . The range of the 
horizontal axis (cumulative probability) is above 99.5%. 

The tail shape of the loss distribution for each copula is consistent with the tail dependence of each 
copula. The empirical loss distribution for the Gumbel copula, which is asymptotically dependent 

                                                      
33  In the case of the Frank copula, the VaR at the 95% confidence level when ���  (full dependence) is smaller than the VaR 

when 9�� .  

 This might be because the Frank copula has low tail dependence ( 0���� ) and does not represent tail dependence when 
�  is large. 

34  The Spearman�s rho is the linear correlation of the marginals, and is defined by the following equation: 
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 The Spearman�s rho differs from �  and �  in that it measures global dependence while �  and � measure tail dependence. 

 The Spearman�s rho does not fully represent the dependence structures since the combination of the Spearman�s rho and 
the marginal distribution does not uniquely define the joint distribution. In particular, it does not represent the asymptotic 
dependence measured by �  and � . Nevertheless, the Spearman�s rho is relatively superior as a single measure of global 
dependence (see Embrechts et al (2002)). 

35  We use the calculation in Joe (1997, p 147, Table 5.2) for the values of the dependence parameters that equate the 
Spearman�s rho. 
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� �1,0 ���� , has the fattest tail. The empirical loss distribution for the Frank copula, which has the 
weakest tail dependence � �0,0 ���� , has the thinnest tail.36 

This shows that the potential for extreme loss is high when the tail dependence is high. Thus, if we are 
worried about extreme loss, portfolios with higher tail dependence should be considered more risky 
than those with lower tail dependence. As for the three copulas adopted here, we should consider the 
Gumbel copula as the most risky and the Frank copula the least risky in terms of tail risk. In this 
context, VaR and expected shortfall have tail risk when they do not increase in the order of Frank, 
Gaussian and Gumbel copulas. 

The lower half of Figure 12 shows that VaR has tail risk in this example. The figure shows that the 
VaR at the 95% confidence level increases in the order of Gumbel, Gaussian and Frank. VaR says 
that the Gumbel copula is the least risky while the Frank copula is the most risky. This contradicts our 
observation of the upper tail described above. 

Table 8 provides a more general analysis. The table shows the results of VaR and expected shortfall 
calculations for one million simulations for each copula with the tail index of the marginal distribution of 
��  0.1, 0.25, 0.5, and 0.75, and Spearman�s rho of ρS = 0.2, 0.5 and 0.8. 

The findings of the analysis are threefold. First, VaR and expected shortfall vary depending on the 
copula adopted. This means that the type of copula affects the level of VaR and expected shortfall. 
The difference is large when the tail index and the Spearman�s rho are large. 

Second, VaR at the 95% confidence level has tail risk when the tail index �  is 0.25 or higher. For 
example, when 5.0��  and ρS = 0.8, the VaR at the 95% confidence level is largest for the Frank 
copula and smallest for the Gumbel copula. On the other hand, VaR at the 99% and 99.9% confidence 
level has no tail risk, except when the tail is as fat as 75.0�� . 

Third, expected shortfall has no tail risk at the 95, 99, or 99.9% confidence level, except when the tail 
is as fat as 75.0�� . This confirms the result of Yamai and Yoshiba (2002c) that expected shortfall 
has no tail risk under more lenient conditions than VaR. 

D. Different marginals case 
In Sections 5.B and 5.C, the marginal distributions are assumed to be identical. In financial data, 
however, the distributions of asset returns are rarely identical. In this section, we extend our analysis 
to the different marginals case. We examine whether the conclusions in Sections 5.B and 5.C are still 
valid when the marginal distributions are different. 

1. Independence vs full dependence case 

We examine whether the results in Section 5.B (the specific copula case) are still valid when the 
marginal distributions are different. We compare independence and full dependence, noting the fact 
that independence and full dependence are nested in the Gumbel, Gaussian and Frank copulas. 
When the VaR for independence is higher than the VaR for full dependence, VaR has tail risk. 

We simulate independent and fully dependent asset losses with all combinations of parameters of the 
marginal distributions from ��1 0.1, 0.25, 0.5, 0.75, ��2 0.1, 0.25, 0.5, 0.75, σ1 = 1, σ2 = 1.00, 1.25, 
1.5,�, 9.5, 9.75, 10. We set the number of simulations at one million for each parameter combination. 
We calculate VaR and expected shortfall for both independence and full dependence, and compare 
them to see whether they have tail risk. We adopt the tail probability of p = 0.1. 

We found that the VaR for full dependence is never smaller than the VaR for independence.37 Thus, at 
least within this framework, VaR captures full dependence and independence when the marginal 
distributions are different. 

                                                      
36  See Figure 7 for the values of �  and �  for each copula.  
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2. Different copulas case 

We next examine whether the results in Section 5.B (the different copulas case) are still valid when the 
marginal distributions are different. We follow the same steps as in Section 5.C except that we set 
different parameter levels for two marginal distributions. 

Under each one of the three copulas, as in Section 5.B, we simulate asset losses following the same 
method used in the previous subsection. 

We find that VaR at the 95% confidence level may have tail risk even when the distribution tail is not 
so fat as 25.0�� .38 This means that the conditions of the tail risk of VaR are more lenient when the 
marginals are different than when they are identical. Table 9 shows that, with a tail index of 1.0�� , 
VaR at the 95% confidence level has tail risk. VaR is larger for the Gaussian copula than for the 
Gumbel copula.39  

On the other hand, at the confidence level of 99%, we find that VaR has tail risk only when the tail is 
as fat as 75.0�� .  

6. Empirical analyses 

In Sections 4 and 5, we examine the tail risk of VaR and expected shortfall under extreme value 
distributions. We summarise the results as follows. 

In the univariate case, VaR and expected shortfall may underestimate the risk of securities with 
fat-tailed properties and a high potential for large losses. The conditions for this to happen are 
expressed by a simple analytical inequality. 

In the multivariate case, VaR and expected shortfall may both disregard the tail dependence when the 
tails of the marginal distributions are fat. 

In this section, we conduct empirical analyses with exchange rate data to confirm whether VaR and 
expected shortfall have tail risk in actual financial data. We focus on the following questions. 

Do VaR and expected shortfall underestimate the risk of currencies with fat-tailed properties and a 
high potential for large losses in the univariate case?  

Is there asymptotic dependence that may bring the tail risk of VaR and expected shortfall in the 
multivariate case? 

A. Data 
The data used for the analyses are the daily logarithmic changes of exchange rates of three 
industrialised countries and 18 emerging economies.40,41,42 The raw historical data are the exchange 
rates per one US dollar from 1 November 1993 to 29 October 2001. 

                                                                                                                                                                      
37 The results of this simulation are omitted here due to space restrictions. 
38  See Footnote 37. 
39  This finding was confirmed by running 10 million simulations. 
40  The data are sourced from Bloomberg. 
41  We set the exchange rate as constant over holidays at the levels of the previous business day. This treatment does not 

affect our results as we estimate only the tails of distributions. 
42  The currencies of developed countries are as follows: Japanese yen, the Deutsche mark and pound sterling. The currencies 

of emerging economies are as follows: Hong Kong dollar, Indonesian rupiah, Malaysian ringgit, Philippine peso, Singapore 
dollar, South Korean won, new Taiwan dollar, Thai baht, Czech koruna, Hungarian forint, Polish zloty, Slovakian koruna, 
Brazilian real, Chilean peso, Colombian peso, Mexican new peso, Peruvian new sol and Venezuelan bolίvar. 
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B. Univariate analyses 
We estimate the parameters of the generalised Pareto distribution on the daily exchange rate data.43 
We use the maximum likelihood method described in Embrechts et al (1997), and Coles (2001). We 
vary the tail probability as 1%, 2%, �, 10%, and estimate the parameters � , σ, and θ for each. We 
then calculate the VaR and expected shortfall at the confidence levels of 95% and 99% using the 
estimated parameter values. 

Table 10 shows the estimation results, and these findings may be summarised as follows. First, the tail 
indices are higher for the emerging economies (especially those in Asia and South America) than for 
the developed countries. In other words, the distribution tails are fatter in the emerging economies 
than in the developed countries.  

Second, the scale parameter (σ) is smaller in the emerging economies than in the developed 
countries. This suggests that the condition for tail risk derived in Section 4 may hold.  

Third, VaR has tail risk in comparing the risk of some emerging economies and some developed 
countries. For example, let us compare the VaR for Japan and those for emerging economies.44 The 
VaR at the 95% confidence level for all the emerging economies except for Indonesia and Brazil is 
smaller than that for Japan. Even the VaR at the 99% confidence level is smaller for 10 emerging 
economies (Hong Kong, Singapore, Taiwan, Hungary, Poland, Slovakia, Chile, Columbia, Peru and 
Venezuela) than that for Japan.  

Fourth, expected shortfall also has tail risk in comparing the risk of some emerging economies and 
some developed countries. For example, the expected shortfall at the 99% confidence level is smaller 
for six emerging economies (Hong Kong, Singapore, Taiwan, Chile, Columbia and Peru) than for 
Japan.45  

Fifth, expected shortfall has tail risk in fewer cases than VaR. This is consistent with our findings in 
Section 4. 

C. Bivariate analyses (an example) 
We provide an example where VaR has tail risk in actual exchange rate data in the bivariate case. We 
pick five currencies in Southeast Asian countries: the Indonesian rupiah, the Malaysian ringgit, the 
Philippine peso, the Singapore dollar and the Thai baht. 

First, we estimate the parameters of the bivariate extreme value distribution introduced in Section 3. 
We adopt the same method as Longin and Solnik (2001). As in the analyses in Sections 4 and 5, we 
assume that the marginal distributions of bivariate exceedances are approximated by the generalised 
Pareto distribution (the distribution of exceedance as in (4), to be exact) and that their copula is 
approximated by the Gumbel copula.46 Given tail probabilities p1 and p2, the joint bivariate distribution 
of exceedances is described by the following parameters: the tail indices of the marginals ( 1�  and 2� ), 
the scale parameters of the marginals (σ1 and σ2), the thresholds (θ1 and θ2), and the dependence 
parameter of the Gumbel copula (α). 

We estimate those parameters on the right tails of each pair of Southeast Asian currencies by the 
maximum likelihood method47 for the tail probability of 10%. Table 11 shows the results of the 
estimation. 

                                                      
43  The extreme value theory is applicable to a stationary process given that the process satisfies some condition. See Ch 5 of 

Coles (2001) for details.  
44  In the comparison here, we use the averages of the VaRs at the 95% confidence level in the right tail with the tail 

probabilities from 5% to 10%, and the average of VaRs at the 99% confidence level in the right tail with the tail probabilities 
from 1% to 10%. 

45 In the comparison here, we use the average of the expected shortfalls at the 99% confidence level in the right tail with the 
tail probabilities from 1% to 10%. 

46  Instead of using parametric technique, one is able to use non-parametric estimation techniques. See Capéraà et al (1997) 
for details. 

47  See Longin and Solnik (2001) and Ledford and Tawn (1996) for the construction of the maximum likelihood function. 
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After the estimation, we examine whether VaR and expected shortfall disregard tail dependence with 
the estimated parameter levels. We take the same step as in Section 5.C. First, we simulate the 
logarithm changes in exchange rates with the distribution of exceedances and the Gumbel copula, 
using the parameter levels estimated here. Second, we also simulate the logarithm changes in 
exchange rates with the Gaussian and Frank copulas. The dependence parameters for the Gaussian 
and Frank copulas are set so that the Spearman�s rho (ρs) is equal to that of Gumbel copula with the 
dependence parameter α at the estimated level. Third, we calculate the VaR and expected shortfall of 
the sums of the logarithm changes in two exchange rates. We run ten million simulations for each 
case. 

Table 12 shows the result of those simulations. We find that the VaR at the 95% confidence level has 
tail risk for each pair of Southeast Asian currencies since the VaRs are larger for the Gaussian copula 
than for the Gumbel copula. Thus, VaR may disregard tail dependence in actual financial data. On the 
other hand, the VaR at the 99% confidence level and the expected shortfall at the 95% and 99% 
confidence levels have no tail risk in this example. 

7. Conclusions and implications 

This paper shows that VaR and expected shortfall have tail risk under extreme value distributions. In 
the univariate case, VaR and expected shortfall may underestimate the risk of securities with fat-tailed 
properties and a high potential for large losses. In the multivariate case, VaR and expected shortfall 
may disregard the tail dependence. 

The tail risk is the result of the interaction among various factors. These include the tail index, the 
scale parameter, the tail probability, the confidence level and the dependence structure. 

These findings imply that the use of VaR and expected shortfall should not dominate financial risk 
management. Dependence on a single risk measure has a problem in disregarding important 
information on the risk of portfolios. To capture the information disregarded by VaR and expected 
shortfall, it is essential to monitor diverse aspects of the profit/loss distribution, such as tail fatness and 
asymptotic dependence. 

The findings also imply that the widespread use of VaR for risk management could lead to market 
instability.48 Basak and Shapiro (2001) show that when investors use VaR for their risk management, 
their optimising behaviour may result in market positions that are subject to extreme loss because VaR 
provides misleading information regarding the distribution tail. They also note that such investor 
behaviour could result in higher volatility in equilibrium security prices. This paper shows that, under 
extreme value distribution, VaR may provide misleading information regarding the distribution tail. 

                                                      
48  See Dunbar (2001) for the practitioners� view on this argument. 
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Figure 1 

Tail risk of VaR with option trading 
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Source: Based on Danielsson (2001), Figure 2. 

Figure 2 

Tail risk of VaR in a credit portfolio 
(Loss distribution of a uniform portfolio with a default rate of 1%) 
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Table 1 

Sample portfolio payoff 

Portfolio A Portfolio B 

Payoff Loss Probability Payoff Loss Probability 

100 � 2.95 50.000% 98 � 0.95 50.000% 

95 2.05 49.000% 97 0.05 49.000% 

50 47.05 1.000% 90 7.05 0.457% 

   20 77.05 0.543% 

Note: The probability that Portfolio B has a payoff of 90 or 20 is rounded off, and not precisely expressed. The model is set 
so that the sum of the probabilities of these payoffs is 1% and the expected payoff is 97.05. 

 

 

 

Table 2 

Sample portfolio VaR and expected shortfall 

 Portfolio A Portfolio B 

Expected payoff 97.05 97.05 

VaR (confidence level: 99%) 47.05 7.05 

Expected shortfall (confidence level: 99%)  47.05 45.05 
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Figure 3 

Distribution of exceedances with varied tail indices 
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Figure 5 

Image diagram of bivariate exceedances 
(Underlying bivariate data) 
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Source: Based on Reiss and Thomas (2000), Figure 10.1. 
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Table 4 

Properties of the copulas used in this paper 

 Equation Dependence structure �  �  

Gumbel }])log()log[(exp{),( 1 ���

����� vuvuC  
Independent when 1��

Fully dependent when 
���  

�

���
122 ( 1�� ) 1��  

Gaussian ))(),((),( 11 vuvuC ��

�
����  

Independent when 0��

Fully dependent when 
1���  

0�� )11( ����  ���  

Frank �
�
�

�
�
�
�

�

�

����

�
�	

��

������

e
eeevuC

vu

1
)1)(1(1ln1),(  

Independent when 0��

Fully dependent when 
����  

0��  0��  

 

 

Figure 6 

Example plot of the distribution of exceedances 
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Table 5 

Threshold value VaR�  for the tail risk of VaR 
(Tail probability: p = 0.1, confidence level: 95%) 

1�  
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � � 2�  
0.20 1.036 � � � � � � � � � 

 0.30 1.073 1.036 � � � � � � � � 
 0.40 1.113 1.074 1.037 � � � � � � � 
 0.50 1.154 1.114 1.075 1.037 � � � � � � 
 0.60 1.198 1.156 1.116 1.076 1.038 � � � � � 
 0.70 1.243 1.200 1.158 1.117 1.077 1.038 � � � � 
 0.80 1.291 1.246 1.202 1.160 1.118 1.078 1.038 � � � 
 0.90 1.341 1.294 1.249 1.205 1.162 1.120 1.079 1.039 � � 
 1.00 1.393 1.345 1.298 1.252 1.207 1.163 1.121 1.079 1.039 � 

(Tail probability: p = 0.1, confidence level: 99%) 

1�  
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � � 2�  
0.20 1.129 � � � � � � � � � 

 0.30 1.281 1.134 � � � � � � � � 
 0.40 1.460 1.292 1.139 � � � � � � � 
 0.50 1.670 1.479 1.304 1.144 � � � � � � 
 0.60 1.919 1.699 1.498 1.315 1.149 � � � � � 
 0.70 2.213 1.960 1.728 1.516 1.325 1.154 � � � � 
 0.80 2.563 2.269 2.001 1.756 1.535 1.336 1.158 � � � 
 0.90 2.980 2.638 2.325 2.041 1.784 1.553 1.346 1.162 � � 
 1.00 3.476 3.077 2.713 2.381 2.081 1.811 1.570 1.356 1.167 � 

(Tail probability: p = 0.05, confidence level: 99%) 

1�  
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � � 2�  
0.20 1.087 � � � � � � � � � 

 0.30 1.185 1.090 � � � � � � � � 
 0.40 1.294 1.190 1.092 � � � � � � � 
 0.50 1.416 1.302 1.195 1.094 � � � � � � 
 0.60 1.552 1.428 1.310 1.200 1.097 � � � � � 
 0.70 1.706 1.569 1.440 1.319 1.205 1.099 � � � � 
 0.80 1.878 1.727 1.585 1.452 1.327 1.210 1.101 � � � 
 0.90 2.072 1.906 1.749 1.602 1.464 1.335 1.215 1.103 � � 
 1.00 2.291 2.107 1.933 1.771 1.618 1.476 1.343 1.220 1.105 � 

Note: VaR has tail risk when 21 ��  is more than VaR� . 
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Figure 7 

Varied scale parameters and the tail risk of VaR 
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Table 6  

Threshold value ES�  for the tail risk of expected shortfall 
(Tail probability: 1.0�p , confidence level: 95%) 

1�  
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � �2�  
0.20 1.142 � � � � � � � � �

 0.30 1.325 1.161 � � � � � � � �
 0.40 1.571 1.376 1.185 � � � � � � �
 0.50 1.916 1.678 1.446 1.220 � � � � � �
 0.60 2.436 2.133 1.838 1.551 1.271 � � � � �
 0.70 3.305 2.894 2.494 2.104 1.725 1.357 � � � �
 0.80 5.047 4.420 3.808 3.213 2.634 2.072 1.527 � � �
 0.90 10.281 9.004 7.758 6.545 5.366 4.221 3.111 2.037 � �
 1.00 � � � � � � � � � �

(Tail probability: p = 0.1, confidence level: 99%) 

1�  
 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � �2�  
0.20 1.230 � � � � � � � � �

 0.30 1.547 1.257 � � � � � � � �
 0.40 1.998 1.624 1.292 � � � � � � �
 0.50 2.670 2.171 1.727 1.337 � � � � � �
 0.60 3.741 3.042 2.419 1.873 1.401 � � � � �
 0.70 5.626 4.574 3.638 2.817 2.107 1.504 � � � �
 0.80 9.575 7.784 6.191 4.793 3.586 2.559 1.702 � � �
 0.90 21.852 17.765 14.129 10.940 8.184 5.841 3.884 2.282 � �
 1.00 � � � � � � � � � �

(Tail probability: p = 0.05, confidence level: 99%) 

  1�  

  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.10 � � � � � � � � � �2�  
0.20 1.187 � � � � � � � � �

 0.30 1.437 1.210 � � � � � � � �
 0.40 1.780 1.499 1.239 � � � � � � �
 0.50 2.276 1.917 1.584 1.278 � � � � � �
 0.60 3.040 2.560 2.116 1.708 1.336 � � � � �
 0.70 4.347 3.660 3.025 2.442 1.910 1.430 � � � �
 0.80 7.013 5.906 4.881 3.940 3.082 2.307 1.613 � � �
 0.90 15.136 12.747 10.535 8.503 6.651 4.978 3.482 2.158 � �
 1.00 � � � � � � � � � �

Note: Expected shortfall has tail risk when 21 ��  is more than ES� . When 1�� , we are unable to calculate expected shortfall 
as the first moment diverges. 
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Figure 9 

Upward bias when using exceedances for risk measurement 
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Figure 11 

Empirical distribution functions of the sums under the Gumbel copula 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Empirical distributions are plotted from one million simulations with the marginal distribution parameters set at ,5.0��  
,1��  1.0�p . 
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Table 7 

VaR and expected shortfall under changes in the dependence parameter 
using a specific copula 

Gumbel 1.0��  

α VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

1.0  2.971  5.165  8.748  4.357  6.715  10.670 
1.1  3.150  5.777  10.724  4.852  7.915  13.702 
1.2  3.299  6.252  11.822  5.189  8.623  14.974 
1.3  3.412  6.563  12.429  5.425  9.071  15.676 
1.4  3.505  6.798  12.861  5.597  9.374  16.117 
1.5  3.577  6.980  13.111  5.725  9.586  16.410 
1.6  3.634  7.087  13.295  5.822  9.740  16.615 
1.7  3.682  7.178  13.417  5.898  9.857  16.767 
1.8  3.718  7.247  13.485  5.958  9.948  16.886 
1.9  3.748  7.307  13.547  6.007  10.020  16.983 
2.0  3.772  7.357  13.602  6.048  10.078  17.060 
5.0  3.957  7.672  13.966  6.311  10.417  17.561 
10.0  3.981  7.694  14.033  6.342  10.456  17.595 
�   3.993  7.703  14.219  6.352  10.502  17.613 

Gaussian 1.0��  

ρ VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  2.971  5.165  8.748  4.357  6.715  10.670 
0.1  3.124  5.435  9.275  4.585  7.086  11.257 
0.2  3.250  5.687  9.747  4.786  7.423  11.842 
0.3  3.366  5.932  10.262  4.986  7.770  12.473 
0.4  3.476  6.180  10.798  5.183  8.129  13.159 
0.5  3.576  6.424  11.324  5.380  8.505  13.891 
0.6  3.671  6.671  11.939  5.577  8.898  14.663 
0.7  3.761  6.923  12.507  5.775  9.309  15.464 
0.8  3.842  7.198  13.132  5.978  9.736  16.288 
0.9  3.921  7.501  13.727  6.189  10.172  17.149 
1  3.993  7.703  14.219  6.352  10.502  17.613 

Frank 1.0��  

�  VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  2.971  5.165  8.748  4.357  6.715  10.670 
1  3.171  5.438  9.071  4.600  7.017  11.025 
2  3.348  5.687  9.392  4.817  7.290  11.344 
3  3.492  5.901  9.656  5.000  7.524  11.618 
4  3.607  6.074  9.875  5.153  7.720  11.852 
5  3.699  6.226  10.056  5.278  7.884  12.049 
6  3.770  6.349  10.217  5.380  8.022  12.218 
7  3.828  6.451  10.362  5.466  8.141  12.363 
8  3.874  6.539  10.484  5.538  8.245  12.489 
9  3.914  6.614  10.599  5.600  8.337  12.601 
�   3.993  7.703  14.219  6.352  10.502  17.613 

Note: VaR and expected shortfall are calculated from one million simulations for each copula with the marginal distribution 
parameters set at σ = 1, p = 0.1. The tail index values are shown in the upper left of each table. 
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Table 7 (cont) 

Gumbel 25.0��  

α VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

1.0  3.125  6.065  12.465  5.083  8.858  17.463 
1.1  3.302  6.694  14.824  5.595  10.170  21.106 
1.2  3.437  7.162  16.085  5.949  10.994  23.018 
1.3  3.543  7.501  16.986  6.200  11.538  24.174 
1.4  3.628  7.745  17.557  6.384  11.920  24.944 
1.5  3.696  7.920  18.004  6.521  12.195  25.479 
1.6  3.750  8.049  18.214  6.626  12.398  25.863 
1.7  3.792  8.152  18.429  6.708  12.554  26.154 
1.8  3.827  8.231  18.594  6.773  12.675  26.383 
1.9  3.852  8.284  18.652  6.827  12.773  26.568 
2.0  3.874  8.339  18.732  6.871  12.852  26.718 
5.0  4.036  8.699  19.286  7.159  13.330  27.802 
10.0  4.059  8.726  19.414  7.194  13.388  27.911 
�   4.071  8.735  19.778  7.206  13.454  27.837 

Gaussian 25.0��  

ρ VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.125  6.065  12.465  5.083  8.858  17.463 
0.1  3.288  6.354  13.068  5.330  9.284  18.200 
0.2  3.412  6.618  13.669  5.542  9.657  18.876 
0.3  3.529  6.886  14.259  5.753  10.051  19.682 
0.4  3.635  7.152  14.947  5.964  10.468  20.593 
0.5  3.730  7.412  15.689  6.176  10.914  21.629 
0.6  3.819  7.667  16.531  6.388  11.395  22.804 
0.7  3.900  7.938  17.371  6.602  11.913  24.111 
0.8  3.967  8.218  18.229  6.822  12.469  25.539 
0.9  4.027  8.541  19.083  7.052  13.058  27.123 
1  4.071  8.735  19.778  7.206  13.454  27.837 

Frank 25.0��  

�  VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.125  6.065  12.465  5.083  8.858  17.463 
1  3.328  6.345  12.869  5.335  9.180  17.847 
2  3.506  6.608  13.170  5.561  9.478  18.210 
3  3.654  6.847  13.453  5.755  9.739  18.531 
4  3.770  7.034  13.740  5.916  9.960  18.803 
5  3.863  7.202  14.000  6.050  10.145  19.037 
6  3.935  7.340  14.168  6.159  10.302  19.237 
7  3.991  7.451  14.308  6.250  10.437  19.409 
8  4.035  7.554  14.468  6.328  10.556  19.566 
9  4.071  7.641  14.598  6.394  10.662  19.705 
�   4.071  8.735  19.778  7.206  13.454  27.837 

Note: VaR and expected shortfall are calculated from one million simulations for each copula with the marginal distribution 
parameters set at σ = 1, p = 0.1. The tail index values are shown in the upper left of each table. 
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Table 7 (cont) 

Gumbel 5.0��  

α VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

1.0  3.442  8.441  27.131  7.419  17.092  53.729 
1.1  3.595  9.024  30.316  7.929  18.507  57.999 
1.2  3.715  9.501  31.524  8.310  19.550  61.639 
1.3  3.800  9.850  32.876  8.585  20.293  64.136 
1.4  3.873  10.078  34.013  8.789  20.839  65.995 
1.5  3.927  10.268  34.691  8.942  21.249  67.384 
1.6  3.972  10.398  35.156  9.060  21.563  68.453 
1.7  4.005  10.501  35.501  9.153  21.811  69.273 
1.8  4.033  10.576  35.800  9.229  22.007  69.936 
1.9  4.051  10.632  35.911  9.290  22.168  70.512 
2.0  4.068  10.682  36.003  9.341  22.301  70.991 
5.0  4.186  11.084  36.846  9.701  23.260  75.714 
10.0  4.203  11.106  37.187  9.759  23.447  76.842 
�   4.213  11.115  38.301  9.755  23.448  75.100 

Gaussian 5.0��  

ρ VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.442  8.441  27.131  7.419  17.092  53.729 
0.1  3.615  8.803  28.052  7.728  17.747  55.729 
0.2  3.739  9.077  28.675  7.968  18.231  57.090 
0.3  3.851  9.379  29.438  8.209  18.763  58.693 
0.4  3.949  9.679  30.552  8.451  19.337  60.525 
0.5  4.037  9.943  31.695  8.693  19.947  62.477 
0.6  4.106  10.216  32.864  8.934  20.614  64.683 
0.7  4.167  10.481  34.683  9.176  21.358  67.279 
0.8  4.207  10.753  36.224  9.425  22.204  70.588 
0.9  4.230  11.062  37.467  9.691  23.159  74.816 
1  4.213  11.115  38.301  9.755  23.448  75.100 

Frank 5.0��  

�  VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.442  8.441  27.131  7.419  17.092  53.729 
1  3.643  8.751  27.474  7.686  17.449  54.247 
2  3.821  9.042  27.927  7.930  17.793  54.692 
3  3.973  9.299  28.258  8.141  18.105  55.133 
4  4.093  9.521  28.649  8.318  18.375  55.491 
5  4.185  9.691  29.054  8.465  18.601  55.791 
6  4.255  9.861  29.387  8.587  18.792  56.074 
7  4.308  10.004  29.730  8.688  18.955  56.312 
8  4.351  10.110  29.853  8.774  19.101  56.522 
9  4.382  10.212  29.870  8.847  19.233  56.723 
�   4.213  11.115  38.301  9.755  23.448  75.100 

Note: VaR and expected shortfall are calculated from one million simulations for each copula with the marginal distribution 
parameters set at σ = 1, p = 0.1. The tail index values are shown in the upper left of each table. 
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Table 7 (cont) 

Gumbel 75.0��  

α VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

1.0  3.847  12.654  68.724  14.106  45.232  232.931 
1.1  3.961  13.076  73.107  14.193  44.817  220.165 
1.2  4.054  13.468  74.485  14.574  46.065  226.977 
1.3  4.117  13.752  74.705  14.878  47.107  232.902 
1.4  4.167  13.980  75.957  15.110  47.934  237.781 
1.5  4.209  14.130  78.154  15.288  48.578  241.740 
1.6  4.243  14.277  77.773  15.427  49.087  244.924 
1.7  4.263  14.314  78.758  15.540  49.504  247.554 
1.8  4.278  14.362  79.165  15.633  49.861  249.744 
1.9  4.291  14.373  79.241  15.713  50.164  251.761 
2.0  4.302  14.380  78.839  15.781  50.431  253.590 
5.0  4.355  14.716  78.988  16.542  53.710  282.245 
10.0  4.364  14.714  80.040  16.844  55.155  295.725 
�   4.373  14.720  83.395  16.517  53.579  275.707 

Gaussian 75.0��  

ρ VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.847  12.654  68.724  14.106  45.232  232.931 
0.1  4.026  13.186  70.836  14.668  47.050  243.941 
0.2  4.145  13.434  71.028  15.092  48.451  254.063 
0.3  4.254  13.751  72.412  15.531  49.982  265.049 
0.4  4.344  14.094  74.657  15.921  51.324  273.791 
0.5  4.411  14.387  77.344  16.217  52.268  278.229 
0.6  4.468  14.556  78.944  16.429  52.907  279.463 
0.7  4.493  14.736  81.197  16.610  53.526  280.122 
0.8  4.500  14.931  83.456  16.802  54.359  283.397 
0.9  4.468  15.092  84.647  17.040  55.548  291.229 
1  4.373  14.720  83.395  16.517  53.579  275.707 

Frank 75.0��  

�  VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

0  3.847  12.654  68.724  14.106  45.232  232.931 
1  4.051  12.988  68.816  14.397  45.680  234.046 
2  4.229  13.318  69.598  14.665  46.116  234.846 
3  4.376  13.620  70.071  14.897  46.507  235.493 
4  4.494  13.879  70.484  15.091  46.843  235.963 
5  4.580  14.069  70.999  15.251  47.117  236.298 
6  4.650  14.258  71.637  15.383  47.344  236.603 
7  4.703  14.398  73.037  15.493  47.537  236.907 
8  4.739  14.515  72.559  15.587  47.708  237.163 
9  4.767  14.634  72.669  15.669  47.873  237.456 
�   4.373  14.720  83.395  16.517  53.579  275.707 

Note: VaR and expected shortfall are calculated from one million simulations for each copula with the marginal distribution 
parameters set at σ = 1, p = 0.1. The tail index values are shown in the upper left of each table. 
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Figure 12 

Empirical distributions under Gumbel, Gaussian and Frank copulas 

(Portion with a cumulative probability of at least 99.5%) 
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Table 8 

VaR and expected shortfall under different copulas 

1.0��  

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Independent 2.971 5.165  8.748 4.357  6.715  10.670 
Fully dependent 3.993 7.703  14.219 6.352  10.502  17.613 

Spearman's rho=0.2 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.212 5.493  9.152 4.651  7.080  11.098 
Gaussian 3.261 5.709  9.784 4.804  7.454  11.897 
Gumbel 3.245 6.080  11.426 5.069  8.381  14.566 

Spearman's rho=0.5 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.547 5.982  9.770 5.073  7.617  11.728 
Gaussian 3.594 6.463  11.425 5.416  8.575  14.027 
Gumbel 3.601 7.024  13.184 5.766  9.653  16.500 

Spearman's rho=0.8 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.869 6.529  10.478 5.531  8.235  12.477 
Gaussian 3.851 7.236  13.207 6.005  9.792  16.399 
Gumbel 3.858 7.526  13.836 6.185  10.261  17.312 

25.0��  

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Independent 3.125 6.065  12.465 5.083  8.858  17.463 
Fully dependent 4.071 8.735  19.778 7.206  13.454  27.837 

Spearman's rho=0.2 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.369 6.403  12.914 5.387  9.248  17.927 
Gaussian 3.422 6.643  13.728 5.561  9.691  18.944 
Gumbel 3.389 6.988  15.598 5.822  10.707  22.383 

Spearman's rho=0.5 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.711 6.934  13.600 5.831  9.843  18.659 
Gaussian 3.747 7.455  15.861 6.214  10.998  21.830 
Gumbel 3.720 7.979  18.086 6.566  12.284  25.647 

Spearman's rho=0.8 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.031 7.544  14.456 6.320  10.544  19.551 
Gaussian 3.974 8.263  18.334 6.851  12.544  25.735 
Gumbel 3.949 8.526  19.090 7.020  13.106  27.229 

Note: VaR and expected shortfall are calculated by conducting one million simulations for each copula. The marginal 
distribution parameters are set at σ = 1, p = 0.1. 
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Table 8 (cont) 

5.0��  

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Independent 3.442  8.441 27.131  7.419 17.092  53.729 
Fully dependent 4.213  11.115 38.301  9.755 23.448  75.100 

Spearman's rho=0.2 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.684  8.812 27.657  7.742 17.527  54.353 
Gaussian 3.748  9.105 28.750  7.989 18.277  57.226 
Gumbel 3.672  9.325 31.444  8.172 19.177  60.376 

Spearman's rho=0.5 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.031  9.407 28.422  8.224 18.232  55.300 
Gaussian 4.052  9.988 31.896  8.736 20.062  62.854 
Gumbel 3.947  10.332 34.770  8.993 21.384  67.848 

Spearman's rho=0.8 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.347  10.100 29.790  8.766 19.087  56.502 
Gaussian 4.211  10.798 36.249  9.459 22.322  71.084 
Gumbel 4.119  10.888 36.572  9.518 22.757  72.817 

75.0��  

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Independent 3.847  12.654 68.724  14.106 45.232  232.931 
Fully dependent 4.373  14.720 83.395  16.517 53.579  275.707 

Spearman's rho=0.2 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.092  13.022 69.291  14.459 45.778  234.268 
Gaussian 4.157  13.465 71.011  15.131 48.589  255.050 
Gumbel 4.028  13.288 73.602  14.429 45.581  224.180 

Spearman's rho=0.5 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.433  13.722 70.411  14.989 46.666  235.724 
Gaussian 4.424  14.411 77.312  16.260 52.397  278.633 
Gumbel 4.222  14.188 79.041  15.348 48.795  243.099 

Spearman's rho=0.8 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 4.737  14.512 72.461  15.578 47.691  237.134 
Gaussian 4.496  14.932 83.944  16.830 54.489  284.102 
Gumbel 4.326  14.549 80.106  16.057 51.537  261.953 

Note: VaR and expected shortfall are calculated by conducting one million simulations for each copula. The marginal 
distribution parameters are set at σ = 1, p = 0.1. 
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Table 9 

VaR and expected shortfall under different copulas 
for different marginal distributions (example) 

( 1.0,2.0,2,1,1.0,1.0 2121 ����������� pS ) 

 VaR (95%) VaR (99%) VaR (99.9%) ES (95%) ES (99%) ES (99.9%) 

Frank 3.8542 7.4521 13.7438 6.1475 10.1535 17.1047 

Gaussian 3.8806 7.7226 14.3812 6.3062 10.5660 17.7964 

Gumbel 3.8569 8.1702 16.3774 6.6234 11.7285 21.3039 
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Table 10 

Estimation of the parameters of the distribution of exceedances 
of daily log changes of the foreign exchange rates (per one US dollar) 

Developed countries 

Japan (yen) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.3988 0.0085 0.0169 � 0.0024 0.0092 0.0169 0.0230 
2% 0.0485 0.0048 0.0141 0.0097 0.0146 0.0174 0.0226 
3% � 0.0169 0.0054 0.0117 0.0090 0.0143 0.0176 0.0228 
4% 0.1482 0.0040 0.0110 0.0101 0.0146 0.0171 0.0228 
5% 0.1126 0.0039 0.0102 0.0102 0.0145 0.0170 0.0223 
6% 0.0767 0.0042 0.0092 0.0100 0.0146 0.0173 0.0225 
7% 0.0767 0.0042 0.0086 0.0100 0.0146 0.0173 0.0225 
8% 0.0950 0.0039 0.0081 0.0100 0.0146 0.0172 0.0224 
9% 0.0761 0.0041 0.0076 0.0100 0.0146 0.0173 0.0225 
10% 0.0796 0.0040 0.0072 0.0100 0.0146 0.0173 0.0225 
Left tail        
1% � 0.0162 0.0094 0.0199 0.0045 0.0140 0.0198 0.0290 
2% 0.0875 0.0071 0.0157 0.0093 0.0166 0.0207 0.0290 
3% 0.0996 0.0067 0.0128 0.0095 0.0166 0.0206 0.0289 
4% 0.1083 0.0064 0.0111 0.0097 0.0166 0.0206 0.0289 
5% 0.1880 0.0054 0.0101 0.0101 0.0167 0.0202 0.0292 
6% 0.1647 0.0054 0.0091 0.0101 0.0168 0.0204 0.0291 
7% 0.1484 0.0053 0.0083 0.0101 0.0166 0.0202 0.0285 
8% 0.1603 0.0052 0.0075 0.0101 0.0167 0.0204 0.0290 
9% 0.2138 0.0046 0.0072 0.0101 0.0167 0.0201 0.0295 
10% 0.1848 0.0048 0.0066 0.0102 0.0168 0.0203 0.0293 

Germany (mark) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.0484 0.0039 0.0146 0.0085 0.0123 0.0146 0.0187 
2% 0.0642 0.0036 0.0122 0.0089 0.0126 0.0147 0.0187 
3% 0.0633 0.0035 0.0107 0.0090 0.0126 0.0147 0.0187 
4% 0.0596 0.0034 0.0097 0.0090 0.0126 0.0147 0.0187 
5% 0.0741 0.0033 0.0091 0.0091 0.0126 0.0147 0.0187 
6% 0.0443 0.0035 0.0083 0.0090 0.0126 0.0148 0.0187 
7% � 0.0326 0.0040 0.0075 0.0088 0.0127 0.0151 0.0187 
8% � 0.0876 0.0045 0.0067 0.0088 0.0128 0.0153 0.0188 
9% � 0.0482 0.0042 0.0064 0.0088 0.0127 0.0151 0.0188 
10% � 0.0496 0.0042 0.0059 0.0088 0.0127 0.0151 0.0188 
Left tail        
1% � 0.0958 0.0045 0.0153 0.0073 0.0122 0.0152 0.0194 
2% 0.0365 0.0038 0.0127 0.0093 0.0130 0.0153 0.0193 
3% � 0.0024 0.0040 0.0109 0.0088 0.0129 0.0153 0.0194 
4% � 0.0721 0.0046 0.0094 0.0084 0.0128 0.0156 0.0195 
5% � 0.0334 0.0044 0.0086 0.0086 0.0128 0.0154 0.0194 
6% � 0.0045 0.0041 0.0080 0.0087 0.0128 0.0153 0.0194 
7% 0.0137 0.0040 0.0074 0.0088 0.0128 0.0153 0.0194 
8% 0.0029 0.0040 0.0069 0.0088 0.0128 0.0153 0.0194 
9% � 0.0275 0.0043 0.0063 0.0088 0.0129 0.0154 0.0193 
10% � 0.0226 0.0043 0.0058 0.0088 0.0129 0.0154 0.0194 
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Table 10 (cont) 

UK (pound) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.0461 0.0029 0.0114 0.0066 0.0096 0.0114 0.0142 
2% 0.0777 0.0022 0.0102 0.0082 0.0104 0.0117 0.0142 
3% � 0.0782 0.0030 0.0087 0.0071 0.0100 0.0118 0.0144 
4% � 0.1037 0.0032 0.0077 0.0070 0.0100 0.0119 0.0144 
5% � 0.1188 0.0035 0.0068 0.0068 0.0100 0.0120 0.0146 
6% � 0.1120 0.0035 0.0062 0.0068 0.0100 0.0119 0.0145 
7% � 0.1160 0.0036 0.0056 0.0068 0.0100 0.0120 0.0146 
8% � 0.1120 0.0036 0.0052 0.0069 0.0099 0.0119 0.0145 
9% � 0.0967 0.0035 0.0048 0.0069 0.0099 0.0119 0.0145 
10% � 0.0770 0.0034 0.0045 0.0069 0.0099 0.0118 0.0145 
Left tail        
1% 0.3167 0.0023 0.0119 0.0091 0.0110 0.0119 0.0152 
2% 0.1368 0.0026 0.0099 0.0076 0.0103 0.0118 0.0151 
3% 0.0112 0.0033 0.0082 0.0065 0.0099 0.0119 0.0153 
4% 0.0688 0.0029 0.0075 0.0069 0.0100 0.0118 0.0152 
5% 0.0654 0.0029 0.0069 0.0069 0.0100 0.0118 0.0152 
6% 0.0505 0.0029 0.0063 0.0068 0.0100 0.0118 0.0152 
7% 0.0521 0.0029 0.0059 0.0068 0.0100 0.0118 0.0152 
8% 0.0284 0.0030 0.0054 0.0068 0.0100 0.0119 0.0152 
9% 0.0127 0.0031 0.0050 0.0068 0.0100 0.0120 0.0152 
10% � 0.0314 0.0034 0.0045 0.0068 0.0101 0.0121 0.0152 

Asia 

Hong Kong (dollar) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.7191 0.0002 0.0006 0.0004 0.0006 0.0006 0.0012 
2% 0.5968 0.0001 0.0005 0.0004 0.0006 0.0006 0.0011 
3% 0.2707 0.0002 0.0003 0.0002 0.0005 0.0006 0.0010 
4% 0.2644 0.0002 0.0003 0.0002 0.0005 0.0006 0.0010 
5% 0.2691 0.0002 0.0002 0.0002 0.0005 0.0006 0.0010 
6% 0.2847 0.0002 0.0002 0.0002 0.0005 0.0006 0.0010 
7% 0.3002 0.0001 0.0002 0.0002 0.0005 0.0006 0.0009 
8% 0.2942 0.0001 0.0002 0.0002 0.0005 0.0006 0.0010 
9% 0.2776 0.0002 0.0001 0.0002 0.0005 0.0006 0.0010 
10% 0.3097 0.0001 0.0001 0.0002 0.0005 0.0006 0.0009 
Left tail        
1% 0.0653 0.0004 0.0006 0.0000 0.0004 0.0006 0.0011 
2% 0.1254 0.0003 0.0004 0.0001 0.0004 0.0006 0.0011 
3% 0.2045 0.0003 0.0003 0.0002 0.0005 0.0006 0.0010 
4% 0.2474 0.0002 0.0003 0.0002 0.0005 0.0006 0.0010 
5% 0.2558 0.0002 0.0002 0.0002 0.0005 0.0006 0.0010 
6% 0.2757 0.0002 0.0002 0.0002 0.0005 0.0006 0.0009 
7% 0.2966 0.0001 0.0002 0.0002 0.0004 0.0005 0.0009 
8% 0.2875 0.0001 0.0002 0.0002 0.0005 0.0006 0.0009 
9% 0.2767 0.0001 0.0001 0.0002 0.0005 0.0006 0.0009 
10% 0.3071 0.0001 0.0001 0.0002 0.0004 0.0005 0.0009 
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Table 10 (cont) 

Indonesia (rupiah) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.2216 0.0419 0.0673 � 0.0142 0.0349 0.0670 0.1014 
2% � 0.1642 0.0436 0.0380 � 0.0055 0.0381 0.0663 0.0998 
3% 0.1050 0.0291 0.0279 0.0135 0.0444 0.0620 0.0986 
4% 0.3070 0.0208 0.0228 0.0183 0.0463 0.0587 0.1046 
5% 0.3138 0.0193 0.0183 0.0183 0.0463 0.0586 0.1051 
6% 0.3457 0.0173 0.0153 0.0186 0.0466 0.0581 0.1071 
7% 0.4031 0.0149 0.0134 0.0188 0.0473 0.0574 0.1121 
8% 0.4179 0.0138 0.0116 0.0187 0.0476 0.0573 0.1137 
9% 0.3819 0.0139 0.0097 0.0188 0.0470 0.0576 0.1097 
10% 0.4088 0.0128 0.0084 0.0187 0.0475 0.0574 0.1130 
Left tail        
1% 0.4270 0.0187 0.0569 0.0350 0.0514 0.0567 0.0894 
2% 0.1896 0.0250 0.0354 0.0142 0.0401 0.0537 0.0889 
3% 0.2215 0.0213 0.0269 0.0167 0.0412 0.0536 0.0886 
4% 0.2307 0.0195 0.0216 0.0174 0.0415 0.0535 0.0884 
5% 0.2198 0.0189 0.0172 0.0172 0.0414 0.0537 0.0883 
6% 0.2280 0.0178 0.0141 0.0174 0.0415 0.0536 0.0883 
7% 0.2114 0.0178 0.0111 0.0173 0.0415 0.0539 0.0879 
8% 0.2377 0.0164 0.0092 0.0174 0.0415 0.0534 0.0886 
9% 0.2277 0.0163 0.0071 0.0174 0.0416 0.0537 0.0886 
10% 0.2743 0.0146 0.0062 0.0173 0.0416 0.0529 0.0907 

Malaysia (ringgit) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.0026 0.0121 0.0205 0.0010 0.0130 0.0204 0.0325 
2% 0.0473 0.0106 0.0139 0.0044 0.0150 0.0213 0.0328 
3% � 0.0210 0.0119 0.0089 0.0028 0.0146 0.0218 0.0332 
4% 0.0130 0.0111 0.0060 0.0035 0.0147 0.0215 0.0330 
5% 0.0581 0.0100 0.0041 0.0041 0.0148 0.0211 0.0328 
6% 0.1713 0.0082 0.0031 0.0046 0.0148 0.0203 0.0337 
7% 0.3473 0.0061 0.0025 0.0047 0.0152 0.0195 0.0378 
8% 0.5202 0.0046 0.0022 0.0046 0.0167 0.0193 0.0473 
9% 0.6630 0.0035 0.0019 0.0044 0.0199 0.0194 0.0644 
10% 0.7371 0.0030 0.0016 0.0043 0.0232 0.0196 0.0815 
Left tail        
1% � 0.1915 0.0152 0.0200 � 0.0087 0.0086 0.0199 0.0326 
2% 0.0294 0.0117 0.0113 0.0006 0.0124 0.0194 0.0318 
3% 0.0059 0.0121 0.0063 0.0002 0.0123 0.0197 0.0320 
4% 0.1299 0.0096 0.0043 0.0022 0.0129 0.0188 0.0320 
5% 0.3236 0.0068 0.0033 0.0033 0.0133 0.0176 0.0344 
6% 0.5093 0.0048 0.0027 0.0037 0.0144 0.0169 0.0414 
7% 0.6266 0.0038 0.0023 0.0037 0.0161 0.0166 0.0507 
8% 0.7174 0.0030 0.0019 0.0036 0.0187 0.0165 0.0643 
9% 0.7713 0.0026 0.0017 0.0036 0.0213 0.0165 0.0780 
10% 0.7626 0.0024 0.0014 0.0036 0.0208 0.0165 0.0754 
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Table 10 (cont) 

Philippines (peso) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.1785 0.0126 0.0224 0.0048 0.0163 0.0224 0.0376 
2% 0.2242 0.0102 0.0146 0.0060 0.0168 0.0222 0.0376 
3% 0.2923 0.0082 0.0112 0.0074 0.0173 0.0219 0.0378 
4% 0.2938 0.0076 0.0088 0.0072 0.0173 0.0218 0.0379 
5% 0.2805 0.0073 0.0071 0.0071 0.0172 0.0219 0.0378 
6% 0.3479 0.0062 0.0062 0.0073 0.0174 0.0215 0.0391 
7% 0.3059 0.0063 0.0050 0.0073 0.0173 0.0217 0.0381 
8% 0.3465 0.0056 0.0044 0.0073 0.0174 0.0215 0.0391 
9% 0.3839 0.0051 0.0039 0.0072 0.0175 0.0214 0.0404 
10% 0.4156 0.0046 0.0035 0.0072 0.0177 0.0213 0.0418 
Left tail        
1% 0.4173 0.0083 0.0185 0.0088 0.0160 0.0185 0.0326 
2% 0.3344 0.0075 0.0125 0.0065 0.0148 0.0182 0.0323 
3% 0.2872 0.0072 0.0091 0.0057 0.0144 0.0184 0.0322 
4% 0.3775 0.0056 0.0077 0.0065 0.0148 0.0179 0.0331 
5% 0.5049 0.0042 0.0069 0.0069 0.0154 0.0173 0.0363 
6% 0.4317 0.0043 0.0060 0.0068 0.0150 0.0176 0.0340 
7% 0.3333 0.0048 0.0050 0.0067 0.0147 0.0181 0.0319 
8% 0.3170 0.0047 0.0043 0.0067 0.0147 0.0182 0.0316 
9% 0.2980 0.0047 0.0036 0.0067 0.0147 0.0183 0.0313 
10% 0.2915 0.0046 0.0031 0.0067 0.0147 0.0183 0.0311 

Singapore (Singapore dollar) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.1834 0.0059 0.0103 � 0.0008 0.0059 0.0103 0.0153 
2% � 0.0190 0.0048 0.0070 0.0025 0.0074 0.0104 0.0151 
3% 0.1158 0.0038 0.0057 0.0038 0.0078 0.0101 0.0150 
4% 0.2528 0.0029 0.0049 0.0043 0.0080 0.0098 0.0153 
5% 0.2665 0.0027 0.0043 0.0043 0.0080 0.0098 0.0154 
6% 0.2867 0.0025 0.0039 0.0044 0.0080 0.0097 0.0155 
7% 0.2710 0.0024 0.0035 0.0044 0.0080 0.0098 0.0154 
8% 0.3463 0.0021 0.0033 0.0044 0.0081 0.0096 0.0161 
9% 0.3118 0.0021 0.0030 0.0044 0.0081 0.0097 0.0157 
10% 0.3256 0.0020 0.0028 0.0044 0.0081 0.0096 0.0159 
Left tail        
1% 0.1481 0.0057 0.0103 0.0021 0.0074 0.0103 0.0169 
2% 0.2112 0.0045 0.0070 0.0033 0.0079 0.0103 0.0169 
3% 0.2843 0.0036 0.0056 0.0039 0.0082 0.0102 0.0170 
4% 0.3276 0.0030 0.0048 0.0041 0.0083 0.0101 0.0172 
5% 0.3626 0.0026 0.0043 0.0043 0.0084 0.0100 0.0174 
6% 0.2964 0.0028 0.0036 0.0042 0.0083 0.0102 0.0169 
7% 0.3076 0.0026 0.0033 0.0042 0.0083 0.0102 0.0170 
8% 0.3191 0.0024 0.0030 0.0042 0.0083 0.0101 0.0170 
9% 0.3253 0.0023 0.0027 0.0042 0.0083 0.0101 0.0171 
10% 0.3368 0.0022 0.0025 0.0042 0.0083 0.0101 0.0173 
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Table 10 (cont) 

South Korea (won) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.2322 0.0491 0.0222 � 0.0742 � 0.0162 0.0218 0.0618 
2% 0.6963 0.0118 0.0136 0.0056 0.0260 0.0240 0.0867 
3% 0.8231 0.0071 0.0104 0.0075 0.0341 0.0233 0.1235 
4% 0.8915 0.0050 0.0090 0.0080 0.0461 0.0228 0.1830 
5% 0.7355 0.0053 0.0074 0.0074 0.0276 0.0239 0.0899 
6% 0.6621 0.0053 0.0063 0.0073 0.0249 0.0244 0.0756 
7% 0.6627 0.0048 0.0055 0.0073 0.0249 0.0244 0.0757 
8% 0.7024 0.0041 0.0050 0.0073 0.0264 0.0242 0.0833 
9% 0.6871 0.0039 0.0045 0.0073 0.0257 0.0243 0.0800 
10% 0.6852 0.0036 0.0041 0.0073 0.0257 0.0243 0.0797 
Left tail        
1% 0.0755 0.0280 0.0224 � 0.0203 0.0066 0.0222 0.0525 
2% 0.3220 0.0156 0.0122 � 0.0003 0.0168 0.0242 0.0529 
3% 0.5929 0.0087 0.0089 0.0051 0.0208 0.0224 0.0633 
4% 0.7563 0.0056 0.0075 0.0063 0.0258 0.0213 0.0871 
5% 0.8596 0.0041 0.0066 0.0066 0.0355 0.0207 0.1361 
6% 0.8818 0.0034 0.0060 0.0066 0.0399 0.0206 0.1583 
7% 0.7022 0.0039 0.0051 0.0065 0.0232 0.0214 0.0730 
8% 0.6696 0.0038 0.0045 0.0066 0.0222 0.0215 0.0674 
9% 0.6921 0.0034 0.0041 0.0065 0.0229 0.0214 0.0712 
10% 0.7417 0.0029 0.0039 0.0065 0.0251 0.0214 0.0828 

Taiwan (New Taiwan dollar) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.0930 0.0059 0.0086 � 0.0003 0.0053 0.0086 0.0151 
2% 0.2709 0.0041 0.0053 0.0020 0.0063 0.0084 0.0152 
3% 0.3819 0.0030 0.0042 0.0028 0.0068 0.0083 0.0155 
4% 0.3914 0.0026 0.0034 0.0029 0.0068 0.0082 0.0156 
5% 0.4001 0.0024 0.0029 0.0029 0.0068 0.0082 0.0157 
6% 0.3876 0.0022 0.0025 0.0029 0.0068 0.0082 0.0155 
7% 0.4118 0.0020 0.0022 0.0029 0.0068 0.0082 0.0158 
8% 0.4509 0.0018 0.0020 0.0029 0.0069 0.0081 0.0164 
9% 0.4265 0.0018 0.0017 0.0029 0.0069 0.0082 0.0160 
10% 0.4155 0.0017 0.0015 0.0029 0.0068 0.0082 0.0158 
Left tail        
1% � 0.2632 0.0069 0.0071 � 0.0069 0.0015 0.0070 0.0125 
2% � 0.0737 0.0051 0.0044 � 0.0004 0.0047 0.0079 0.0124 
3% 0.0507 0.0040 0.0032 0.0012 0.0053 0.0077 0.0122 
4% 0.4018 0.0022 0.0028 0.0024 0.0058 0.0070 0.0135 
5% 0.5538 0.0016 0.0025 0.0025 0.0062 0.0068 0.0157 
6% 0.5043 0.0016 0.0022 0.0025 0.0060 0.0068 0.0148 
7% 0.4385 0.0016 0.0019 0.0025 0.0059 0.0069 0.0137 
8% 0.4565 0.0015 0.0017 0.0025 0.0059 0.0069 0.0140 
9% 0.4426 0.0014 0.0015 0.0025 0.0059 0.0069 0.0138 
10% 0.3959 0.0015 0.0013 0.0025 0.0058 0.0070 0.0131 
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Table 10 (cont) 

Thailand (baht) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.3821 0.0131 0.0236 0.0078 0.0192 0.0235 0.0447 
2% 0.3663 0.0102 0.0158 0.0078 0.0193 0.0238 0.0446 
3% 0.4287 0.0078 0.0124 0.0088 0.0199 0.0235 0.0455 
4% 0.3511 0.0080 0.0097 0.0080 0.0194 0.0240 0.0441 
5% 0.2481 0.0090 0.0071 0.0071 0.0192 0.0250 0.0430 
6% 0.3139 0.0076 0.0062 0.0076 0.0193 0.0244 0.0437 
7% 0.3705 0.0065 0.0053 0.0077 0.0194 0.0239 0.0453 
8% 0.4283 0.0056 0.0047 0.0077 0.0197 0.0237 0.0477 
9% 0.4112 0.0055 0.0040 0.0077 0.0196 0.0237 0.0468 
10% 0.4298 0.0051 0.0035 0.0077 0.0198 0.0237 0.0478 
Left tail        
1% 0.2904 0.0132 0.0229 0.0060 0.0176 0.0229 0.0414 
2% 0.2742 0.0111 0.0143 0.0053 0.0172 0.0227 0.0413 
3% 0.2957 0.0097 0.0099 0.0053 0.0172 0.0225 0.0415 
4% 0.3043 0.0087 0.0074 0.0056 0.0173 0.0225 0.0416 
5% 0.4270 0.0066 0.0063 0.0063 0.0178 0.0216 0.0445 
6% 0.4958 0.0055 0.0054 0.0064 0.0183 0.0212 0.0477 
7% 0.5661 0.0046 0.0048 0.0065 0.0192 0.0209 0.0526 
8% 0.5245 0.0045 0.0041 0.0065 0.0186 0.0211 0.0493 
9% 0.4422 0.0049 0.0033 0.0066 0.0179 0.0213 0.0444 
10% 0.4430 0.0046 0.0028 0.0066 0.0179 0.0214 0.0444 

Eastern Europe 

Czech (Czech koruna) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.3606 0.0045 0.0169 0.0114 0.0153 0.0169 0.0239 
2% 0.2503 0.0045 0.0135 0.0098 0.0145 0.0168 0.0240 
3% 0.2221 0.0043 0.0116 0.0095 0.0145 0.0169 0.0240 
4% 0.1999 0.0042 0.0103 0.0094 0.0144 0.0171 0.0240 
5% 0.1833 0.0042 0.0094 0.0094 0.0145 0.0171 0.0240 
6% 0.1495 0.0044 0.0084 0.0092 0.0145 0.0174 0.0241 
7% 0.1319 0.0045 0.0076 0.0091 0.0145 0.0175 0.0241 
8% 0.1260 0.0044 0.0070 0.0091 0.0145 0.0175 0.0241 
9% 0.1209 0.0044 0.0064 0.0091 0.0145 0.0176 0.0241 
10% 0.2034 0.0040 0.0061 0.0090 0.0148 0.0177 0.0257 
Left tail        
1% 0.0091 0.0053 0.0160 0.0075 0.0127 0.0159 0.0213 
2% 0.0485 0.0049 0.0125 0.0081 0.0130 0.0159 0.0212 
3% 0.0786 0.0044 0.0108 0.0086 0.0132 0.0159 0.0211 
4% 0.0950 0.0041 0.0098 0.0089 0.0133 0.0158 0.0210 
5% 0.1036 0.0039 0.0089 0.0089 0.0133 0.0158 0.0210 
6% 0.1910 0.0033 0.0084 0.0091 0.0133 0.0156 0.0214 
7% 0.0911 0.0039 0.0076 0.0089 0.0134 0.0159 0.0210 
8% 0.0920 0.0038 0.0071 0.0089 0.0133 0.0159 0.0210 
9% 0.0832 0.0039 0.0066 0.0089 0.0134 0.0159 0.0210 
10% 0.0669 0.0040 0.0061 0.0089 0.0134 0.0160 0.0210 
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Table 10 (cont) 

Hungary (forint) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.6080 0.0038 0.0151 0.0112 0.0148 0.0151 0.0248 
2% 0.4775 0.0035 0.0118 0.0091 0.0135 0.0146 0.0240 
3% 0.3707 0.0037 0.0098 0.0081 0.0129 0.0148 0.0237 
4% 0.3213 0.0037 0.0085 0.0077 0.0128 0.0150 0.0236 
5% 0.3517 0.0035 0.0076 0.0076 0.0130 0.0151 0.0246 
6% 0.3412 0.0035 0.0068 0.0074 0.0131 0.0155 0.0253 
7% 0.3412 0.0033 0.0063 0.0074 0.0131 0.0154 0.0252 
8% 0.3397 0.0032 0.0058 0.0074 0.0131 0.0155 0.0253 
9% 0.3416 0.0030 0.0055 0.0074 0.0130 0.0153 0.0251 
10% 0.3373 0.0030 0.0051 0.0074 0.0131 0.0155 0.0253 
Left tail        
1% 0.0688 0.0056 0.0129 0.0044 0.0097 0.0129 0.0189 
2% 0.3084 0.0032 0.0109 0.0083 0.0118 0.0133 0.0191 
3% 0.1789 0.0037 0.0090 0.0072 0.0113 0.0135 0.0190 
4% 0.1508 0.0036 0.0079 0.0071 0.0113 0.0135 0.0188 
5% 0.1605 0.0034 0.0072 0.0072 0.0113 0.0135 0.0188 
6% 0.1296 0.0036 0.0064 0.0070 0.0113 0.0137 0.0190 
7% 0.1317 0.0035 0.0058 0.0070 0.0113 0.0137 0.0190 
8% 0.0990 0.0038 0.0051 0.0070 0.0114 0.0139 0.0191 
9% 0.0781 0.0039 0.0046 0.0070 0.0114 0.0140 0.0191 
10% 0.0497 0.0042 0.0040 0.0070 0.0115 0.0142 0.0191 

Poland (zloty) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% � 0.2344 0.0107 0.0163 � 0.0047 0.0080 0.0163 0.0249 
2% � 0.0221 0.0078 0.0119 0.0046 0.0125 0.0173 0.0248 
3% 0.0484 0.0067 0.0095 0.0061 0.0130 0.0171 0.0246 
4% 0.2413 0.0048 0.0084 0.0073 0.0134 0.0163 0.0253 
5% 0.2813 0.0043 0.0074 0.0074 0.0134 0.0162 0.0256 
6% 0.1926 0.0047 0.0064 0.0073 0.0134 0.0165 0.0248 
7% 0.2054 0.0045 0.0057 0.0073 0.0134 0.0165 0.0249 
8% 0.2809 0.0038 0.0054 0.0073 0.0134 0.0162 0.0258 
9% 0.2698 0.0038 0.0049 0.0073 0.0134 0.0163 0.0256 
10% 0.2999 0.0035 0.0046 0.0073 0.0134 0.0162 0.0262 
Left tail        
1% � 0.0731 0.0088 0.0137 � 0.0014 0.0078 0.0136 0.0218 
2% 0.2848 0.0046 0.0106 0.0068 0.0118 0.0141 0.0220 
3% 0.4115 0.0033 0.0094 0.0079 0.0124 0.0139 0.0226 
4% 0.3912 0.0030 0.0084 0.0077 0.0123 0.0139 0.0225 
5% 0.2105 0.0039 0.0071 0.0071 0.0120 0.0146 0.0216 
6% 0.1813 0.0039 0.0063 0.0071 0.0120 0.0146 0.0212 
7% 0.1560 0.0041 0.0055 0.0069 0.0121 0.0149 0.0214 
8% 0.1513 0.0041 0.0049 0.0069 0.0121 0.0149 0.0215 
9% 0.1540 0.0040 0.0045 0.0069 0.0121 0.0149 0.0215 
10% 0.2049 0.0036 0.0042 0.0069 0.0120 0.0147 0.0219 
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Table 10 (cont) 

Slovakia (Slovakian koruna) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.6071 0.0034 0.0150 0.0116 0.0148 0.0150 0.0235 
2% 0.3394 0.0038 0.0121 0.0092 0.0133 0.0151 0.0222 
3% 0.2923 0.0036 0.0104 0.0087 0.0131 0.0151 0.0222 
4% 0.2068 0.0040 0.0090 0.0082 0.0130 0.0155 0.0222 
5% 0.1710 0.0042 0.0079 0.0079 0.0130 0.0157 0.0223 
6% 0.1572 0.0042 0.0071 0.0079 0.0130 0.0158 0.0224 
7% 0.1134 0.0045 0.0062 0.0078 0.0131 0.0161 0.0225 
8% 0.0972 0.0047 0.0055 0.0077 0.0131 0.0162 0.0226 
9% 0.0885 0.0047 0.0049 0.0077 0.0132 0.0163 0.0226 
10% 0.1554 0.0044 0.0044 0.0076 0.0135 0.0166 0.0241 
Left tail        
1% 0.1208 0.0050 0.0154 0.0081 0.0128 0.0154 0.0211 
2% 0.0945 0.0050 0.0118 0.0074 0.0125 0.0154 0.0213 
3% 0.0954 0.0048 0.0098 0.0074 0.0124 0.0154 0.0213 
4% 0.1204 0.0044 0.0086 0.0077 0.0125 0.0152 0.0211 
5% 0.0840 0.0047 0.0074 0.0074 0.0125 0.0155 0.0213 
6% 0.0456 0.0050 0.0063 0.0072 0.0125 0.0157 0.0214 
7% 0.0605 0.0048 0.0056 0.0073 0.0125 0.0156 0.0214 
8% 0.0457 0.0049 0.0049 0.0073 0.0125 0.0157 0.0214 
9% 0.0604 0.0048 0.0044 0.0073 0.0125 0.0156 0.0214 
10% 0.0568 0.0048 0.0039 0.0073 0.0125 0.0156 0.0214 

Central and South America 

Brazil (real) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.3537 0.0122 0.0237 0.0087 0.0193 0.0236 0.0424 
2% 1.3430 0.0025 0.0189 0.0176 0.0155 0.0217 0.0035 
3% 0.9208 0.0026 0.0177 0.0166 0.0373 0.0227 0.1137 
4% 0.7524 0.0027 0.0167 0.0162 0.0253 0.0232 0.0538 
5% 0.6026 0.0030 0.0158 0.0158 0.0233 0.0239 0.0435 
6% 0.5014 0.0032 0.0150 0.0156 0.0227 0.0244 0.0402 
7% 0.3285 0.0044 0.0137 0.0152 0.0225 0.0256 0.0381 
8% 0.1712 0.0065 0.0115 0.0147 0.0232 0.0277 0.0388 
9% 0.0834 0.0084 0.0092 0.0143 0.0240 0.0296 0.0406 
10% 0.0609 0.0090 0.0078 0.0142 0.0243 0.0302 0.0413 
Left tail        
1% 0.4644 0.0078 0.0174 0.0085 0.0154 0.0173 0.0318 
2% 0.4784 0.0058 0.0121 0.0078 0.0149 0.0168 0.0321 
3% 0.4397 0.0050 0.0100 0.0077 0.0148 0.0170 0.0315 
4% 0.3022 0.0058 0.0077 0.0065 0.0143 0.0178 0.0304 
5% 0.3351 0.0051 0.0067 0.0067 0.0143 0.0176 0.0307 
6% 0.2791 0.0054 0.0055 0.0065 0.0143 0.0179 0.0302 
7% 0.2658 0.0053 0.0046 0.0064 0.0143 0.0180 0.0301 
8% 0.2595 0.0054 0.0036 0.0064 0.0146 0.0185 0.0310 
9% 0.2758 0.0048 0.0033 0.0064 0.0143 0.0179 0.0302 
10% 0.2698 0.0049 0.0027 0.0064 0.0144 0.0182 0.0306 
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Table 10 (cont) 

Chile (peso) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.1755 0.0038 0.0101 0.0047 0.0082 0.0101 0.0147 
2% 0.1296 0.0035 0.0078 0.0047 0.0083 0.0103 0.0147 
3% 0.1988 0.0029 0.0066 0.0052 0.0085 0.0102 0.0148 
4% 0.2410 0.0026 0.0059 0.0053 0.0085 0.0101 0.0148 
5% 0.1555 0.0028 0.0051 0.0051 0.0085 0.0103 0.0146 
6% 0.1719 0.0026 0.0047 0.0052 0.0084 0.0102 0.0145 
7% 0.2308 0.0023 0.0044 0.0052 0.0085 0.0101 0.0149 
8% 0.2172 0.0023 0.0040 0.0052 0.0085 0.0102 0.0148 
9% 0.1676 0.0025 0.0037 0.0052 0.0085 0.0102 0.0145 
10% 0.1768 0.0024 0.0034 0.0052 0.0084 0.0102 0.0145 
Left tail        
1% 0.1465 0.0030 0.0090 0.0047 0.0075 0.0090 0.0125 
2% 0.1423 0.0028 0.0068 0.0044 0.0073 0.0089 0.0124 
3% 0.1466 0.0026 0.0058 0.0046 0.0074 0.0089 0.0124 
4% 0.1605 0.0024 0.0051 0.0046 0.0074 0.0088 0.0124 
5% 0.1223 0.0026 0.0044 0.0044 0.0073 0.0090 0.0125 
6% 0.1050 0.0026 0.0039 0.0044 0.0074 0.0090 0.0126 
7% 0.1225 0.0025 0.0036 0.0044 0.0073 0.0090 0.0125 
8% 0.1314 0.0024 0.0033 0.0044 0.0073 0.0089 0.0125 
9% 0.1109 0.0025 0.0029 0.0044 0.0074 0.0090 0.0126 
10% 0.1078 0.0024 0.0027 0.0044 0.0074 0.0090 0.0125 

Columbia (peso) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.4404 0.0035 0.0136 0.0095 0.0126 0.0136 0.0199 
2% 0.1930 0.0047 0.0097 0.0057 0.0106 0.0132 0.0198 
3% 0.1832 0.0045 0.0078 0.0056 0.0106 0.0132 0.0199 
4% 0.1950 0.0041 0.0067 0.0058 0.0106 0.0132 0.0198 
5% 0.2351 0.0036 0.0060 0.0060 0.0107 0.0130 0.0199 
6% 0.2376 0.0034 0.0054 0.0060 0.0107 0.0130 0.0199 
7% 0.2091 0.0035 0.0048 0.0060 0.0107 0.0131 0.0196 
8% 0.2156 0.0033 0.0044 0.0060 0.0106 0.0130 0.0195 
9% 0.2120 0.0032 0.0040 0.0060 0.0107 0.0131 0.0196 
10% 0.2197 0.0031 0.0037 0.0060 0.0106 0.0129 0.0195 
Left tail        
1% 0.0402 0.0044 0.0102 0.0033 0.0076 0.0102 0.0147 
2% 0.0379 0.0042 0.0075 0.0038 0.0079 0.0104 0.0149 
3% 0.0812 0.0037 0.0061 0.0042 0.0081 0.0103 0.0147 
4% 0.1062 0.0034 0.0051 0.0044 0.0081 0.0102 0.0146 
5% 0.1764 0.0030 0.0046 0.0046 0.0082 0.0101 0.0149 
6% 0.1322 0.0030 0.0040 0.0046 0.0081 0.0101 0.0145 
7% 0.1290 0.0030 0.0036 0.0046 0.0081 0.0101 0.0145 
8% 0.1815 0.0027 0.0032 0.0046 0.0082 0.0101 0.0149 
9% 0.1482 0.0027 0.0029 0.0046 0.0081 0.0100 0.0144 
10% 0.1513 0.0027 0.0027 0.0046 0.0081 0.0100 0.0144 
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Table 10 (cont) 

Mexico (new peso) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.3016 0.0230 0.0299 0.0004 0.0207 0.0297 0.0626 
2% 0.3313 0.0181 0.0149 0.0005 0.0204 0.0288 0.0628 
3% 0.6560 0.0091 0.0115 0.0076 0.0266 0.0263 0.0809 
4% 0.6746 0.0073 0.0093 0.0078 0.0272 0.0261 0.0836 
5% 0.7538 0.0055 0.0082 0.0082 0.0307 0.0256 0.1014 
6% 0.8536 0.0041 0.0075 0.0083 0.0414 0.0250 0.1557 
7% 0.8022 0.0039 0.0068 0.0083 0.0343 0.0252 0.1200 
8% 0.6683 0.0044 0.0059 0.0083 0.0265 0.0258 0.0790 
9% 0.6236 0.0044 0.0053 0.0084 0.0253 0.0260 0.0720 
10% 0.6459 0.0040 0.0049 0.0084 0.0259 0.0259 0.0754 
Left tail        
1% 0.2564 0.0168 0.0194 � 0.0029 0.0121 0.0193 0.0418 
2% 0.4498 0.0094 0.0130 0.0059 0.0172 0.0206 0.0438 
3% 0.5355 0.0066 0.0102 0.0073 0.0182 0.0202 0.0459 
4% 0.4714 0.0064 0.0081 0.0068 0.0176 0.0206 0.0438 
5% 0.5003 0.0055 0.0069 0.0069 0.0178 0.0204 0.0449 
6% 0.5702 0.0044 0.0062 0.0071 0.0185 0.0200 0.0487 
7% 0.6416 0.0036 0.0058 0.0071 0.0196 0.0198 0.0549 
8% 0.6085 0.0035 0.0052 0.0071 0.0190 0.0199 0.0516 
9% 0.5535 0.0036 0.0047 0.0072 0.0182 0.0200 0.0470 
10% 0.5714 0.0033 0.0044 0.0071 0.0185 0.0200 0.0484 

Peru (new sol) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.6771 0.0031 0.0071 0.0041 0.0073 0.0071 0.0168 
2% 0.8039 0.0015 0.0058 0.0048 0.0085 0.0072 0.0208 
3% 0.5744 0.0017 0.0048 0.0040 0.0071 0.0075 0.0151 
4% 0.6083 0.0014 0.0044 0.0041 0.0072 0.0074 0.0157 
5% 0.4925 0.0015 0.0039 0.0039 0.0069 0.0076 0.0142 
6% 0.3714 0.0017 0.0034 0.0038 0.0067 0.0079 0.0132 
7% 0.3776 0.0016 0.0032 0.0038 0.0068 0.0079 0.0134 
8% 0.3624 0.0017 0.0028 0.0037 0.0069 0.0082 0.0139 
9% 0.3597 0.0017 0.0026 0.0037 0.0070 0.0083 0.0140 
10% 0.2650 0.0019 0.0023 0.0037 0.0068 0.0083 0.0130 
Left tail        
1% 0.4988 0.0036 0.0071 0.0031 0.0063 0.0070 0.0141 
2% 0.4935 0.0026 0.0049 0.0030 0.0062 0.0070 0.0141 
3% 0.4013 0.0024 0.0039 0.0027 0.0060 0.0072 0.0135 
4% 0.4080 0.0021 0.0032 0.0028 0.0061 0.0072 0.0135 
5% 0.4251 0.0019 0.0028 0.0028 0.0061 0.0072 0.0136 
6% 0.4658 0.0016 0.0026 0.0029 0.0062 0.0071 0.0140 
7% 0.4128 0.0017 0.0022 0.0028 0.0061 0.0072 0.0135 
8% 0.4700 0.0014 0.0021 0.0029 0.0062 0.0071 0.0142 
9% 0.4722 0.0013 0.0019 0.0029 0.0062 0.0071 0.0142 
10% 0.4566 0.0013 0.0018 0.0029 0.0061 0.0071 0.0140 
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Table 10 (cont) 

Venezuela (bolívar) 

% of 
excess 

�  
�  Threshold VaR (95%) 

Expected 
shortfall 

(95%) 
VaR (99%) 

Expected 
shortfall 

(99%) 

Right tail        
1% 0.8298 0.0156 0.0139 0.0000 0.0240 0.0138 0.1049 
2% 1.0274 0.0061 0.0080 0.0044 � 0.0140 � 
3% 0.9737 0.0042 0.0060 0.0043 0.1022 0.0143 0.4837 
4% 0.7617 0.0047 0.0042 0.0033 0.0198 0.0157 0.0719 
5% 0.7413 0.0041 0.0032 0.0032 0.0190 0.0158 0.0678 
6% 0.8267 0.0031 0.0027 0.0033 0.0240 0.0154 0.0933 
7% 0.8490 0.0026 0.0023 0.0034 0.0263 0.0153 0.1055 
8% 0.8781 0.0022 0.0020 0.0033 0.0310 0.0153 0.1288 
9% 0.9145 0.0019 0.0018 0.0033 0.0414 0.0153 0.1811 
10% 0.8621 0.0019 0.0016 0.0034 0.0280 0.0152 0.1139 
Left tail        
1% 0.5490 0.0087 0.0119 0.0025 0.0105 0.0118 0.0311 
2% 0.4895 0.0066 0.0066 0.0017 0.0099 0.0120 0.0301 
3% 0.4854 0.0053 0.0044 0.0020 0.0101 0.0121 0.0297 
4% 0.5257 0.0043 0.0031 0.0022 0.0103 0.0119 0.0307 
5% 0.5957 0.0034 0.0024 0.0024 0.0108 0.0116 0.0335 
6% 0.6275 0.0029 0.0019 0.0025 0.0112 0.0115 0.0354 
7% 0.6329 0.0026 0.0015 0.0025 0.0113 0.0115 0.0359 
8% 0.5854 0.0026 0.0011 0.0025 0.0107 0.0116 0.0327 
9% 0.6640 0.0021 0.0009 0.0024 0.0118 0.0115 0.0388 
10% 0.6883 0.0019 0.0007 0.0024 0.0123 0.0115 0.0414 

Note: The exchange rate data are sourced from Bloomberg. The estimation period is 1 November 1993-29 October 2001. 

The values of �  and �  under the generalised Pareto distribution are estimated with the maximum likelihood estimation on 
the exceedances of daily logarithm changes in the exchange rates. VaR and expected shortfall are calculated using each of 
the estimated parameters. 
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Table 11 

Estimation of the bivariate extreme value distribution of daily log changes 
of the Southeast Asian exchange rates 

Currencies �  1�  1�  1�  2�  2�  2�  

Indonesia (rupiah) Malaysia (ringgit) 1.2658 0.4088 0.0128 0.0084 0.7371 0.0030 0.0016 

Indonesia (rupiah) Philippines (peso) 1.3056 0.4088 0.0128 0.0084 0.4156 0.0046 0.0035 

Indonesia (rupiah) Singapore (dollar) 1.3316 0.4088 0.0128 0.0084 0.3256 0.0020 0.0028 

Indonesia (rupiah) Thailand (baht) 1.3855 0.4088 0.0128 0.0084 0.4298 0.0051 0.0035 

Malaysia (ringgit) Philippines (peso) 1.2578 0.7371 0.0030 0.0016 0.4156 0.0046 0.0035 

Malaysia (ringgit) Singapore (dollar) 1.5288 0.7371 0.0030 0.0016 0.3256 0.0020 0.0028 

Malaysia (ringgit) Thailand (baht) 1.3186 0.7371 0.0030 0.0016 0.4298 0.0051 0.0035 

Philippines (peso) Singapore (dollar) 1.3120 0.4156 0.0046 0.0035 0.3256 0.0020 0.0028 

Philippines (peso) Thailand (baht) 1.4267 0.4156 0.0046 0.0035 0.4298 0.0051 0.0035 

Singapore (dollar) Thailand (baht) 1.4364 0.3256 0.0020 0.0028 0.4298 0.0051 0.0035 

Note: The exchange rate data are sourced from Bloomberg. The estimation period is 1 November 1993-29 October 2001. 

The estimation is for the right tails of the logarithm changes. The tail probabilities are set at p1 = p2 = 0.1. 
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Table 12 

VaR and expected shortfall of the simulated sums of the exchange rates 

Currencies: Indonesia (rupiah) and Malaysia (ringgit)  Currencies: Indonesia (rupiah) and Philippines (peso) 

α=1.266 (Spearman's rho=0.340)  α=1.306 (Spearman's rho=0.195) 

 VaR (95%) VaR (99%) ES (95%) ES (99%)   VaR (95%) VaR (99%) ES (95%) ES (99%)

Frank 0.02337 0.06852 0.06079 0.15357  Frank 0.02464 0.06573 0.05481 0.12279 
Gaussian 0.02331 0.06958 0.06186 0.15783  Gaussian 0.02464 0.06746 0.05611 0.12702 
Gumbel 0.02257 0.07041 0.06412 0.17071  Gumbel 0.02408 0.07002 0.05855 0.13811 
           

Currencies: Indonesia (rupiah) and Singapore (dollar)  Currencies: Indonesia (rupiah) and Thailand (baht) 

α=1.332 (Spearman's rho=0.360)  α=1.386 (Spearman's rho=0.203) 

 VaR (95%) VaR (99%) ES (95%) ES (99%)   VaR (95%) VaR (99%) ES (95%) ES (99%)

Frank 0.02118 0.05993 0.04980 0.11490  Frank 0.02562 0.06788 0.05664 0.12629 
Gaussian 0.02133 0.06094 0.05061 0.11699  Gaussian 0.02551 0.07015 0.05830 0.13219 
Gumbel 0.02132 0.06270 0.05203 0.12180  Gumbel 0.02482 0.07298 0.06106 0.14513 
           

Currencies: Malaysia (ringgit) and Philippines (peso)  Currencies: Malaysia (ringgit) and Singapore (dollar) 

α=1.258 (Spearman's rho=0.151)  α=1.529 (Spearman's rho=0.154) 

 VaR (95%) VaR (99%) ES (95%) ES (99%)   VaR (95%) VaR (99%) ES (95%) ES (99%)

Frank 0.01161 0.03427 0.03382 0.09490  Frank 0.00844 0.02442 0.02660 0.08047 
Gaussian 0.01154 0.03504 0.03550 0.10266  Gaussian 0.00834 0.02558 0.02844 0.08865 
Gumbel 0.01111 0.03570 0.03648 0.10855  Gumbel 0.00811 0.02677 0.02919 0.09196 
           

Currencies: Malaysia (ringgit) and Thailand (baht)  Currencies: Philippines (peso) and Singapore (dollar) 

α=1.319 (Spearman's rho=0.448)  α=1.312 (Spearman's rho=0.473) 

 VaR (95%) VaR (99%) ES (95%) ES (99%)   VaR (95%) VaR (99%) ES (95%) ES (99%)

Frank 0.01232 0.03692 0.03583 0.09971  Frank 0.01043 0.02497 0.02116 0.04533 
Gaussian 0.01220 0.03778 0.03766 0.10826  Gaussian 0.01047 0.02588 0.02179 0.04721 
Gumbel 0.01166 0.03850 0.03884 0.11547  Gumbel 0.01035 0.02720 0.02288 0.05150 
           

Currencies: Philippines (peso) and Thailand (baht)  Currencies: Singapore (dollar) and Thailand (baht) 

α=1.427 (Spearman's rho=0.252)  α=1.436 (Spearman's rho=0.411) 

 VaR (95%) VaR (99%) ES (95%) ES (99%)   VaR (95%) VaR (99%) ES (95%) ES (99%)

Frank 0.01455 0.03650 0.03066 0.06663  Frank 0.01114 0.02754 0.02344 0.05152 
Gaussian 0.01440 0.03802 0.03185 0.07121  Gaussian 0.01114 0.02882 0.02427 0.05418 
Gumbel 0.01395 0.03992 0.03366 0.07996  Gumbel 0.01102 0.03037 0.02549 0.05885 
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Appendix A: 
Copula of multivariate exceedances 

This appendix explains the finding of Ledford and Tawn (1996) that the copula of multivariate 
exceedances converges to the extreme value copula. 

We consider the copula of multivariate maxima before considering the copula of multivariate 
exceedances. The following theorem gives the foundations for describing the asymptotic joint 
distribution of multivariate maxima (see Resnick (1987), Proposition 5.11 for the proof). 

Theorem 

Suppose that },,1);,{( 21 njZZ jj ��  are independent and identically distributed two-dimensional 
random vectors with the joint distribution function F. Also suppose that the marginal distribution of 
these two-dimensional random vectors is a Fréchet distribution. In other words, for each i, j, 

)1exp(]Pr[ ijijij zzZ ��� . Define the vector of component-wise maxima as ),,,max( 21, iniinZ ZZZM
i

�� . 
Then, the following holds:  
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H is a non-negative measure on [0,1] that satisfies the following condition: 
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0

1

0
��� �� sdHsssdH . 

Using this theorem, Ledford and Tawn (1996) show that the copula of multivariate exceedances 
converges to the bivariate extreme value copula as follows. 

Suppose that },,1);,{( 21 njZZ jj ��  are independent and identically distributed two-dimensional 
random vectors with the joint distribution function *F . Also assume that the marginal distribution of 

),( 21 ZZ  is a Fréchet distribution. In other words, for each i, )1exp(]Pr[ iii zzZ ��� . Based on 
Proposition 5.15 in Resnick (1987), *F  is within the domain of attraction of *G  if and only if the 
following holds: 
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As this is an asymptotic result, Ledford and Tawn (1996) assume that this also holds with a sufficiently 
large value of ctt � . That is, the following holds for a large value of ctt � : 
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Define jz�  as jcj ztz �� . With (A-2), the following holds when jz�  is above some high threshold j� : 

)1,1(log
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��
��� . (A-3) 

*G  satisfies the following condition since *G  is the extreme value distribution, 

)},(exp{),( 2121 zzVzzG ������ , (A-4) 



 

266 
 

where �
��

��

1

0
1

2
1

121 )(})1(,max{),( sdHzsszzzV . 

Here, H is a non-negative measure on [0,1] that satisfies 1)()1()(
1

0

1

0
��� �� sdHsssdH .  

As V is a homogeneous function of order �1, this leads to the following relation (where z�  is now 
expressed by z). 
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�
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� , (A-5) 

where K is a constant. 

To determine the value of K we consider the value of *F  at the threshold j� . If we suppose that this 
threshold value is the j��1  quantile, j�  is derived as )1log(1 jj ����� . Setting 

)1log(1 111 ������z  and ��2z  in (A-5), we obtain the following: 

}),)1log(1(exp{),)1log(1( 11* KVF ��������� . (A-6) 

The left-hand side of equation (A-6) is equal to 11 ��  because it is the distribution function at the 11 ��  
quantile. On the other hand, the right-hand side of equation (A-6) is equal to )}1log(exp{ 1���K , as 
shown below:  
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As )}1log(exp{1 11 ������ K , we find that K = �1. Setting this into (A-5), *F  is obtained as follows: 

)},(exp{),( 2121* zzVzzF �� , (A-8) 

where ),( 21 zzV  is the same as in (A-4). 

This shows that the asymptotic joint distribution of the multivariate exceedances whose marginal 
distribution is a Fréchet distribution is given by (A-8). 

We use this result to obtain the copula of multivariate exceedances whose marginals are not Fréchet 
distributions. Define iu  as )1exp(]Pr[ iiii zzZu ���� . Set ii uz log1��  into 

)},(exp{),( 2121 zzVzzG ��  to obtain the following copula: 

)}
log

1,
log

1(exp{),(
21

21 uu
VuuC ���� , (A-9) 

where ),( 21 zzV  is the same as (A-4). 

With copula invariance, this is the copula of exceedances for all marginals since the copula is invariant 
under increasing continuous transformations.49 

                                                      
49  Proposition 5.10 in Resnick (1987) shows that this approach is appropriate. 
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Appendix B: 
Tail risk of VaR under the generalised Pareto distribution 

This appendix analyses the tail risk of VaR under the generalised Pareto distribution employing 
Feller�s convolution theorem.50 We assume that the marginal distributions of asset losses are the 
generalised Pareto and have the same tail index. 

This assumption is different from the assumption in Sections 3 and 4 in two aspects. First, in 
Sections 3 and 4, we assume that only the exceedances follow the generalised Pareto distribution. In 
this appendix, we assume that the both exceedances and non-exceedances follow the same 
generalised Pareto distribution. Second, in Sections 3 and 4, we assume that the tail index is different 
among assets. In this appendix, we assume that the tail index is equal across assets. Thus, under the 
assumption in Sections 3 and 4, we are unable to employ the convolution theorem used in this 
appendix. 

Feller (1971, p 278) and Embrechts et al (1997, Lemma 1.3.1) utilise the convolution theorem for 
regularly varying distribution functions to examine the properties of the sum of the independent 
random variables with the same tail index. We explain their conclusions, incorporating our concept of 
tail risk. 

Suppose that two independent random variables Z1 and Z2 have the same distribution functions as 
follows: 
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, )1(1)( xxG . (B-1) 

The distribution function of the sum of the two random variables Z1 and Z2 is derived from the 
convolution of equation (B-1), as follows: 
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The function )(1)( ,, xGxG ���� ��  is transformed as follows: 
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Since the term ��

������ 1))(1( xx  on the right-hand side of equation (B-3) is slowly varying,51 using 
Feller�s convolution theorem (see Feller (1971, p 278), or Embrechts et al (1997, Lemma 1.3.1), the 
following relation holds when the value of x is sufficiently large: 
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where )(1)( xHxH �� . Therefore, the distribution function of the sum of two independent random 
variables Z1 and Z2 is as follows, when the value of x is sufficiently large: 
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50 Geluk et al (2000) adopt Feller�s convolution theorem for analysing the portfolio diversification effect under fat-tailed 

distributions. 
51  Slowly varying functions are those functions L(x) that satisfy the following condition (see Feller (1971) for details): 
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Meanwhile, the distribution function of the sum of two fully dependent random variables whose 
distribution function is given by (B-1) follows the same distribution as 2Z1. Thus, the distribution 
function I(x) of the sum of two fully dependent variables is given below:  
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,11 2
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VaR has tail risk when the two distribution functions H(x) and I(x) intersect (that is, when there is a 
solution to H(x) = I(x)), and when the VaR confidence level is lower than the cumulative probability of 
this intersection. In the case of 1�� , there is a solution to H(x) = I(x), and the cumulative probability 

)(�p  at the intersection is as follows:52 
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With some calculations (B-7), we find that the tail index must be 0.9 or higher for VaR to have tail risk 
at the confidence levels of 95% and 99%.  

The tail index is 0.9 or higher only when the distribution is so fat that the 1.2-th moment is infinite. 
Such a fat-tailed distribution is rarely found in financial data. Thus, under the assumptions of this 
appendix, we find that VaR does not have tail risk as long as the confidence level is sufficiently high. 
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