Credit Spreads and Real Activity

Philippe Mueller

Columbia Business School

Risk Transfer Mechanisms and Financial Stability Workshop, Bank for International Settlements Basel, Switzerland 29-30 May 2008

What is the relationship between conditions in credit markets and the real economy?

- FOMC statement, April 30, 2008: "Financial markets remain under considerable stress, and tight credit conditions [...] are likely to weigh on economic growth over the next few quarters."
- Vice Chairman Kohn, May 20, 2008: "[...] the tightening of financial conditions as a result of stresses in financial markets has been an important factor in the recent slowdown of the U.S. economy."

Specifically, the questions this paper addresses are:

- Do credit spreads forecast future GDP growth?
- What drives the predictive content of credit spreads?
- Is it possible to link the forecasting power to conditions in the credit markets?

In this paper, I

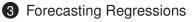
- build a macro-finance term structure model
- jointly model the dynamics of credit spreads, Treasury yields and macro variables
- verify the predictive power of credit spreads for GDP growth
- identify drivers of credit spreads and the sources of the predictive power
- relate factors in the model to credit conditions

- Credit spreads across the whole term structure contain information to predict future GDP growth
- Predictability has two sources:
 - History of GDP growth and inflation contribute to predictive power at short horizons
 - "Credit factor", which is independent of the macro variables is most important contributor to forecasting power
- Credit factor can be interpreted as a proxy for credit conditions
- Results are consistent with the presence of a transmission channel from borrowing conditions to the economy

Outline

Introduction

2 Data



- 4 Macro-Finance Term Structure Model
- **5** Estimation Results Model Fit Determinants of Credit Spreads Sources of Forecasting Power Alternative Macro Factors **Recent Developments**

Conclusion

- 3 Forecasting Regressions
- 4 Macro-Finance Term Structure Model
- 5 Estimation Results Model Fit Determinants of Credit
 - Sources of Forecasting Power
 - Alternative Macro Factors
 - Recent Developments

- Quarterly CPI and real GDP growth rates (FRED)
- Unsmoothed zero-coupon Treasury yields (maturities 3m to 10y) starting in 1971 (provided by Rob Bliss)
- Zero-coupon corporate bond yields (*AAA* to *B*) for the whole term structure (maturities 3m to 10y) starting in 1992 (Bloomberg)

3 Forecasting Regressions

4 Macro-Finance Term Structure Model

5 Estimation Results

Model Fit Determinants of Credit Spreads Sources of Forecasting Power Alternative Macro Factors Recent Developments

6 Conclusion

Regress future GDP growth for horizon k quarters on credit spreads for rating class i and maturity τ quarters, and on control variables:

$$g_{t,k} = \alpha_k(\tau) + \beta_k(\tau)CS_t^i(\tau) + controls + u_{t+k}$$

The control variables are

- Current and lagged GDP growth
- Current and lagged inflation
- 5-year term spread
- Short rate

Credit Spread Regressions

Coefficient Estimates

Regress future GDP growth for horizon k quarters on credit spreads for rating class i and maturity τ quarters, and on control variables:

	AAA 1	l yr	AAA 10 yrs		<i>B</i> 1 yr		<i>B</i> 10 yrs	
Horizon	$\beta_k^{AAA}(4)$	R^2	$\beta_k^{AAA}(40)$	R^2	$\beta_k^B(4)$	R^2	$\beta_k^B(40)$	R^2
(Obs.)	P_k (4)	$\bar{R^2}$	β_k (40)	$\bar{R^2}$	$P_k(\mathbf{r})$	$\bar{R^2}$	$P_k(40)$	$\bar{R^2}$
1 qrt	-2.75	0.21	-2.16	0.26	-0.49	0.27	-0.61	0.26
(55)	(1.90)	0.09	(1.09)	0.15	(0.16)*	0.16	(0.22)*	0.15
2 qrts	-2.94	0.25	-2.36	0.35	-0.50	0.36	-0.56	0.31
(55)	(1.64)	0.14	(1.01)*	0.25	(0.14)*	0.26	(0.20)*	0.21
1 yr	-2.06	0.24	-2.82	0.54	-0.44	0.38	-0.67	0.45
(55)	(1.30)	0.13	(0.80)*	0.47	(0.13)*	0.29	(0.17)*	0.37
2 yrs	-1.74	0.23	-2.81	0.71	-0.29	0.30	-0.48	0.39
(54)	(0.88)	0.11	(0.62)*	0.67	(0.12)*	0.20	(0.15)*	0.30
3 yrs	-2.11	0.25	-2.48	0.73	-0.29	0.27	-0.52	0.42
(50)	(0.68)*	0.13	(0.55)*	0.69	(0.13)*	0.15	(0.16)*	0.32

 $g_{t,k} = \alpha_k(\tau) + \beta_k(\tau) CS_t^i(\tau) + controls + u_{t+k}.$

Hodrick (1992) 1B standard errors in parentheses. * denotes significantly different from zero at 5% level. Sample

period: 1992:Q2-2005:Q4, GDP data is included up to 2007:Q3.

- The whole term structure of credit spreads across rating classes contains relevant information
- Results suggest that a number of common factors drive the forecasting power
- Regression approach does not allow to systematically analyze which spreads are most informative

3 Forecasting Regressions

4 Macro-Finance Term Structure Model

Estimation Results

Model Fit Determinants of Credit Spreads Sources of Forecasting Power Alternative Macro Factors Recent Developments

6 Conclusion

Allows to disentangle the drivers of credit spreads and identify sources of predictability

- Does predictability work through channel of term premia or through expectations?
- What is the contribution of the history of the macro variables to the forecasting power?
- Which other factors that drive credit spreads are relevant for forecasting future GDP growth
- How can the (latent) finance factors be interpreted?

Objective probability measure: $\mathbb P$

State vector follows Gaussian VAR(1):

$$z_t = \mu + \Phi z_{t-1} + \Sigma \epsilon_t$$

where $\epsilon_t \sim N(0, I)$

State vector - GDP growth, inflation, 3 finance factors:

$$z_t = (g_t, \pi_t, x_{1t}, x_{2t}, x_{3t})$$

Short rate:

$$r_t = \delta_0 + \delta'_z z_t$$

Yields and Spreads

Stochastic discount factor:

$$\xi_t = -r_{t-1} - \frac{1}{2}\Lambda_{t-1}'\Lambda_{t-1} - \Lambda_{t-1}\epsilon_t$$

Essentially affine risk premia:

$$\Lambda_t = \Lambda_0 + \Lambda_z z_t$$

Treasury yields:

$$y_t^T(\tau) \triangleq a^{\mathbb{P}}(\tau) + b^{\mathbb{P}}(\tau)'z_t + a^{TP}(\tau) + b^{TP}(\tau)'z_t$$

Short rate expectations Term premium

Credit spreads:

$$CS_{t}^{i}(\tau) \triangleq a^{i,\mathbb{P}}(\tau) + b^{i,\mathbb{P}}(\tau)'z_{t} + a^{i,TP}(\tau) + b^{i,TP}(\tau)'z_{t}$$

Short rate expectations Term premium

Model estimation via ML using Kalman filter for the common sample period 1992:2-2005:4 Observation equations:

- GDP growth and inflation
- Treasury yields:

$$y_t^T(\tau) = a^{\mathbb{Q}}(\tau) + b_m^{\mathbb{Q}}(\tau)' m_t + b_x^{\mathbb{Q}}(\tau)' x_t + \varepsilon_t$$

• Credit spreads:

$$CS_t^i(\tau) = a^{i,\mathbb{Q}}(\tau) + b_m^{i,\mathbb{Q}}(\tau)'m_t + b_x^{i,\mathbb{Q}}(\tau)'x_t + \varepsilon_t^i$$

- 3 Forecasting Regressions
 - 4 Macro-Finance Term Structure Model

5 Estimation Results

Model Fit Determinants of Credit Spreads Sources of Forecasting Power Alternative Macro Factors Recent Developments

Forecasting Power of Implied Credit Spreads

- Do model implied spreads pick up predictability in actual spreads?
 - \Rightarrow Yes.
- Is there predictability in estimation errors

 \Rightarrow Very little: only for high grade credits, long maturities and long horizons.

• Are implied spreads better predictors than actual spreads? \Rightarrow In some cases.

• What factors driving credit spreads are responsible for the forecasting power?

 \Rightarrow First, examine contribution of GDP growth and inflation

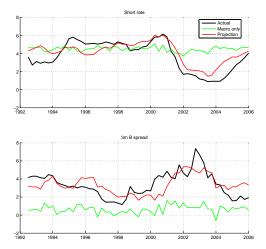
• Problem: macro variables are correlated with finance factors

 \Rightarrow Need to separate out influence of macro factors from everything else

• Solution: construct orthogonalized residuals using dynamic projection

Projection

 $CS_t^i(\tau) = a^{i,\mathbb{Q}}(\tau) + b_m^{i,\mathbb{Q}}(\tau)'m_t + b_x^{i,\mathbb{Q}}(\tau)'\widehat{x}(M_t) + b_x^{i,\mathbb{Q}}(\tau)'f_t$



ы

The Projection Component

Coefficient Estimates

Regress future GDP growth, $g_{t,k}$, for *k* quarters on macro component of credit spreads, $\widehat{CS}^{i}_{M,t}(\tau)$:

$g_{t,k} =$	$\alpha_k(\tau) +$	$\beta_k^{i,M}$	$(\tau)CS^{i}_{M,t}(\tau)$	$+ u_{t+k}$.
-------------	--------------------	-----------------	----------------------------	---------------

	AAA 1		AAA 10 yrs		<i>B</i> 1 yr		<i>B</i> 10 yrs	
Horizon	$\beta_k^{i,M}(4)$	$\frac{R^2}{\bar{R^2}}$	$\beta_k^{i,M}(40)$	R^2	$\beta_k^{i,M}(4)$	$\frac{R^2}{\bar{R^2}}$	$\beta_k^{i,M}(40)$	R^2
(Obs.)	P_k (4)	R^2	β_k (40)	$\bar{R^2}$	β_k (4)	R^2	ρ_k (40)	$\overline{R^2}$
1 qrt	-0.50	0.07	-0.50	0.07	-0.48	0.06	-0.56	0.09
(55)	(0.26)	0.05	(0.24)*	0.05	(0.26)	0.05	(0.21)*	0.07
2 qrts	-0.48	0.11	-0.54	0.14	-0.45	0.10	-0.58	0.17
(55)	(0.24)*	0.10	(0.23)*	0.13	(0.25)	0.08	(0.20)*	0.15
1 yr	-0.42	0.13	-0.47	0.16	-0.29	0.06	-0.45	0.15
(55)	(0.20)*	0.11	(0.19)*	0.15	(0.25)	0.04	(0.17)*	0.14
2 yrs	-0.29	0.09	-0.38	0.16	-0.07	0.01	-0.29	0.10
(54)	(0.15)	0.08	(0.16)*	0.15	(0.24)	0.01	(0.15)	0.08
3 yrs	-0.11	0.02	-0.26	0.10	0.12	0.02	-0.12	0.02
(50)	(0.13)	0.00	(0.14)	0.08	(0.22)	0.00	(0.15)	0.00

Hodrick (1992) 1B standard errors in parentheses. * denotes significantly different from zero at 5% level. Sample period: 1992:Q2–2005:Q4, GDP data is included up to 2007:Q3.

Do Credit Spreads Contain Unique Information?

- What about information contained in orthogonalized residuals?
- Is there a common "credit factor" that is important for driving credit spreads AND has forecasting power?

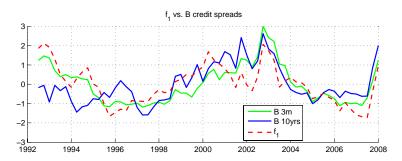
Exploit latent factor indeterminacy to identify the credit factor:

- First, rotate factors such that they are orthogonal to each other
- Then, fix the rotation such that the factor loading of 3-month *B* spread is maximized

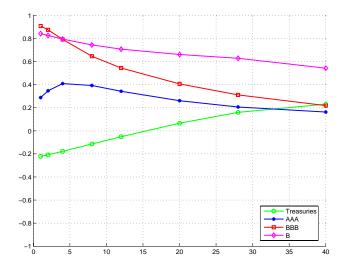
The Credit Factor and Credit Spreads

Correlation of f_1 with selected credit spreads

	3 months	2 years	7 years
В	81%	74%	58%
BBB	70%	69%	48%
AAA	14%	45%	25%



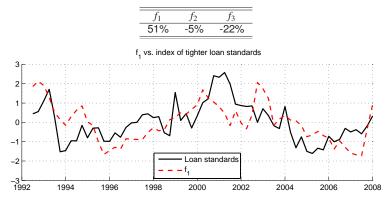
Normalized Factor Loadings: Credit Factor



4 Columbia Business School

Index of Tighter Loan Standards

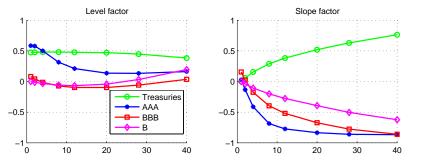
Correlations of the Index of Tighter Loan Standard with finance factors



Correlations of f_2 with selected interest rates

	3 months	2 years	7 years	Fed funds targ	et	
	75%	73%	55%	73%		
		f ₂ vs. Fed	eral funds targ	et rate		
3		· · · · · · · · · · · · · · · · · · ·	- Fed funds tar	get		
2	'nΛ		• f ₂			· · · · · .
1	· / X		A			\bigwedge
	<i>;</i> / 1 V		\searrow	\sim	1.1	
	//	1~		₩ <u>₩</u> , \	- (
-1 - 1 - 1	7		`	$\langle \rangle $	<u> (</u>	
				- N	// ¥	
-2				\sim		
_3 1992 19						
1992 19	94 1996	1998	2000	2002 2004	2006	2008

Normalized Factor Loadings: Level and Slope Factors



		credit (f ₁)	level (f_2)	slope (f ₃)
Treasury yields	short	—	++	0
ileasury yielus	long	+	++	++
AAA spreads	short	++	++	0
	long	+	+	
DDD on roado	short	+ + +	0	0
BBB spreads	long	+	+	
Ronroado	short	+ + +	0	0
B spreads	long	++	0	

Forecasting Power of the Finance Factors

Regress future GDP growth on the orthogonalized residuals

$$g_{t,k} = \alpha_k + \beta_k^{f_j} f_{j,t} + u_{t+k},$$

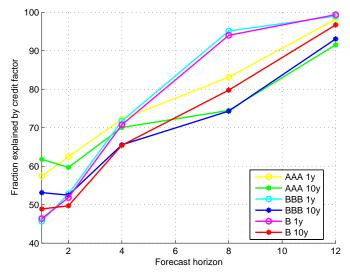
for $j = \{1, 2, 3\}$ and f_j denotes the credit, level and slope factors, respectively.

	credit (f ₁)		level	(f ₂)	slope (f ₃)	
Horizon	$\beta_k^{f_1}$	R^2	$\beta_k^{f_2}$	R^2	$\beta_k^{f_3}$	R^2
(Obs.)	β_k	$\bar{R^2}$	ρ_k	$\bar{R^2}$	ρ_k	$\bar{R^2}$
1 qrt	-0.50	0.07	0.37	0.04	0.36	0.04
(55)	(0.25)*	0.05	(0.23)	0.02	(0.24)	0.02
2 qrts	-0.52	0.13	0.22	0.02	0.27	0.04
(55)	(0.25)*	0.12	(0.23)	0.00	(0.23)	0.02
1 yr	-0.54	0.21	0.07	0.00	0.23	0.04
(55)	(0.21)*	0.20	(0.20)	0.01	(0.21)	0.02
2 yrs	-0.48	0.26	0.15	0.03	0.20	0.05
(54)	(0.18)*	0.24	(0.15)	0.01	(0.16)	0.03
3 yrs	-0.64	0.54	0.25	0.10	0.26	0.11
(55)	(0.18)*	0.53	(0.13)	0.08	(0.16)	0.09

Hodrick (1992) 1B standard errors in parentheses. * denotes significantly different from zero at 5% level. Sample period: 1992:Q2–2005:Q4, GDP data is included up to 2007:Q3. Credit factor and macro factors capture virtually all predictive power (higher R^2 s than actual credit spreads)

- Macro factors relevant for short maturities and horizons
- credit factor (f_1) strong contributor for longer horizons
- In multivariate regressions, level and slope factors (*f*₂ and *f*₃) still insignificant

Relative Contribution of Credit Factor



4 Columbia Business School

Replace observable macro factors GDP growth and inflation by:

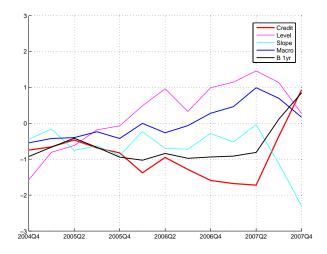
- Real time data
- Principal components of large macro data set

Correlation of original data with factors using alternative macro data:

	GDP	inflation	credit	level	slope
real time data	67%	100%	93%	79%	95%
principal components	-57%	13%	79%	60%	48%

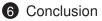
The Credit Factor 2005-2008

Normalized B 1-year spreads and components



4 Columbia Business School

- 3 Forecasting Regressions
- 4 Macro-Finance Term Structure Model
- 5 Estimation Results
 - Model Fit Determinants of Credit Spreads Sources of Forecasting Power Alternative Macro Factors Recent Developments



- Provide a framework that allows disentangling drivers of credit spreads and gives useful interpretation
- Decompose credit spreads into separate components and link them back to future GDP growth
- Identify a credit factor that is independent of the macro variables and is useful in predicting future real activity over and above information contained in the observable macro variables

- Observable macro variables and the credit factor capture virtually all predictive power inherent in credit spreads
 - Current and lagged inflation and GDP growth are especially important for short horizon forecasts and longer maturity spreads
 - Credit factor is relevant for all spreads at all forecast horizons

- The credit factor is highly correlated with the index of tighter loan standards and can be interpreted as a proxy for credit conditions
- The results are consistent with the existence of a transmission channel from borrowing conditions to real activity
- I plan to further investigate the link between credit conditions and the real economy in a more structural model

