Discussion: "Solvency Regulation and Credit Risk Transfer" Cerasi and Rochet

Workshop on Risk Transfer Mechanisms and Financial Stability Basel, May 30, 2008

Janet Mitchell, National Bank of Belgium and CEPR

Idea of paper

- Show the impact of credit risk transfer activities on bank regulation
 - Credit default swaps and loan sales
 - CDSs and loan sales are complements, not substitutes (loan sales used for funding, not for risk reduction)
- Environment: capital regulation aligns bank incentives
 - Reduce ex ante PDs of loans, rather than protecting depositors from loan defaults
- Very interesting paper, but <u>not easy to read</u>
 - Special role of CDSs interesting
 - Special role of loan sales less convincing

Building blocks of model

Static model

Period 0: Deposits raised and Loans extended. (Capital is "inside capital" and its level is exogenous)

Period 1: Loans pay:

If monitored: R with pr. p; 0 otherwise If not monitored: R with pr. $p - \Delta p$; 0 otherwise

$$\begin{array}{ll} \blacktriangleright & L_{0}+\pi=E_{0}+D_{0} & \text{Bank balance sheet} \\ E_{0}=L_{0}-pD_{0} & \text{Fair deposit insurance premium: } \pi=(1-p)D \\ D_{0}=\left(R-B/\Delta p\right)L_{0} & \text{Incentive compatibility: bank receives (B/\Delta p)L_{0};} \\ \equiv \max \\ E_{0}=\{1-p\;(R-B/\Delta p)\}L_{0}=k_{s}L_{0} & \text{Bank capital aligns incentives} \end{array}$$

-p)D

Building blocks of model

Static model

Period 0: Deposits raised and Loans extended. (Capital is "inside capital" and level is exogenous)
 Period 1: Loans pay:
 If monitored: R with probability p; 0 otherwise

If not monitored: R with pr. (1 - p); 0 otherwise

•
$$L_0 + \pi = E_0 + D_0$$

 $E_0 = L_0 - pD_0$
 $D_0 = (R - B/\Delta p) L_0$
 $E_0 = k_s L_0$

Fair deposit insurance premium

Maximum pledgeable income to deposits

More motivation needed for nature of shock No change in loan PDs All loan returns reduced by fixed amount in State –

Presentation

$$D_0 = \min \{ (R - B/\Delta p) L_0; (R - B/\Delta p) L_0 - \alpha L_0 \}; \\ k = k_s + p\alpha$$

Presentation

Not a traditional CDS; payment not conditioned on default

 $D_0 = (R - B/\Delta p) L_0 - q\alpha L_0$; $\Rightarrow k = k_s + qp\alpha$

Dynamic model with no loan shock but new lending opportunity

- Suppose at period ½ new lending opportunity arises: bank can extend new loans up to βL₀
- Suppose bank issues bond to raise the funds. Will need to promise bondholders (β/p)L₀ in order for them to be willing to supply finance
- Pledgeable income to deposits: $D_0 = (R - B/\Delta p)(1 + \beta) L_0 - (\beta/p)L_0$

 $\mathbf{k} = \mathbf{k}_{\rm s}(1 + \boldsymbol{\beta})$

Dynamic model with loan return shock and new lending opportunity

Scope for insurance: Pay $q \cdot (Difference in pledgeable income in States + and -)$ Receive $(1-q) \cdot (Difference in pledgeable income in States + and -)$

Dynamic model with loan return shock and new lending opportunity

Implementation of optimal policy (Prop. 3)

► $k = k_s (1 + \beta) + pqW$,

where W = Pledgeable income in State+ - Pledgeable income in State-

CDSs used to transfer income across states + and -

- Bank may buy or sell protection against shock
- CDSs provide state-contingent adjustments to regulatory K
- In order to induce bank only to extend new loans in State +, need state-contingent capital requirements:

State +: $k = k_s (1 + \beta)$

State – : $k = k_s + p\alpha$

- New lending assumed to be via loan sales of a fraction y of original portfolio L₀, where yL₀ > βL₀
 - Price paid for an existing loan is less than 1

Loan sales

- Are effectively asset-backed securities. Represent a securitization of the original portfolio where outside investors own a fraction of the portfolio
 - Amount of money raised from investors equals βL_0
 - Securitization of new loans (βL_0) would also work
- The terms of the securitization are not clear. What stays on bank's balance sheet? What is the impact on capital requirements?
 - Potential inconsistency in interpreting y as fraction of loans to outside investors when their payment is less than Ry?
 - Unless bank is considered to be the servicer of the loans, with fee equal to $(B/\Delta p)\cdot L_0$
- Wouldn't having bank issue debt in amount of βL₀ give same results?

Conclusion

- A paper with interesting ideas
- Exposition could be improved
- I look forward to seeing the next version!

