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The research questions & method

The questions:

• Can you exploit the joint time-series behaviour of default rates and
recovery rates to characterize and forecast credit risk?

• How bad is it to treat recovery rates as constant (or independent of
default probabilities)?

The method:

• We propose an econometric model in which both the time variation in
default probabilities and recovery rate distributions is driven by an
unobserved Markov chain, the “credit cycle”.
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Related literature

• Default probabilities or rating transitions vary over time, and are
related to macro variables.
(Bangia et al. (2002), Nickell et al. (2000))

• Recovery rates and default probabilities are contemporaneously
negatively related.
(Altman et al. 2006, Acharya et al. 2007)

• Recovery rates and default probabilities can be modelled as functions
of observed covariates.
(Chava et al. 2006)

• Theory:

• Recovery rates should be related to the state of the industry: Shleifer
and Vishny (1992).

• RBC and credit: Bernanke and Gertler (1989), Williamson (1987)
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Summary of results

Observed covariates versus latent factor:

• The proposed model describes the data well, and does better than
many models based on observed covariates.

• E.g. out-of-sample rolling RMSE for predicted recovery rates is
22.86%. (Chava et al. 2006: 24.96%)

We can use the estimated model to look at what happens when we go
from constant to time-varying recovery rate distributions. We get

• higher estimates of tail risk,
(for a sample portfolio, the 99% VaR goes from 2.6% to 2.9%.)

• the same expected losses,

• bigger swings in spreads over the cycle. Average spreads over the
cycle are not affected.

Caveats?
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The basic idea

The DGP works as follows:

• The state of the credit cycle is determined by a two-state Markov
chain.

• The number of defaulting firms is drawn using the state-dependent
default probability.

• For each defaulting firm, we draw a recovery rate from the
state-dependent recovery rate distribution.

Dependence:

• Conditional on the state, defaults are independent, recoveries between
firms are independent, and the number of defaulting firms and
recoveries are independent.

• As a consequence, (unconditional) dependence is driven entirely by
the (unobserved) state of the credit cycle.
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Specific assumptions about functional forms

• Conditional on the state of the cycle, default arrival is described by
discrete hazards of the form

λt = (1 + exp {γ0 + γ1ct + γ2Xt})−1 .

(t: time, ct: cycle, Xt: economy-wide variables)

• Recoveries for each default event are drawn from a beta distribution.

• The parameters of this beta distribution are given by:

αtis = exp {δ0 + δ1ct + · · ·+ δ6Xt} (1)

βtis = exp {ζ0 + ζ1ct + · · ·+ ζ6Xt} (2)

(i: firm, s: seniority)
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Estimation

• The model can be easily be estimated using a version of the Hamilton
filter (MLE).

• For this we need the number of defaulting firms, and non-defaulting
firms in each period, and a recovery rate for each default event.
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Data sources

We use data from two main sources,

• the Altman-NYU Salomon Center Corporate Bond Default Master
Database, consisting of prices just after default of more than 2,000
bonds of US firms from 1974 to 2005, with issuers and dates, and a
“bond category”,

• and the annual default rates reported in Standard & Poor’s Quarterly
Default Update from May 2006.

Assuming that both the Altman data and Standard & Poor’s data exhibit
the same default rates, we can obtain the number of non-defaulting firms
in each year.

• We augment this with GDP growth, investment growth,
unemployment, the S&P 500 index, the VIX, the slope of the term
structure, and an NBER recession indicator.
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Macro variables versus the business cycle

Model 1 Model 2 Model 3 Model 4
Explanatory variables for λ (default probability)

constant constant constant constant
cycle log GDP growth cycle

log GDP growth
Explanatory variables for α,β (recovery rates)

constant constant constant constant
cycle log GDP growth cycle

log GDP growth
senioritya senioritya senioritya senioritya

AIC -37.73 -405.31 -128.96 -412.79
BIC 0.0727 -0.1549 0.0188 -0.1290

=⇒ Macro variables are significant, but do not contribute much to the
fit.
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Is the business cycle = credit cycle?
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• The estimated credit downturns start earlier than NBER recessions,
and end later.

• We investigate lead-lag relationships between macro variables and
credit variables and find that recovery rates Granger cause log GDP
growth (very significant!).
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VaR Simulation (1)
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VaR Simulation (1)
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VaR Simulation (2)
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VaR Simulation (3)
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Expected Loss

Expected loss is not affected

• Suppose
PD|E = 2% L|E = 30%
PD|R = 10% L|R = 70%

P (E) = 1/2

=⇒ E[L] = 50%, E[PD] = 6%.
Therefore

E[L · PD] = .5× 30%× 0.02 + .5× 70%× 0.1 = 3.8%
E[L] · E[PD] = 3%

=⇒ E[L · PD]− E[L] · E[PD] = 80bp

• But E[L · PD]− E[L]E[PD] = Cov(L,PD).
• In our data, Cov(avg. L, dfr) = 5bp.
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Some conclusions

• We propose an econometric model in which default rates and recovery
rates are driven by an unobserved Markov chain.

• This describes the data well, and does better than many models
based on observed covariates.

We can use the estimated model to look at what happens when we go
from constant to time-varying recovery rate distributions. We get

• higher estimates of tail risk,

• the same expected losses,

• bigger swings in spreads over the cycle. Average spreads over the
cycle are not affected.
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