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Abstract

We introduce the technique of worst case search to macro stress test-
ing. Among the macroeconomic scenarios satisfying some plausibility
constraint we determine the worst case scenario which causes the most
harmful loss in loan portfolios. This method has three advantages over
traditional macro stress testing: First, it ensures that no harmful sce-
narios are missed and therefore prevents a false illusion of safety which
may result when considering only standard stress scenarios. Second, it
does not analyse scenarios which are too implausible and would therefore
jeopardize the credibility of stress analysis. Third, it allows for a portfolio
specific identification of key risk factors. Another lesson from this paper
relates to the use of partial stress scenarios specifying the values of some
but not all risk factors: The plausibility of partial scenarios is maximised
if we set the remaining risk factors to their conditional expected values.

1 Introduction

Macro stress testing has become an important method of risk analysis for lending
acitivities. This paper introduces the technique of worst case analysis to macro
stress testing. Among the macroeconomic scenarios satisfying some plausibility
constraint we determine the worst case scenario which causes the most harmful
loss. In this way one can be sure not to miss out any harmful but plausible
scenarios, which is a serious danger when considering only standard stress sce-
narios.

This kind of systematic worst case analysis with plausibility constraints was
developed for market risk stress testing, see Breuer and Krenn [1999] and Čihák
[2004, 2007]. The loss in the worst case scenario can also be regarded as risk
measure. As such it was originally introduced under the name Maximum Loss
by Studer [1999, 1997]. Maximum Loss is a coherent risk measure in the sense
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of Artzner et al. [1999]. Actually, it is the prototype of a coherent risk measure
because by a duality argument every coherent risk measure can be represented
as Maximum Loss over some set of generalised scenarios, see Delbaen [2003] and
Pflug and Roemisch [2007]. As a risk measure Maximum Loss has two advan-
tages over Value at Risk. First, it is coherent and therefore can be the basis of
economic capital allocation to subportfolios. Secondly, it provides information
about which economic situations are really harmful and suggests possible coun-
teraction to reduce risk in case it is considered unacceptable, see Breuer et al.
[2002].

Stress testing started in market risk analysis but in recent years it has been
applied to macro analysis as well. A brief introduction into macro stress testing
as well as an overview of EU country-level macro stress testing practices is given
in a special feature of the Financial Stability Report of the European Central
Bank [2006]. According to the ECB, macro stress testing is a way of quantifying
the link between macroeconomic variables and the health of either a single
financial institution or the financial sector as a whole. A detailed introduction
into the topic and an overview of related literature is given in Sorge [2004]. In
many countries, central banks’ endeavour with macro stress testing was boosted
by the IMF running a Financial Sector Assessment Program (FSAP). For details
see Blaschke et al. [2001] and Jones et al. [2004]. A stress analysis of sector
concentration risk in credit portfolios is given in Bonti et al. [2005]. Our paper
adds to this literature by introducing the technique of worst case search to macro
stress testing. However, we perform macro stress tests only of loan portfolios
but not of a whole banking system.

The rest of the paper is structured as follows. First, in Section 2 we develop
a methodology of macro stress testing and worst case analysis. In Section 3 we
develop a model describing both macro and credit risk as well as their interaction
in loan portfolios. On the basis of this model in Section 4 we apply the general
methodology to loan portfolios and derive implications for their risk structure.

2 Macro Stress Testing Methods

We assume the following framework for our discussion of macro stress testing.

Assumption 1. The value of the portfolio is a function of n macro1 risk factors
r = (r1, . . . , rn) and of m idiosyncratic risk factors ε1, . . . εm, one for each
counterparty. The macro risk factor changes are distributed elliptically with
covariance matrix Cov and expectations µ. The idiosyncratic risk factors may
be continuous or discrete.

The definition and some basic facts about elliptical distributions can be
found in the Appendix.

1The term ‘macro’ could sometimes be replaced by ‘systematic’ or by ‘market’, since the
macro risk factors often play the role of systematic risk factors, and they include interest
rates and exchange rates, which are market prices. We will use the term ‘macro’ risk factors
without denying the appropriateness of other expressions.
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2.1 Traditional Macro Stress Tests

Standard macro stress testing picks some macro scenarios, often historical sce-
narios or standard scenarios popular in the industry, or specific scenarios com-
bining risk factor moves the bank considers dangerous to its sub-portfolios.
Assigning values only to macro risk factors excludes a stress analysis of idiosyn-
cratic risk factors. Analysing changes in the idiosyncratic risk factors refering to
the most important counterparties is an important stress testing exercise, but
it is not part of macro stress testing.

Measuring plausibility of scenarios Good practice in stress testing is to
identify scenarios which have harmful implications for the portfolio and at the
same time are not completely implausible. We propose to measure the plausi-
bility of macro scenarios by the Mahalanobis distance:

Maha(r) :=
√

(r − µ)T · Cov−1 · (r − µ),

where r, µ, and Cov only refer to the macro risk factors fixed by the scenario.
Intuitively, Maha(r) can be interpreted as the number of standard deviations
of the multivariate move from µ to r. Maha takes into account the correla-
tion structure between the risk factors. A high value of Maha implies a low
plausibility of the scenario r.

Defining plausibilty in terms of Maha overcomes the problem of dimensional
dependence of MaxLoss. Earlier work on MaxLoss defined plausibility in terms
of the probability mass of the ellipsoid of all scenarios of equal or lower Maha,
see Studer [1999, 1997] or Breuer and Krenn [1999]. For example, MaxLoss was
taken to be the worst loss among all scenarios within an ellipsoid of probabil-
ity mass 0.95. One problem with this measure of plausibility is dimensional
dependence. The probability mass of a ellipsoid of Maha radius k is

∫
Maha(r)≤k

f(r) d(r) =
πn/2

Γ(n/2)

k2∫
0

tn/2−1g(t)dt, (1)

where g is the generating function of the elliptical density. (For the multivariate
normal g(t) = exp (−t2/2).) The probability mass of an ellipsoid with Maha
radius k, as given by equation (1), depends on the number of dimensions n.
With increasing n the probability mass of ellipsoids with fixed k gets smaller.
The number of dimensions, however is to some degree arbitrary. One is free to
include or to exclude risk factors on which the portfolio value does not depend,
or which are very highly correlated to other risk factors already included in the
description. If one defined plausibility in terms of probability mass, one would
have to increase the radius k as the number of dimensions gets higher in order
to achieve the same probability mass. This will lead to a higher MaxLoss for
the same portfolio. In other words, if one defined plausibility in terms of the
probability mass of the ellipsoid containing all scenarios with equal or lower
Maha, then MaxLoss depends on the number of dimensions, which is to some
degree arbitrary.

Since we characterise the admissibility domain by its Mahalanobis radius
instead of its probability mass, the inclusion of irrelevant risk factors, or of
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risk factors which are highly correlated to other risk factors does not affect
Maximum Loss. For details on how to overcome dimensional dependence, see
Breuer [2006].

Partial scenarios A macro stress scenario is partial if it fixes the values of
some but not all macro risk factors. Let us call the risk factors whose value
is specified by the partial macro scenario ‘the fixed risk factors’. For example,
in the scenario ‘The e falls by 20% against the CHF’ the fixed risk factor is
the CHF/e rate. The standard stress testing procedure then is to analyse the
implications of the scenario for the expected portfolio value, or for risk captial,
or for capital ratios.

A macro scenario typically is a partial scenario. It does not determine a
unique portfolio value because it does not fix the values of the idiosyncratic risk
factors. (Additionally, a scenario of Type D below does not fix the values of all
macro risk factors.) We will analyse four conditional stress distributions arising
from different interpretations of some partial scenario, as discussed by Kupiec
[1998]:

(A) The conditional profit distribution given the macro scenario rA, in which
the fixed risk factors have the value specified by the partial scenario, and
the other macro risk factors remain at their last observed value.

(B) The conditional profit distribution given the macro scenario rB , in which
the fixed risk factors have the value specified by the partial scenario, and
the other macro risk factors take their unconditional expectation value.

(C) The conditional profit distribution given the macro scenario rC , in which
the fixed risk factors have the value specified by the partial scenario, and
the other macro risk factors take their conditional expected value given the
values of the fixed risk factors.

(D) The conditional profit distribution given the partial macro scenario rD,
in which the fixed risk factors have their value specified by the partial
scenario, and the other macro factors are distributed according to the
marginal distribution given the values of the fixed risk factors.

The term ‘stress distribution’ reflects the double nature of these conditional dis-
tributions. They are distributions which are derived from macro stress scenarios.
The macro scenarios rA, rB , and rC have the full dimensionality of the macro
model. The macro scenario rD has a lower number of dimensions because it
consists just of the fixed risk factors.

Proposition 1. Assume the distribution of macro risk factors is elliptical with
density strictly decreasing as a function of Maha. Then:
(1) The plausibility of the full macro scenario rC (with non-fixed macro factors
assigned their conditional expectation) is equal to the plausibility of the partial
macro scenario rD (which does not assign any value to the non-fixed macro
factors):

Maha(rC) = Maha(rD).

(2) This is the maximal plausiblity (i.e. the minimal Maha) which can be
achieved among all macro scenarios which agree on the fixed risk factors.

4



(3) The same plausibility is achieved by macro scenarios which assign to some
of the non-fixed risk factors their conditional expected values given the fixed risk
factors, and to other non-fixed risk factors no value.

A proof of this proposition is given in the Appendix. This proposition implies
that two choices of macro stress distributions are preferable, namely (C) or (D).
Assigning to the non-fixed risk factors other values than the conditional expected
values given the fixed risk factors leads to less plausible macro stress scenarios.

This proposition is of high practical relevance. It is the basis of partial
scenario analysis. Typically portfolios are modelled with hundreds or thousands
of risk factors. But for the purpose of macro stress testing one is interested only
in a handful of risk factors. How should the other risk factors be treated?
Proposition 1 tells us which values to assign to the other risk factors in order
to maximise the plausibility of scenarios.

A second aspect of partial scenarios analysis is the severeness of the scenarios.
The implications of an interesting stress scenario should harmful. The harm
caused by a scenario is related to the conditional profit distribution given the
scenario. It may be measured in terms of the expected value of the conditional
profit distribution, the capital requirement implied by the conditional profit
distribution via some risk measure, or the capital ratio. For the purpose of this
paper we will measure harm by low conditional expected profits (CEP) of the
stress distributions.

Proposition 2. If the portfolio value function is concave in the non-fixed macro
risk factors, then

CEP (rD) ≤ CEP (rC).

If v is convex in the non-fixed risk factors the opposite inequality holds. If v is
neither concave nor convex CEP (rD) may be higher or lower than CEP (rC).

The proof follows straightly from the multi-variate Jensen inequality. This
proposition is the second element of partial scenario analysis: From Proposi-
tion 1 we know that rC , rD both have the maximal plausibility among macro
scenarios with the specified values of the fixed risk factors. Proposition 2 tells
us which of the two is more harmful.

2.2 Worst Case Analysis

An important disadvantage of standard stress testing is the danger to miss out
harmful but plausible scenarios. This may result in a false illusion of safety. A
way to overcome this disadvantage is to search systematically for those macro
scenarios in some plausible admissibility domain which are most harmful to the
portfolio. By searching systematically over admissibility domains of plausible
macro scenarios one can be sure not to miss out any harmful but plausible
scenarios. The goal is to try to find the macro scenarios which are most relevant
in that they are most harmful and at the same time are above some minimal
plausibility threshold.

The optimisation problem Finding the scenario which does maximal harm
is an optimisation problem under noise because the goal function is itself a ran-
dom variable even if macro risk factors are specified. Luckily in some models
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the goal function can be calculated explicitly without determining the full con-
ditional profit distribution, as in Lemma 1 below. This reduces the problem to
a deterministic optimisation problem.

As admissibility domain for the macro scenarios it is natural to take an
ellipsoid whose shape is determined by the covariance matrix of macro risk
factor changes:

Ellk := {r : Maha(r) ≤ k} , (2)

Finding a macro scenario in the ellipsoid Ellk which has minimal conditional
expectation of the profit distribution is a deterministic non-convex optimisation
problem. Using an algorithm of Pistovčák and Breuer [2004] this can be solved
numerically.

What is the advantage of worst case search over standard stress testing?
First, the worst case scenarios are superior to the standard stress scenarios in
the sense that they are more harmful and equally or more plausible. Secondly,
worst case scenarios reflect portfolio specific dangers. What is a worst case
scenario for one portfolio might be a harmless scenario to another portfolio.
This is not taken into account by standard stress testing.

Identifying Key Risk Factors Thirdly, worst case scenarios allow for an
identification of the key risk factors which contribute most to the loss in the
worst case scenario. We define key risk factors as the risk factors with the
highest Maximum Loss Constribution (MLC). The loss contribution LC of risk
factor i to the loss in some scenario r is

LC(i, r) :=
CEP (µ1, . . . , µi−1, ri, µi+1, . . . µn)− CEP (µ)

CEP (r)− CEP (µ)
, (3)

if CEP (r) 6= CEP (µ). LC(i, r) is the loss if risk factor i takes the value it
has in scenario r, and the other risk factors take their expected values µ, as a
percentage of the loss in scenario r. In particular, one can consider the worst
case scenario, r = rWC . In this case the loss contribution of some risk factor i
can be called the Maximum Loss Contribution:

MLC(i) := LC(i, rWC). (4)

MLC(i) is the loss if risk factor i takes its worst case value and the other risk
factors take their expected values, as a percentage of MaxLoss.

The Maximum Loss Contributions of the macro risk factors in general do
not add up to 100%. Sometimes the sum is larger, sometimes it is smaller. The
reason for this is the non-linear dependence of CEP on the macro risk factors,
or more precisely the fact that the cross derivatives of the CEP function do not
vanish. Because of the curvature of the CEP surface the effect of a combined
move in several risk factors may be larger or smaller than the sum of effects of
individual risk factor moves.

Proposition 3. Assume CEP as a function of the macro risk factors has con-
tinuous second order derivatives. The loss contributions of the risk factors add
up to 100% for all scenarios r,

n∑
i=1

LC(i, r) = 1

6



if and only if CEP is of the form

CEP (r1, . . . , rn) =
n∑

i=1

gi(ri).

This is the case if and only if all cross derivatives of CEP

∂2CEP (r)/∂ri∂rj = 0

vanish identically for i 6= j.

The proof of this proposition is in the Appendix. If the single risk factor
moves can not explain the Maximum Loss in a satisfactory way, it will be nec-
essary to consider Maximum Loss Contributions not of single risk factor moves
but of pairs or larger groups of risk factors. A generalisation of Proposition 3
to groups of risk factors can be found in the Appendix.

3 A Market and Credit Risk Model of Loan
Portfolios

Before we illustrate the use of these techniques on loan portfolios we need to
specify a model determining the profit or loss of a loan portfolio as a function
of macro and idiosyncratic risk factors.

We consider a portfolio of foreign currency loans for obligors i = 1, . . . m at
a time horizon of one year. At time 0, in order to receive the home currency
amount l the customer takes a loan of le(0) units in a foreign currency, where
e(0) is the home currency value of the foreign currency at time 0. The bank
borrows le(0) units of the foreign currency at the interbank market. After one
period, at time 1, which we take to be one year, the loan expires and the bank
repays the foreign currency at the interbank market with an interest rate rf ,
e.g. LIBOR, and it receives from the customer a home currency amount which
is exchanged at the rate e(1) to the foreign currency amount covering repayment
of the prinicipal plus interest rolled over from four quarters, plus a spread s. So
the customer’s payment obligation to the bank at time 1 in home currency is

of = l
4∏

i=1

(1 + rf (i/4)/4) E + sf l E,

where rf (i/4) are the LIBOR rates in the foreign currency in quarter i and
E := e(0)/e(1). In order to reduce the number of dimensions on can introduce
an average 3 months LIBOR rate rf over the year defined by 1+rf =

∏4
i=1(1+

rf (i/4)/4). This yields for the payment obligation in home currency

of = l (1 + rf ) E + sf l E (5)

The first term on the right hand side is the part of the payment which the
bank uses to repay its own loan on the interbank market. The second term is
profits remaining with the bank. For a customer taking a home currency loan
the payment obligation is

oh = l (1 + rh) + l sh,
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where rh is the home interest rate. The spreads sf , sh demanded from the
customer depend on the rating class and the loan type. From the model the
spreads will be set in such a way that the bank achieves some target expected
profit. For all loans in the portfolio we assume they expire at time 1. The model
can be extended to a multi period setting allowing for loans maturing not at
the same time and requiring payments at intermediate times.

In order to evaluate credit and macro risk of a portfolio of such loans we use
a one-period structural model specifying default frequencies and losses given
default endogeneously. We present the simplest possible specification for the
model rather than the most general.

Assumption 2. Each customer i defaults in case their payment ability ai at
the expiry of the loan is smaller than their payment obligation o. In case of
default the customer pays ai.

This assumption implies that the profit or loss the bank makes with a cus-
tomer is

vi := min(ai, o)− l (1 + rf )E. (6)

In this profit function the first term is what the customer pays to the bank and
the second term is what the bank has to repay on the interbank market. Even
if the customer defaults the bank might make a profit because o includes the
spread over the LIBOR. Both, PD and LGD depend on the macro risk factors
via the payment obligation o and the payment ability a.

Boss et al. [2004] perform macro stress tests of foreign currency loan portfo-
lios, as do we. They assume that exchange rate changes affect loan loss provi-
sions via disposable income, which in turn is proxied by GDP. In constrast our
model translates exchange rate changes via its effect on the payment obligation
into default probability changes.

Assumption 3. The payment ability at final time 1 for each single obligor i is
distributed according to

ai(1) = ai(0)· GDP (1)
GDP (0)

· εi, (7)

log(εi) ∼ N(µ, σ) (8)

where ai(0) is a constant, and µ = −σ2/2, ensuring E(εi) = 1. The realisations
εi are independent of each other and of the macro risk factors.

GDP(0) is the known GDP at time t = 0, GDP (1) is a random variable. The
distribution of εi reflects obligor specific random events, like losing or changing
job. The support of εi is (0,∞) reflecting the fact that the amount ai available
for repayment of the loan cannot be less than zero if the obligor has no lines
of credit open with the bank. Since the expected value of εi is one and εi is
independent of GDP, the expectation of ai(1) is ai(0) times the expectation
of GDP (1)/GDP (0). Pesaran et al. [2005a] use a model of this type for the
returns of firm value.

Assuming that for different customers the realizations of εi are independent is
the doubly stochastic hypothesis.2 Conditional on the path of macro risk factors

2See Duffie and Singleton [2003]. Note also that there is some empirical evidence that the
doubly stochastic hypothesis might be violated, see Das et al. [2007].
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which determine the default intensities, customer defaults are independent.
The initial payment ability ai(0) is a customer specific parameter determined

in the loan approval procedure. For example, to be on the safe side the bank can
extend loans only to customers with ai(0) equal to 1.2 times the loan amount.
This extra margin is taken into account in the rating. From a rating system the
bank determines the default probability pi of the customer. In the loan approval
procedure both the present payment ability ai(0) and the rating (implying the
default probability) are determined. They are input to our valuation model.

The payment ability distribution must satisfy the following condition:

pi = P [ai(1) < oi]. (9)

ai(1) is a function of σ and oi is a function of the spreads. Spreads are set to
achieve some target expected profit for each loan:

Evi(σ, s) = EPtarget, (10)

where vi is the profit with obligor i and EPtarget is some target expected profit.
The two free parameters σ and s (sf resp. sh) are determined from these two
conditions.

A GDP increase shifts the payment ability distribution to the right, as shown
in Fig. 1. It increases distance to default and reduces default probabilities,
provided the payment obligation is unchanged.
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Payment ability of B+ obligor, in three GDP scenarios, foreign currency loan

Figure 1: Plots of density function of the payment ability distribution, with GDP equal
to its expected value (solid line), and GDP equal to ±3 standard deviations. We observe
that the payment ability distribution for higher GDP values stochastically dominates
the distribution for lower GDP values.

The macroeconomic risk factors entering the portfolio valuation are GDP,
rf , rh, and E. To model the dynamics of these we use a GVAR model, as
Pesaran et al. [2001], Pesaran et al. [2005b], Garrett et al. [2006], and Dees
et al. [2007].
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Table 1: Estimated mean and covariances of logarithms of yearly macro risk factor
changes in the GVAR models.

GDP rEUR rCHF e(1)

GVAR
mean 5.446 1.246 0.556 0.423
std. dev. 0.0097 0.1870 0.6301 0.0387
correlations 1.000 0.291 0.217 -0.040

1.000 0.519 0.140
1.000 0.007

1.000

Assumption 4. The dynamics of the four risk factors GDP, home and foreign
interest rate, and exchange rate is determined by the GVAR model specified
below.

Since we are considering a loan portfolio in Austria, in the GVAR we model
the economies of Austria and its most important trading partners Germany,
Switzerland, France, Italy, and the US. As domestic variables for each econ-
omy we used the logarithms of deseasonalized, real gross domestic product, the
logarithm E of the exchange rate USD/(domestic currency), and the logarithm
RS of (3 month maturity interbank interest rate per annum), divided by 100.
The exchange rate was not included for the US. The strengths of import and
export trade relationships between the countries was used to build the foreign
counterpart of each domestic variable.

The individual country models were estimated allowing for unit roots and
cointegration assuming that the foreign variables are weakly exogenous. More
precisely, for each country a weakly exogenous VECM with no deterministic
terms and auto-regressive lag 2 (i.e. lag 1 in the VECM equations) was estimated
using maximum likelihood reduced rank regression, as in Pesaran et al. [2000]
and Johansen [1995]. The six VECMs were then combined to a global VAR
model including all and only domestic variables. This global model can be
iterated recursively to obtain future scenarios of all variables. The GVAR model
allows for cross-country as well as inter-country cointegration.

The distribution of the macro risk factors was estimated from quarterly
data 1989–2005. Nominal GDP data for Austria were from the IFS of the
International Monetary Fund. For the logs of risk factors, mean and covariance
matrix of the estimated distribution are given in Table 1.

To sum up, in our model the macro risk factors r are the logs of GDP (1), rf ,
and e(1) for the foreign currency loans and GDP (1), rh for the home currency
loans. They are elliptically distributed with mean and covariances as specified
above. The idiosyncratic risk factors are the εi in the payment ability distribu-
tion for each customer.

10



4 Application to Loan Portfolios

With this model at hand we will now perform standard macro stress tests and
analyse worst case scenarios. The portfolios we consider consist of 100 loans of
l =e 10 000 taken out in CHF from an Austrian bank by Austrian customers
in the rating class B+, corresponding to a default probability of pi = 2%, or
in rating class BBB+, corresponding to a default probability of pi = 0.1%.
Obligors are assumed to have an initial payment ability of ai(0) = 1.2 l. The
spreads sf and sh for each rating class were set in such a way that a target
expected profit of e 160 on each loan is achieved, which amounts to a 20% return
on an assumed capital charge of e 800 for a loan of e 10 000. The resulting
spreads are:

rating loan type σ spread [bp]

BBB+ home 0.0488 160.14
B+ home 0.0736 165.64
BBB+ foreign 0.024 158.06
B+ foreign 0.062 163.88

Note that in the same rating class spreads for FX loans are slighty lower than
for home currency loans. This might seem counterintuitive given the higher risk
of FX loans, emerging from the subsequent analysis (see Table 3). But there is
a straightforward explanation if we look at the σ necessary to achieve a given
rating class. In order to achieve e.g. BBB+ for a home currency loan customer
a σ of 0.0488 is sufficient, whereas a FX loan customer needs to achieve a much
smaller σ of 0.024. In other words, a customer with a given standard deviation
σ in his payment ability will be in a higher rating class for a home currency
loan, and in a lower rating class for an FX loan. For that same customer the
spread required for a home currency loan should be smaller than for a FX loan.
Furthermore, the calculation of spreads only uses the expectation value of the
profit distribution. If the calculation of spreads also included the cost of risk
capital to cover unexpected losses, spreads of FX loans would be higher in order
to cover the large unexpected losses possible for the FX loans (see Table 3).

The profit distribution was calculated in a Monte Carlo simulation by gen-
erating 100 000 scenario paths of four steps each. The resulting distribution of
risk factors after the last quarter, which is not normal, was used to estimate the
covariance matrix of 1yr macro risk factor changes. In each macro scenario de-
faults of the customers were determined by 100 draws from the ε in the payment
ability distribution. From these we evaluated the profit distribution at the one
year time horizon.
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4.1 Traditional Macro Stress Tests

For the standard stress scenario “The e falls by 20% against the CHF” Table 2
compares the expected values and plausibility of the stress distributions (A) to
(D). What do we learn about our loan portfolios using this standard stress test?

• Expected loss is much higher for the foreign currency loan portfolio than
for the home currency loans. This is true for all stress distribution types.
Home currency loan portfolios in the FX stress scenario have an expected
value between e 15 797 and e 16 150, which is not far from the uncon-
ditional expected profit of e 16 000. The foreign currency loan portfolios
have a stress expected values of around e -60 000 for B+ obligors and
e -30 000 for BBB+ obligors, which amounts to a loss of 6% (resp. 3%)
of the total exposure of the bank. From this stress test the bank learns
that foreign currency loans are hit far more forcefully by an exchange rate
shock than home currency loans. The economic rationale is clear. Rising
exchange rates increase payment obligations and thereby default proba-
bilities. This is a paradigmatic case of a dangerous interaction between
credit and market risk.

• The third last column of Table 2 shows that the macro scenarios of types
(C) and (D) have exactly the same plausibility, and that the scenarios of
types (A) and (B) have higher Maha, i.e. lower plausibility. This is not a
coincidence but a consequence of Proposition 1.

• Conditional expected profits CEP from Type D stress distributions are
lower than for Type C stress distributions. This hold for all four portfolio
types considered. This is a consequence of Proposition 2 and the fact that
vi is concave in the non-fixed risk factors (GDP, rf ).

Next let us compare the conditional profit distributions in two stress sce-
narios to the unconditional profit distribution. In addition to the exchange
rate scenario we consider an economic recession scenario in which GDP shrinks
by 3%. Table 3 compares the unconditional and the two stress distributions
by their expected values and their Expected Shortfall based risk capital at the
10%, 5%, 1%, and 0.1% quantiles. For a profit loss distribution X risk capital
is

RCα(X) := E(X)− ESα(X), (11)

where ESα is Expected Shortfall at some confidence level α, as defined e.g. in
[Acerbi and Tasche, 2002, Def. 2.6]. Standard deviations of approximation
errors of ES are calculated using the method of Manistre and Hancock [2005].

12



T
a
b
le

2
:

A
n
a
ly

si
s

o
f
st

a
n
d
a
r
d

e
x
c
h
a
n
g
e

r
a
te

sc
e
n
a
r
io

w
it
h

v
a
r
io

u
s

a
ss

u
m

p
ti
o
n
s

a
b
o
u
t

u
n
sp

e
c
ifi

e
d

r
is

k
fa

c
to

r
s.

V
a
ri

o
u
s

st
re

ss
d
is

tr
ib

u
ti
o
n
s

a
re

co
m

p
a
re

d
b
y

th
ei

r
ex

p
ec

ta
ti

o
n

v
a
lu

e
a
n
d

th
e

p
la

u
si

b
il
it
y

o
f
th

ei
r

st
re

ss
sc

en
a
ri

o
.

A
ll

co
n
d
it
io

n
a
l
d
is

tr
ib

u
ti
o
n
s

a
re

ch
a
ra

ct
er

is
ed

b
y

a
n

ex
ch

a
n
g
e

ra
te

m
o
v
e

o
f
+

2
0
%

,
b
u
t

th
ey

d
iff

er
in

a
ss

u
m

p
ti
o
n
s

a
b
o
u
t

v
a
lu

es
o
f
th

e
re

m
a
in

in
g

m
a
cr

o
ri

sk
fa

ct
o
rs

.
S
ta

n
d
a
rd

d
ev

ia
ti

o
n
s

o
f
C

E
P

n
u
m

b
er

s
in

b
ra

ck
et

s.
C

E
P

n
u
m

b
er

s
fo

r
st

re
ss

d
is

tr
ib

u
ti
o
n

w
er

e
ca

lc
u
la

te
d

a
n
a
ly

ti
ca

ll
y

w
it

h
th

e
fo

rm
u
la

in
L
em

m
a

1
fo

r
d
is

tr
ib

u
ti
o
n

ty
p
es

A
–
C

,
a
n
d

a
p
p
ro

x
im

a
te

d
w

it
h

M
o
n
te

C
a
rl

o
si

m
u
la

ti
o
n

fo
r

ty
p
e

D
.
W

e
o
b
se

rv
e

th
a
t

fo
r

th
e

st
re

ss
d
is

tr
ib

u
ti

o
n
s

o
f
ty

p
es

C
a
n
d

D
M

a
h
a

v
a
lu

es
a
re

eq
u
a
l
a
n
d

lo
w

es
t

a
m

o
n
g

th
e

co
n
si

d
er

ed
m

a
cr

o
sc

en
a
ri

o
s,

a
s

im
p
li
ed

b
y

P
ro

p
o
si

ti
o
n

1
.

C
E

P
v
a
lu

es
a
re

lo
w

er
fo

r
d
is

tr
ib

u
ti
o
n

ty
p
e

D
th

a
n

fo
r

d
is

tr
ib

u
ti

o
n

ty
p
e

C
,
a
s

im
p
li
ed

b
y

P
ro

p
o
si

ti
o
n

2
.

P
o
rt

fo
li
o

S
tr

es
s

d
is

tr
ib

u
ti

o
n

C
E

P

ra
ti

n
g

cu
rr

.
ty

p
e

C
H

F
/
e

G
D

P
IR

fo
re

ig
n

IR
h
o
m

e
M

a
h
a

B
+

fo
r.

A
-2

0
%

la
st

o
b
s

la
st

o
b
s

la
st

o
b
s

5
.5

8
7

-6
4

2
0
4

(0
)

B
+

fo
r.

B
-2

0
%

u
n
cd

ex
p

u
n
cd

ex
p

u
n
cd

ex
p

4
.9

7
9

-5
6

2
9
3

(0
)

B
+

fo
r.

C
-2

0
%

co
n
d

ex
p

co
n
d

ex
p

co
n
d

ex
p

4
.9

0
5

-5
3

3
3
7

(0
)

B
+

fo
r.

D
-2

0
%

n
o
t

sp
ec

n
o
t

sp
ec

n
o
t

sp
ec

4
.9

0
5

-5
4

2
0
9

(5
6
.1

)

B
B

B
+

fo
r.

A
-2

0
%

la
st

o
b
s

la
st

o
b
s

la
st

o
b
s

5
.5

8
7

-5
8

1
3
4

(0
)

B
B

B
+

fo
r.

B
-2

0
%

u
n
cd

ex
p

u
n
cd

ex
p

u
n
cd

ex
p

4
.9

7
9

-4
8

2
2
5

(0
)

B
B

B
+

fo
r.

C
-2

0
%

co
n
d

ex
p

co
n
d

ex
p

co
n
d

ex
p

4
.9

0
5

-4
4

5
8
7

(0
)

B
B

B
+

fo
r.

D
-2

0
%

n
o
t

sp
ec

n
o
t

sp
ec

n
o
t

sp
ec

4
.9

0
5

-4
5

1
3
6

(6
2
.3

)

B
+

h
o
m

e
A

-2
0
%

la
st

o
b
s

la
st

o
b
s

la
st

o
b
s

5
.5

8
7

1
5

7
9
7

(0
)

B
+

h
o
m

e
B

-2
0
%

u
n
cd

ex
p

u
n
cd

ex
p

u
n
cd

ex
p

4
.9

7
9

1
6

0
3
7

(0
)

B
+

h
o
m

e
C

-2
0
%

co
n
d

ex
p

co
n
d

ex
p

co
n
d

ex
p

4
.9

0
5

1
6

1
5
0

(0
)

B
+

h
o
m

e
D

-2
0
%

n
o
t

sp
ec

n
o
t

sp
ec

n
o
t

sp
ec

4
.9

0
5

1
6

1
3
0

(1
.5

)

B
B

B
+

h
o
m

e
A

-2
0
%

la
st

o
b
s

la
st

o
b
s

la
st

o
b
s

5
.5

8
7

1
5

9
9
1

(0
)

B
B

B
+

h
o
m

e
B

-2
0
%

u
n
cd

ex
p

u
n
cd

ex
p

u
n
cd

ex
p

4
.9

7
9

1
6

0
0
4

(0
)

B
B

B
+

h
o
m

e
C

-2
0
%

co
n
d

ex
p

co
n
d

ex
p

co
n
d

ex
p

4
.9

0
5

1
6

0
0
8

(0
)

B
B

B
+

h
o
m

e
D

-2
0
%

n
o
t

sp
ec

n
o
t

sp
ec

n
o
t

sp
ec

4
.9

0
5

1
6

0
0
6

(0
.2

)

13



T
a
b
le

3
:

S
ta

n
d
a
r
d

m
a
c
r
o

st
r
e
ss

te
st

s
(t

y
p
e

D
)

o
f
th

e
h
o
m

e
a
n
d

fo
r
e
ig

n
c
u
r
r
e
n
c
y

lo
a
n

p
o
r
tf

o
li
o
s.

T
h
e

u
n
co

n
d
it
io

n
a
l
p
ro

fi
t

d
is

tr
ib

u
ti
o
n

o
f
th

e
tw

o
p
o
rt

fo
li
o
s

is
co

m
p
a
re

d
to

th
e

p
ro

fi
t

d
is

tr
ib

u
ti

o
n

co
n
d
it

io
n
a
l
o
n

a
-3

%
ch

a
n
g
e

o
f
G

D
P
,
a
n
d

co
n
d
it
io

n
a
l
o
n

a
+

2
0
%

ch
a
n
g
e

o
f
th

e
ex

ch
a
n
g
e

ra
te

.
P

ro
fi
t

d
is

tr
ib

u
ti
o
n
s

a
re

co
m

p
a
re

d
b
y

th
ei

r
m

ea
n
s

C
E

P
a
n
d

E
S
-b

a
se

d
ri

sk
ca

p
it

a
l
a
t

v
a
ri

o
u
s

q
u
a
n
ti

le
s.

S
ta

n
d
a
rd

d
ev

ia
ti

o
n
s

in
b
ra

ck
et

s.

R
C

α

sc
en

a
ri

o
C

E
P

1
0
%

5
%

1
%

0
.1

%

B
+

fo
re

ig
n

u
n
co

n
d
it

io
n
a
l

1
6

0
0
1

(6
.5

)
2

7
9
7

(6
5
.0

)
4

6
7
2

(1
1
9
.4

)
1
2

4
2
3

(4
9
0
.5

)
3
9

1
8
3

(3
8
1
8
)

G
D

P
-3

%
1
4

8
1
2

(8
.4

)
6

0
4
6

(7
0
.5

)
9

1
1
1

(1
1
0
.1

)
1
7

9
6
1

(2
9
1
.7

)
3
3

6
1
6

(9
5
7
)

F
X

-2
0
%

-5
4

2
0
9

(5
6
.1

)
3
6

9
0
9

(3
0
1
.7

)
4
8

7
9
6

(4
4
9
.6

)
8
2

5
2
3

(1
2
0
6
.4

)
1
4
8

6
3
8

(5
4
1
6
)

B
B

B
+

fo
re

ig
n

u
n
co

n
d
it

io
n
a
l

1
5

9
9
9

(4
.8

)
1

2
6
4

(4
7
.4

)
1

6
6
4

(8
9
.6

)
3

7
6
5

(4
2
6
.3

)
2
3

4
0
4

(4
1
7
6
)

G
D

P
-3

%
1
5

8
2
1

(2
.7

)
1

2
7
5

(2
2
.0

)
1

7
1
6

(4
0
.2

)
4

0
5
0

(1
8
2
.7

)
1
6

8
6
6

(1
1
0
0
)

F
X

-2
0
%

-4
5

1
3
6

(6
2
.3

)
4
0

9
8
2

(3
2
4
.6

)
5
3

8
9
9

(4
7
6
.8

)
8
9

2
8
0

(1
2
3
6
.1

)
1
5
5

2
7
6

(5
4
7
2
)

B
+

h
o
m

e
u
n
co

n
d
it

io
n
a
l

1
6

0
0
1

(1
.8

)
1

2
5
9

(8
.2

)
1

5
8
7

(1
0
.7

)
2

3
1
5

(2
0
.7

)
3

3
1
2

(6
9
)

G
D

P
-3

%
1
4

1
3
9

(3
.8

)
2

4
1
9

(1
4
.3

)
2

9
6
1

(1
8
.0

)
4

1
1
4

(3
3
.0

)
5

5
8
0

(8
7
)

F
X

-2
0
%

1
6

1
3
0

(1
.5

)
1

1
0
0

(7
.3

)
1

3
9
6

(9
.6

)
2

0
5
5

(1
9
.4

)
2

9
8
9

(5
8
)

B
B

B
+

h
o
m

e
u
n
co

n
d
it

io
n
a
l

1
6

0
0
1

(0
.2

)
1
2
1

(2
.1

)
2
2
4

(3
.0

)
4
5
0

(5
.9

)
7
4
3

(1
6
)

G
D

P
-3

%
1
5

7
8
9

(0
.9

)
6
2
6

(4
.2

)
7
9
7

(5
.4

)
1

1
6
7

(1
0
.8

)
1

6
7
9

(3
2
)

F
X

-2
0
%

1
6

0
0
6

(0
.2

)
7
4

(1
.6

)
1
5
5

(2
.8

)
3
7
3

(5
.5

)
6
3
9

(1
4
)

14



The comparison of stress distributions gives additonal information about the
loan portfolios:

• The FX shock has serious consequences on the foreign currency loan port-
folio. In mean it wipes out around e 60 000 for the B+ portfolio, which
amounts to more than 6% of the exposure. The FX shock also has serious
consequences on the capital required. Risk capital requirements at the 1%
confidence level for the BBB+ portfolio increase from around e 3 765 in
the unconditional case to e 89 280, which is more than 8% of the exposure.

• The FX shock has a weak but positive influence on the home currency
loan portfolio. This is due to the positive correlation between exchange
rate and home interest rate changes. A EUR depreciation tends to be
accompanied by a reduction in EUR interst rates, which reduces PDs and
LGDs.

• The effects of a GDP shock depend on the rating of obligors rather than
on the loan type. Expected profits are reduced from around e 16 000
to under e 15 000 for the B+ portfolios. Expected profits of the BBB+
portfolio are reduced only very slightly to around e 15 800.

4.2 Worst Case Analysis

Next we search systematically for those macro scenarios in the admissibility
domain Ellk which lead to the worst conditional expected profit CEP. (Other
objective function for the worst case search, like RCα, could also be considered.)
By searching systematically over admissibility domains of plausible macro sce-
narios one can be sure not to miss any harmful but plausible scenarios. The
goal is to try to find the macro scenarios which are most relevant in that they
are most harmful but remain over a minimal plausibility threshold.

This is an optimisation problem under noise if the objective function CEP
is determined in a Monte Carlo simulation. But luckily the problem can be
reduced to a deterministic problem. Minimising CEP amounts to minimising
the profit with the payment ability replaced by its deterministic part.

Lemma 1. The conditional expectation of the profit distribution (6), given the
values E := e(0)/e(1), G := GDP (1)/GDP (0), and rf , is

CEP (E,G, rf ) := l E sf + a(0)G E(ε1ε<E0)− l E (1 + rf + sf ) P [ε ≤ E0],

where E0 := l E (1 + rf + s) / (a(0)G). For the CEP of the home currency loan
there is a similar formula.

What is the advantage of worst case search over standard stress testing?
First, the worst case scenarios are superior to the standard stress scenarios. This
is reflected by Table 4. This table compares the expected portfolio values of the
standard scenarios with those of the worst case scenarios of same plausibility.
We see that the worst case scenarios are substantially more harmful than the
standard scenarios. Although we know that GDP is an important risk factor
for the home currency loan portfolio, there are plausible macro scenarios which
are more harmful to the portfolio than a 3% reduction in the GDP.
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What is a worst case scenario for one portfolio might be a harmless scenario
to another portfolio. This is not taken into account by standard stress testing.
For example, the home currency B+ loan portfolio is more or less insensitive
to moves in the FX rate. (The 20% depreciation of the EUR increases CEP to
e 16 150.) The FX move is not just harmless but even positive for the home
currency loan portfolio.

Stress testing is relevant only if the choice of scenarios takes into account
the portfolio. In a systematic way this is done by worst case search. For a home
B+ loan, the combination of a −3.25σ move in GDP and a +2.56σ move in
the home interest rate reduces expected profits to e 13 766. This move has the
same plausibility (Maha equal to 5.42) as the FX-20% move, but it causes a
considerably worse reduction in expected profits.

Table 5 gives for different sizes of the admissibility domain the worst macro
scenarios together with the expected profit in the worst macro scenario. For
each scenario the risk factor with the highest MLC are printed in bold face.

• For the foreign currency loan portfolio the exchange rate is clearly the
key risk factor. This becomes apparent from Table 5. In the worst case
scenario the FX rate alone contributes between 59% and 100% of the losses
in the worst case scenarios. This indicates that the FX rate is the key risk
factor of the foreign currency loan portfolio. The diagnosis is confirmed
by the right hand plot in Fig. 2, which shows the expected profits in
dependence of single macro risk factor moves, keeping the other macro
risk factors fixed at their expected values. Note the different scales of the
two plots. Expected losses of the FX loan are vastly larger than for the
home currency loan.

• For the home portfolio GDP is the key risk factor, but the home interest
rate is also relevant. The moves in GDP alone contribute between 46%
and 73% of the losses in the worst case scenarios. The left hand plots in
Fig. 2 confirm this.

The dependence of expected profits of both loan types on the relevant
risk factors is clearly non-linear. The profiles of expected profits in Fig. 2
resemble those of short options. A home currency loan behaves like a
short put on GDP together with a short call on the home interest rate. A
foreign currency loan behaves largely like a short call on the FX rate.

• There is another interesting effect. The dependence of expected profits
of foreign currency loans on the CHF/e rate is not only non-linear, but
also not monotone. For the BBB+ FX loan portfolio (bottom left plots
in Figure 2), focusing on changes smaller than 4σ it becomes evident
that a small increase in the exchange rate has a positive influence on the
portfolio value, but large increases have a very strong negative influence.
Correspondingly, in Table 5, if we restrict ourselves to small moves (Maha
smaller than 4σ) the worst case scenario is in the direction of increasing
exchange rates, but if we allow larger moves the worst case scenario is in
the direction of decreasing exchange rates. This effect also shows up in the
worst macro scenarios of Table 5. The reason for this non-monotonicity
is that a small decrease in the FX rate increases the EUR value of spread
payments received. For larger moves of the FX rate this positive effect
is outweighed by the increases in defaults due to the increased payment
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obligations of customers. For the bad quality B+ portfolios the positive
effect of a small FX rate decrease persists only up to a maximal Maha
radius of k = 2.

One could ask why the effort to search for worst case scenarios is necessary
to identify key risk factors. Wouldn’t it be easier to read the key risk factors
from the plots in Fig. 2? This would be true if losses from moves in different
risk factors added up. But for certain kinds of portfolios the worst case is a
simultaneous move of several risk factors—and the loss in this worst case might
be considerably worse than adding up the losses resulting from moves in single
risk factors. This is the message of Proposition 3. The effects of simultaneous
moves are not reflected in Fig. 2, but they do show up in the worst case scenario.
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Figure 2: Key risk factors of foreign and home currency loans. Expected
profit or loss of a single foreign (left) and home currency (right) loans as a function of
changes of the macro risk factors with other macro risk factors fixed at their expected
values. Top: B+ loans. Bottom: BBB+ loans. The left hand plot shows that for the
foreign portfolio the exchange rate is the key risk factor. We also observe the negative
effect of small foreign currency depreciations, which is particularly pronounced for the
BBB+ portfolio. The right hand plot shows that for the home portfolio GDP is the key
risk factor. Note the different scales of the two plots.

As an example consider a B+ home currency loan, and assume we are re-
stricting ourselves to moves with Maha smaller than k = 6. From Table 5 we
see that the MLC of the two risk factors sum up to 62.0% + 9.9% = 71.9%,
which is considerably lower than 100%. This indicates that the loss of a joint
move is considerably larger than sum of losses of individual risk factor moves.
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This is not reflected in Fig. 2, which only displays the effects of single risk factor
moves.

5 Conclusion

We introduce the technique of worst case search to macro stress testing. Among
the macroeconomic scenarios satisfying some plausibility constraint we deter-
mined the worst case scenario which causes the most harmful loss in loan port-
folios. This method has three advantages over traditional macro stress testing:
First, it ensures that no harmful scenarios are missed and therefore prevents a
false illusion of safety which may result when considering only standard stress
scenarios. Second, it does not analyse scenarios which are too implausible and
would therefore jeopardize the credibility of stress analysis. Third, it allows for
a portfolio specific identification of key risk factors. Another lesson from this
paper relates to the use of partial stress scenarios specifying the values of some
but not all risk factors: The plausibility of partial scenarios is maximised if we
set the remaining risk factors to their conditional expected values.

In order to carve out the basic insights we presented the approach in the most
basic framework. For practical purposes the framework has to be generalised
to a multi-period setup, requiring scenario paths instead of one step scenarios.
Admissiblity domains also have to be defined for scenario paths instead of one
step scenarios. In a multi period setup one can analyse portfolios of loans
maturing at different times and requiring payments at intermediate times. The
computational burden in the multi-period framework is by far heavier.
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Appendix

A Elliptical distributions

Here we collect some basic facts about elliptical distributions with density,
mostly following [Fang et al., 1987, Chp. 2] who also describe elliptical dis-
tribution which do not possess a density.

We assume that r follows an elliptical distribution with unimodal and strictly
decreasing density. This means that r has a stochastic representation

r
d= µ + AT y,

where y is a spherical n-dimensional distribution with unimodal and strictly
decreasing density, µ is the vector of expected values of r, and A is a non-
singular n×n-matrix. Then Σ := AT A is a positive definite, symmetric matrix.

The density of r is of the form

fn(r) := (detΣ)−1/2g
(
(r − µ)T Σ−1(r − µ)

)
,

see e.g. [Fang et al., 1987, p. 46]. (We apply the somewhat sloppy notation using
r for both the random variable and possible realisations.) The non-negative
function g is the density generator. We assume that g is strictly decreasing. The
level surfaces of the density function are ellipsoids with constant Mahalanobis
distance.

The covariance matrix of r is given by

Cov =
E(R2)

n
Σ, (12)

where R is the random variable with density

2πn/2

Γ(n/2)
rn−1g(r2),

see [Fang et al., 1987, Thm. 2.9, p. 35 and Thm. 2.17, p. 43]. The density of
r can be written as a function of Maha:

fn(r) = (det Σ)−1/2g
(
(r − µ)T Σ−1(r − µ)

)
=

E(R2)
n

(detΣ)−1/2g
(
(r − µ)T Cov−1(r − µ)

)
=: s(Maha(r)2).

B Proof of Proposition 1

Let us assume that we have n macro risk factors, whose change is governed by a
multivariate elliptically symmetric distribution with covariance matrix Cov and
mean µ. Let us assume that the risk factors are indexed in such a way that
the fixed risk factors have numbers 1, 2, . . . , k. Let us denote by r∗k+1, . . . , r

∗
n

the conditional expected values of risk factors rk+1, . . . , rn given that r1, . . . , rk

have their fixed values. We will show that Maha(r1, . . . rk, r∗k+1, . . . , r
∗
n) =
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Maha(r1, . . . rk, r∗k+1, . . . , r
∗
n−1) and that rn = r∗n minimises Maha among all

scenarios with the values of the first n − 1 risk factors equal to r1, . . . rk,
r∗k+1, . . . , r

∗
n−1. Repeating this argument for the risk factors rn−1 down to rk+1

yields the Proposition.
Denote the n-dimensional density function of the macro risk factors by fn.

When we fix the value of some remaining risk factor, say risk factor n, the distri-
bution of the remaining n-1 risk factors is described by the marginal distribution
fn−1(r′), resulting from integration over rn. Here r′ is the (n− 1)-dimensional
vector resulting from deleting the last component from r. The conditional dis-
tribution of rn given some fixed r′ is

h(rn|r′) =
fn(r′, rn)
fn−1(r′)

.

The expected value of the conditional distribution h(rn|r′) is r∗n.

Lemma 2. Assume Cov is a positive definite n× n-matrix. Then we have

Maha(r)2 −Maha(r′)2 =

(
n∑

i=1

C(Cov)−1
in (ri − µi)

)2

, (13)

where C(Cov)−1
in is the element in row i and column n of the inverse matrix

of the Cholesky decomposition of Cov.

Proof. For an arbitrary symmetric positive definite matrix M denote by C(M)
its Cholesky decomposition. C(M) is the upper triangular matrix satisfying

M = C(M)T C(M). (14)

Here are some properties of the Cholesky decomposition.

C(M)−1C(M)−1 T = M−1 (15)

In other words, the transpose of the inverse of the Cholesky decomposition of
M is the Cholesky decomposition of M−1.

Furthermore we have C(M)′ T C(M)′ = M ′. So we may write

C(M ′) = C(M)′. (16)

Deleting the n-th row and column of M and then making the Cholesky decom-
position amounts to the same as making the Cholesky decomposition of M and
then deleting the n-th row and column.

For an arbitrary triangular matrix C we have

(C−1)′ = (C ′)−1. (17)

Now let us calculate the squares of the Mahalanobis distances.

(r′ − µ′) T · Cov′−1 · (r′ − µ′)
(16)
= (r′ − µ′) T ·

(
C(Cov)′ T C(Cov)′

)−1 · (r′ − µ′)
(15)
= (r′ − µ′) T · C(Cov)′ −1C(Cov)′ −1 T · (r′ − µ′)

(17)
= (r′ − µ′) T · C(Cov)−1 ′C(Cov)−1 ′ T · (r′ − µ′).

(18)
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Similarly we have

(r − µ)T · Cov−1 · (r − µ)
(15)
= (r − µ)T · C(Cov)−1C(Cov)−1 T · (r − µ)

=
(
(r − µ)T · C(Cov)−1

) (
(r − µ)T · C(Cov)−1

)T
(19)

The inverse of the triangular matrix C(Cov) is again triangular, so we can write

C(Cov)−1 =


C(Cov)−1

1n

C(Cov)−1 ′ ...
...

0 · · · 0 C(Cov)−1
nn

 .

Writing (r − µ)T = ((r′ − µ′)T , rn − µn) equation (19) reads

(r − µ)T · Cov−1 · (r − µ) =

 
(r′ − µ′)T C(Cov)−1 ′,

nX
i=1

C(Cov)−1
in (ri − µi)

!
 

(r′ − µ′)T C(Cov)−1 ′,
nX

i=1

C(Cov)−1
in (ri − µi)

!T

= (r′ − µ′) T · C(Cov)−1 ′C(Cov)−1 ′ T · (r′ − µ′)

+

 
nX

i=1

C(Cov)−1
in (ri − µi)

!2

. (20)

Subtracting (18) from (20) yields the Lemma.

Lemma 3. The expected value of the conditional distribution h(rn|r′) is given
by

r∗n = µn −
∑n−1

i=1 C(Cov)−1
in (ri − µi)

C(Cov)−1
nn

.

Furthermore,

fn(r) = s(Maha(r)2) = s
(
Maha(r′)2 +

(
C(Cov)−1

nn

)2
(rn − r∗n)2

)
,

which implies that Maha(r) as a function of rn is minimal, namely equal to
Maha(r′), at rn = r∗n.

Proof. As a function of rn, the conditional density h(rn|r′) = fn(r′, rn)/fn−1(r′)
is a constant times the n-dimensional density fn(r′, rn). By eq. (13) Maha(r)
as a function of rn is minimal, namely equal to Maha(r′), at

r∗n = µn −
(
∑n−1

i=1 C(Cov)−1
in ri)

C(Cov)−1
nn

.

So the conditional density h(rn|r′) is maximal at r∗n, where Maha(r) is minimal.
We also have

fn(r′, rn − µn) = s(Maha(r)2) = s

0@Maha(r′)2 +

 
nX

i=1

C(Cov)−1
in (ri − µi)

!2
1A

= s

0@Maha(r′)2 +

 
n−1X
i=1

C(Cov)−1
in (ri − µi) + C(Cov)−1

nn (rn − µn)

!2
1A

= s
“
Maha(r′)2 +

`
−C(Cov)−1

nn (rn − µn) + C(Cov)−1
nn (rn − µn)

´2”
= s

“
Maha(r′)2 +

`
C(Cov)−1

nn
´2

(rn − r∗n)2
”
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This implies that fn(r′, rn), and consequently h(rn|r′) is symmetric around its
maximum r∗n. Thus the expected value of h(rn|r′) if it exists is r∗n.

C Proof of Proposition 3

Let f be a real-valued function with continuous second order derivatives on
some domain in Rn. Consider two points X0, X1 ∈ Rn such that the cube
with corners X0, X1 is in the domain of definition of f . f plays the role of
the objective function CEP , X0 is the expected scenario µ, and X1 is some
arbitrary scenario r.

We use the following short hand notation. For a vector i = (i1, . . . , in) of
ones and zeroes write

f(i1...in) := f(xi1
1 , xi2

2 , ..., xin
n ).

For an index vector i with only component ij = 1 and all other components
equal to zero we write fj := f(i1...in). For an index vector i with only the
two components ij = ik = 1 and all other components equal to zero we write
fjk := f(i1...in).

Lemma 4. If f has continuous second order derivatives on the cube with corners
X0, X1 the value of the function f in scenario X1 equals

f(1...1) =
n∑

i=1

fi − (n− 1)f(0...0) +
∑

1≤i<j≤n

Iij , (21)

where

Iij =

x1
i∫

x0
i

x1
j∫

x0
j

∂2f

∂xi∂xj
(x0

1, x
0
2, ..., ui, x

0
i+1, ..., uj , x

1
j+1, ..., x

1
n)dujdui,

for 1 ≤ i < j ≤ n.

Proof. We proceed by induction in the number of variables, n. For n = 1, f is a
function of one variable and eq. (21) reduces to f(1) = f(1). The inductive step
will use also eq. (21) for a functions of n = 2 variables, so we prove it separately.
For n = 2 we get

f(x1
1, x

1
2) = f(x0

1, x
1
2) +

x1
1∫

x0
1

∂f

∂x1
(u1, x

1
2)du1

= f2 +

x1
1∫

x0
1

∂

∂x1

f(u1, x
0
2) +

x1
2∫

x0
2

∂f

∂x2
(u1, u2)du2

 du1

= f2 + f1 − f(00) + I12, (22)

which proves eq. (21) for functions of n = 2 variables.
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Now we assume that eq. (21) holds for functions of n variables and show
that it holds for a funtion f of n + 1 variables. Define the function

h(x1, ..., xn) := f(x1, ..., xn, x1
n+1).

Eq. (21) for h reads

f(1...11) =
n∑

i=1

fi(n+1) − (n− 1)f(0...01) +
∑

1≤i<j≤n

Iij . (23)

For the function gi(n+1) of two variables defined by

gi(n+1)(x1
i , x

1
n+1) := fi(n+1).

eq. (22) reads
fi(n+1) = fi + fn+1 − f(0...0) + Ii(n+1). (24)

Substituting eq. (24) into the eq. (23) we get

f(1...1) =
n∑

i=1

(
fi + fn+1 − f(0...0) + Ii(n+1)

)
−(n− 1)fn+1 +

∑
1≤i<j≤n

Iij

=
n+1∑
i=1

fi − nf(0...0) +
∑

1≤i<j≤n+1

Iij , (25)

which is eq. (21) for the function f of n + 1 variables. This finishes the proof of
Lemma 4.

Lemma 4 gives a simple approximation of the change of f between two points
X0, X1:

f(1...1)− f(0...0) ≈
n∑

i=1

(fi − f(0...0)) . (26)

The approximation error is
ε =

∑
1≤i<j≤n

Iij . (27)

If the function f represents portfolio values, the left side of eq. (26) represents
portfolio profits or losses when moving from scenario X0 to scenario X1. The
right side is the sum of contributions of the individual risk factors. The error
term ε describes the interaction between the risk factors. It is bounded by

|ε| ≤ K
(n− 1)n

2
||X1

n −X0
n|| (28)

if the absolute values of second order mixed derivatives are bounded by some
constant K. As a consequence, the approximation (26) is exact when the second
ordered mixed derivatives vanish everywhere in the cube with corners X0, X1.
The following Lemma also establishes the converse.
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Lemma 5. Assume f has continuous second order derivatives. The following
two statements are equivalent:
(1) For any two X0, X1

f(1...1)− f(0...0) =
n∑

i=1

(fi − f(0...0)) (29)

(2) for all X and for all i, j, 1 ≤ i < j ≤ n

∂2f

∂xi∂xj
(X) = 0 (30)

Proof. Eq. (30) implies eq. (29) directly by the definition of Iij and Lemma 4:
If for all X in the cube with corners X0, X1 and for all pairs (i, j) we have
∂2f/∂xi∂xj(X) = 0, then by definition of Iij we have Iij = 0. Eq. (29) is
implied by eq. (21).

Eq. (29) implies eq. (30) as follows. Assume there is some X and some i, j for
which ∂2f/∂xi∂xj(X) > 0 (resp. < 0). Then the continuity of the second order
derivatives implies the existence of a neighbourhood O(X) contained in the cube,
such that ∂2f/∂xi∂xj(Y ) > 0 (resp. < 0) for all Y in O(X). Take two scenarios
X0, X1 in O(X) such, that x0

k < x1
k for k ∈ {i, j} and x0

k = x1
k for k /∈ {i, j}.

Then from the definition of Iij we get Iij < 0 (resp. > 0) and Ikl = 0 for
(k, l) 6= (i, j). From eq. (21), we get f(1...1)− f(0...0) <

∑n
i=1 (fi − f(0...0)) if

∂2f/∂xi∂xj > 0, resp.f(1...1)−f(0...0) >
∑n

i=1 (fi − f(0...0)) if ∂2f/∂xi∂xj <
0. This finishes the proof of Lemma 5.

Lemma 6. Assume f has continuous second order derivatives. The following
two statements are equivalent:
(1) For all X and for all i, j, 1 ≤ i < j ≤ n

∂2f

∂xi∂xj
(X) = 0 (30)

(2) f can be written as

f(x1, x2, ..., xn) =
n∑

i=1

gi(xi). (31)

Proof. (31) implies (30) by direct derivation. (30) implies (31) by induction
in the number of variables, n. For n = 2 assume that all cross derivatives
vanish. Then ∂f(X)/∂x1 = h(x1), resp. f(X) = H(x1) + g2(x2). Choosing
g1(x1) = H(x1) we get eq. (31) for n = 2:

f(X) =
2∑

i=1

gi(xi). (32)

In the induction step assume that (30) implies (31) for functions of n variables.
Take a function f of n + 1 variables with continuous second order derivatives.
First we will show that f can be written as

f(X) = uj(x1, xj , ..., xn+1) + vj(x2, ..., xn+1), (33)
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for j = 2, ..., n + 1. For j = 2 we can take u2 = f and v2 = 0.
Now assume that the separation is possible up to component j. As the function
vj does not depend on the variable x1 we get

∂2f

∂x1∂xj
=

∂2uj

∂x1∂xj

which equals zero because of the induction basis (30). Applying (32) to uj(x1, xj , ...,
xn+1), regarded as a function of x1 and xj , we get

uj(x1, xj , ..., xn+1) = uj+1(x1, xj+1, ..., xn+1) + hj(xj , ..., xn+1).

Denoting vj+1 := vj + h we get

f(X) = uj+1(x1, xj+1, ..., xn+1) + vj+1(x2, ..., xn+1).

For j = n + 1 (33) gives

f(X) = un+1(x1, xn+1) + vn+1(x2, ..., xn+1). (34)

As vn+1 does not depend on x1, we infer from eq. (30)

∂2un+1

∂x1∂xn+1
=

∂2f

∂x1∂xn+1
= 0.

Applying again eq. (32) to the function un+1 we get

un+1(x1, xn+1) = g1(x1) + h(xn+1).

and thus
f(X) = g1(x1) + h(xn+1)vn+1(x2, ..., xn+1).

For i, j ∈ {2, . . . , n + 1} we get from (30)

0 =
∂2f

∂xi∂xj
(X) =

∂2g1(x1)
∂xi∂xj

+
∂2

∂xi∂xj
(h(xn+1) + vn+1(x2, ..., xn+1))

=
∂2vn+1

∂xi∂xj
(x2, ..., xn+1)

The function vn+1 is a function of n variables with all mixed second orders
derivatives equal to zero. From the assumption of the induction step we get
(31) for the function f of n + 1 variables.

The defintion of the Loss Contribution in eq.(3) can be written as

LC(i, r) :=
fi − f(0...0)

f(1...1)− f(0...0)
, (35)

assuming f(0...0) 6= f(1...1), and taking X0 = µ, X1 = r, f = CEP . Lem-
mata 5 and 6 imply that

n∑
i=1

LC(i, r) = 1

holds for all r if and only if the function CEP can written as a sum (31) resp.
if and only if the second order derivatives vanish identically.
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D MaxLoss Contributions of Groups of Risk Fac-
tors

If the single risk factor moves can not explain the Maximum Loss in a satisfac-
tory way, it will be necessary to consider Maximum Loss Contributions not of
single risk factor moves but of pairs or larger groups of risk factors. In this part
of the appendix we provide a generalisation of Proposition 3 to groups of risk
factors.

Consider some partitioning of the risk factor indices {1, 2, . . . , n} into groups
I1, . . . , Is. Each risk factors will be in exactly one group. The loss contribution
of a group I in scenario r can be defined as

LC(I, r) :=
CEP (a1, . . . an)− CEP (µ)

CEP (r)− CEP (µ)
, (36)

where ai := ri if i ∈ I and ai := µi if i /∈ I. The definition assumes CEP (r) 6=
CEP (µ).

Proposition 4. Assume CEP as a function of the macro risk factors has con-
tinuous second order derivatives. The loss contributions of the risk factor groups
add up to 100% for all scenarios r,

s∑
k=1

LC(Ik, r) = 1

if and only if CEP is of the form

CEP (r1, . . . , rn) =
s∑

k=1

gk(rIk
),

where rIk
denotes the vector containing only the components ri for i ∈ Ik.

This is the case if and only if all cross derivatives of CEP between variables in
different groups vanish identically,

∂2CEP (r)
∂ri∂rj

= 0

for each i ∈ Ik and each j ∈ Il with k 6= l.

Let f be a real-valued function with continuous second order derivatives on
some domain in Rn. Consider two points X0, X1 ∈ Rn such that the cube
with corners X0, X1 is in the domain of definition of f . f plays the role of the
objective function CEP , X0 is the expected scenario µ, and X1 is an arbitrary
scenario r. In addition to the notation f(i1i2 . . . in) and fi introduced in the
proof of Proposition 3 we use

fI := f(i1...in), ik =
{

1 k ∈ I
0 k /∈ I

,

Lemma 7. Assume f has continuous second order derivatives. Then for any
two scenarios X0, X1 ∈ Rn

f(1 . . . 1)− f(0 . . . 0) =
s∑

k=1

(fIk
− f(0 . . . 0)) +

∑
1≤k<l≤s

Ĩkl, (37)
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where

Ĩkl :=

1∫
0

1∫
0

∑
k∈Ik,l∈Il

(x1
k − x0

k)(x1
l − x0

l )
∂2fn

∂xk∂xl
(y1, ..., yn)dudv

with

yi =


x0

i + u(x1
i − x0

i ) i ∈ Ik,
x0

i + v(x1
i + x0

i ) i ∈ Il,
x1

i i > max(Il)
x0

i otherwise

(38)

Proof. Define a function f̃ : Rs → R as

f̃(y1, . . . , ys) := f(g1(y1), ..., gs(ys)), (39)

with
gk(t) := X0

Ik
+ t
(
X1

Ik
−X0

Ik

)
(40)

for 0 ≤ t ≤ 1 and 0 ≤ k ≤ s. Applying Lemma 4 to f̃ we get eq. (37) and
Ikl = Ĩkl.

Proposition 4 follows from applying Lemmata 5 and 6 to f̃ .
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