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Abstract

We investigate two important aspects of the integrated measurement
of credit and market risk: (1) Market risk factor modelling at time
horizons longer than usual in pure market risk management (we con-
sider a three months horizon). We conclude that (a) aggregating mod-
els for high frequency data in general leads to worse results than dis-
carding the high frequency data and estimating the models for low
frequency returns only from low frequency data, (b) in a comparison
of models with the same aggregation level, models which take into
account GARCH effects fare better than constant volatility models.

(2) For two sample portfolios we compare profit-loss distributions
derived from different perspectives towards risk: pure market risk,
pure credit risk, and integrated credit and market risk perspective.
Measuring market and credit risk in an integrated way spots risks
that are hidden to a simple addition of pure market and credit risk
numbers.

1The statements made herein are the authors’ opinions, and do not necessarily reflect
the views of their respective institutions. We would like to thank Burkhard Raunig and
Martin Summer for useful comments.

2PPE Research Centre, FH Vorarlberg, Achstrasse 1, A-6850 Dornbirn
3Oesterreichische Nationalbank, Otto Wagner-Platz 3, A-1090 Wien
4Corresponding author. email: Gerald.Krenn@oenb.at



1 Introduction

Credit and market risk are intertwined for two reasons. First, credit risk
depends on market risk factors because default probabilities, values of col-
lateral, and values of claims may depend on interest rates, exchange rates,
or other market prices. Second, market risk depends on credit risk factors
because the default of a counter-party might open up a previously closed
position.

Not fully capturing the inter-linkage between credit and market risk still is
a source of shortcomings in the risk management of financial institutions. De-
termining over-all risk measures by summing up separately calculated credit
and market risk measures may result in ignoring potential losses that could
have been identified by using an integrated view. Integrated credit and mar-
ket risk management can help individual institutions to achieve a better un-
derstanding of their overall risk position, thus contributing to improvements
in the stability of the financial system as a whole.

This paper consists of two parts which investigate two important aspects
of the integrated measurement of credit and market risk:

1. Risk factor modelling: Credit and market risk should be measured on
the same time horizon. Usually this will be the longer time horizon of
credit risk. Therefore one needs a measurement of market risk at long
time horizons.

2. Portfolio valuation: The valuation of the portfolio should not add up
separate losses from credit and market risk factor changes. In partic-
ular, the model should take into account that some risk factors (e.g.
interest rates, exchange rates) influence both credit and market risk.

In the first part we compare different models for univariate market risk
factor changes over a time horizon of 60 trading days. The models use an
aggregation of 1, 5, 10, 20, 30, and 60 day changes to arrive at a distribution
forecast for 60 day changes. All models are taken with and without GARCH-
effects, and with residuals assumed to be distributed according to a normal
distribution, a Student-t distribution, and a combination of historical body
and Pareto distributed tails. Statistical out-of-sample tests lead us to the
following main results: (A) Aggregating models for high frequency data in
general leads to worse results than discarding the high frequency data and
estimating the models for 60 day returns only from 60 day data. (B) In
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a comparison of models with the same aggregation level, models which take
into account GARCH effects fare better than constant volatility models. This
is even true when no aggregation takes place at all, i.e. when we start from
60 day returns. It has been argued that over horizons longer than usual in
market risk management (10 days), GARCH effects vanish and returns tend
to a normal distribution. This is in contradiction to our empirical findings
for a 60 days horizon.

In a second part, we compare various ways of jointly calculating risk mea-
sures for credit and market risk. The first way (separate view) is to calculate
separately the credit risk and the market risk profit/loss distributions, to
calculate the risk measures for both profit/loss distributions; and to add up
the two risk measures. The separate view corresponds to a bank with inde-
pendent credit and market risk management units, each generating scenarios
and calculating risk measures at its own. The total risk capital is simply the
sum of credit risk capital and of market risk capital. Some might consider
this procedure as conservative and argue that correlation effects will usually
cause total risk to be smaller than the sum of credit risk and market risk. We
argue that this view is mistaken. We show that total risk can be considerably
higher than the sum of market and credit risk.

The second way (integrated view) is to start from a joint distribution of
credit and market risk factor changes; then to calculate from it the profit/loss
distribution resulting from joint moves of all risk factors. From this joint
profit/loss distribution the risk measure is calculated.

For two sample portfolios, one consisting of bonds, the other of European
options, we compare risk capital calculated in this integrated way to the sum
of market and credit risk capital. It turns out that for both sample portfolios
integrated risk capital is higher. This implies that the integration of credit
and market risk reveals risks which are hidden to a separate view of credit
and market risk.

2 Modelling market returns at longer horizons

Pure market risk management often assumes holding periods of not more
than 10 days. When credit and market risk are analyzed in an integrated
way it comes natural that distributions of market risk factor returns have to
be modelled at longer time horizons. In this paper we concentrate on a time
horizon of 60 trading days, corresponding to three calendar months. When
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choosing a model for the longer run returns, several choices can be made.
Since market data are available at higher frequencies it is possible to use the
high frequency data to estimate a reliable model of high frequency changes,
and then aggregate the high frequency changes to the longer time horizon.
In doing so, different basic periods can be chosen. By aggregation one can
possibly exploit the availability of data at higher frequencies in order to get
more reliable estimates for the lower frequency. On the other hand, estima-
tion and/or modelling errors are likely to be magnified by the aggregation
procedure. Next, we can include possible GARCH effects into the model or
take a constant volatility model. Furthermore, we can choose among several
possible distributions for the residuals, e.g. normal, Student-t or a Pareto
fitting of the tails. The goal of this part of the paper is to examine whether
aggregating high frequency changes, providing for GARCH effects and con-
sidering alternative residual distributions has an effect on the reliability of
forecasts of 60 days return distributions.5

For choosing a model for the distributions of the various time series we
use statistical out-of-sample tests of the 60 days density forecasts produced
by the 36 different models under consideration.6 We apply these models to
19 different market risk factors, including equity indices, interest rates, and
exchange rates.7 Based on the test results we try to identify a small set
of models able to cover all the time series fairly well, rather than picking
for each time series the optimal model. The motivation for this strategy is
robustness under the inclusion of new time series.

The first part of this paper is structured as follows: We describe the
aggregation of short term changes to long term changes in Section 2.1. In
Section 2.2 we discuss the aggregation of short term GARCH (1,1) models.
The models are described in Section 2.3 and the test procedure in Section 2.4.
Section 2.5 presents and discusses of the test results.

2.1 Aggregating one-period to multi-period return distributions

We concentrate on a time horizon of 60 trading days. Market data are
available at a higher frequency, usually daily or even intra-day. This opens

5Models with autoregressive terms are not considered. For market risk factors, argu-
ments related to arbitrage rule out the existence of significant autoregressive terms when
transaction costs are low.

6The models are listed in Section 2.3.
7The market risk factors are listed in Section 2.5.
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the possibility to model the distributions of returns8 over shorter periods (1,
5, 10, 20, 30, or 60 days), and then aggregate these distributions in order to
arrive at forecasts of 60 days returns. In this way one can possibly exploit the
availability of higher frequency data in order to get more reliable estimates.
On the other hand, estimation and/or modelling errors might be magnified
by the aggregation.

When we confine ourselves to the standard deviation of the return distri-
bution, a simple aggregation method is given by multiplying by the square
root of time. This works correctly if we have i.i.d. returns. Volatility clus-
tering observed in the markets implies that returns are not i.i.d. This finding
questions the appropriateness of the square root of time-method.

Let us denote an m-period return during time t and t+m by mrt.
9 When

the returns rt are discrete, the probability that mrt is equal to y is the prob-
ability that

∑m−1
i=0 rt+i is equal to y. In this case one has to sum the proba-

bilities of all possible paths of {rt+i}m−1
i=0 which sum up to y. In analogy, for

continuous one-period returns the density function of mrt is

fmrt(y) =

∞∫

−∞

...

∞∫

−∞

frt+m−1

(
y −

m−1∑
i=1

xi

)
m−1∏
i=1

frt+i−1
(xi)dx1...dxm−1, (1)

where frt denotes the density function of the one-period returns rt, condi-
tional on the previous realizations of rt.

In general, this multi-period density function can be evaluated only nu-
merically. Therefore, we use a Monte Carlo simulation in order to approx-
imate the aggregated distribution function of the density (1). We simulate
10.000 paths of m steps by drawing for each step from the distribution given
by the density frt . Each path yields a value after step m, which is a draw
from the aggregated distribution. Simulating enough paths gives a sufficient
approximation of the aggregated distribution.

2.2 Aggregated GARCH processes

A number of stylized facts about the volatility of financial asset prices have
emerged over the years, and have been confirmed in numerous studies (see
[11]). A good model must be able to capture and reflect these stylized facts.

8By return we mean the logarithmic change of a risk factor.
9We abbreviate the 1-period return 1rt during time t and t + 1 by rt. As we consider

log-returns, we have mrt =
∑m−1

i=0 rt+i.
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Volatility Clustering. Many studies (see [11]) report evidence that large
changes (in either direction) in the prices of an asset are often followed by
large changes (in either direction), and small changes are often followed by
small changes. The implication of such volatility clustering is that volatility
shocks today will influence volatility over some time in the future.

Heavy tails. It is well established that the unconditional distribution of
asset returns has heavy tails. Extreme moves occur more frequently than
could be expected if returns were normally distributed.

GARCH processes are a popular tool for the description of financial time
series because they are known to describe volatility clustering. Aggregated
GARCH processes can also capture the heavy tails even if the one-period
distribution is normal.

Definition 1 The sequence {rt, t ∈ Z} is defined to be generated by a strong
GARCH(1,1) process if

εt := rt/σt ∼ D(0, 1) i.i.d.,

σ2
t = a + br2

t−1 + cσ2
t−1, (2)

where D(0, 1) specifies a distribution of errors with mean zero and unit vari-
ance.

The class of strong GARCH processes is somewhat restricted because it as-
sumes that the errors are identically distributed and independent.10 In the
sequel, we consider strong GARCH processes.

For the estimation of the GARCH parameters we use a Quasi Maximum
Likelihood method: The GARCH parameters are estimated under the as-
sumption that the residual distribution D(0, 1) is standard normal. But our
models of the marginals, as described in Section 2.3, also use other residual
distributions, namely the Student-t and distributions with “historical body
and Pareto fittted tails”. For the consistency and asymptotic normality of
Quasi Maximum Likelihood Estimations of GARCH models we refer to [1]
and [4].

The class of strong GARCH processes is not closed under temporal ag-
gregation. The density function (1) of the aggregated returns does not neces-
sarily have the same form as the density of one-period returns. For example,

10Strong, semi-strong, and weak GARCH processes are outlined e.g. in [9]
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even if all one-period returns are distributed normally, multi-period aggre-
gated returns need not be normal or even elliptic. This is a key phenomenon
of aggregating time dependent return distributions.

Figure 1 compares the tails of the one-period and the aggregated two-
period distribution. The aggregated returns are fat tailed although one-
period returns are normal. An aggregation of normally distributed returns
can therefore explain the empirical fact that financial time series have fat
tails.
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Figure 1: Example of a 2-period aggregated density function (dashed line),
compared with a normal density function with the same mean and volatility
(solid line). The aggregated distribution has fat tails.

Figure 2 shows how the (excess) kurtosis increases with the aggregation
level. This picture points to a possible difficulty of the aggregation method.
Whereas the kurtosis increases with the aggregation level, we know from
empirical investigations that high frequency data tend to be more fat tailed
than low frequency data.

2.3 Models for 60 days return distributions

In order to account for possible excess kurtosis, either of the one-period re-
turn distributions or of the residuals D(0, 1) of the GARCH models, we con-
sider several possible distributions: normal, Student, and EVT. The EVT-
distribution results from modelling the body of the distribution by historic
simulation and the left and right tails by a Generalised Pareto distribution.
For the left tails we took the lowest 10%, for the right tail the highest 10%.
The details of the procedure are described in [13].
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Figure 2: Excess kurtosis of m-period returns where the one-period returns
rt follow a GARCH(1,1) process with a = b = c = σt = 0.2.

Combining the various possibilities for aggregation levels, residual distri-
butions, and GARCH or constant volatility, we get various models for the
market risk factors. The terminology of model names uses

• xxd means that the model aggregates distributions for xx day returns
to arrive at the 60 days return distribution, as described in Section 2.1.

• G in the model name means that the one-period distributions are mod-
elled with GARCH(1,1) as described in Section 2.2.

• The last part of the model name represents the distributions of errors:
“norm” for the normal distribution, “t” for the Student-t distribution,
and “EVT” for the distribution with the body modelled by historic
simulation and the tails by a Pareto distribution, as described in Sec-
tion 2.3.

In this terminology the models for the marginals of market risk factors
are:

1d norm 1d t 1d EVT 1d G norm 1d G t 1d G EVT
5d norm 5d t 5d EVT 5d G norm 5d G t 5d G EVT
10d norm 10d t 10d EVT 10d G norm 10d G t 10d G EVT
20d norm 20d t 20d EVT 20d G norm 20d G t 20d G EVT
30d norm 30d t 30d EVT 30d G norm 30d G t 30d G EVT
60d norm 60d t 60d EVT 60d G norm 60d G t 60d G EVT
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2.4 Testing procedures

In order to test the 60 days distribution forecasts produced by the various
models, it is not enough to assess whether the means, variances, or some
quantiles of the distributions were correctly predicted.11 For many applica-
tions the overall distributional properties are important, not just the means
or variances. Therefore, based on [14], we test for the adequacy of the density
forecasts of the entire distribution.

Consider a time series of returns rt (t = 1, . . . , n) generated from some
true conditional densities ft(.) (t = 1, . . . , n). Now some model produces
a series of 60 days conditional density forecasts pt(.) (t = 1, . . . , n). The
task is to evaluate whether the true conditional densities ft(.) agree with the
predicted conditional densities pt(.). Applying the Rosenblatt transformation
(see [15]) to the observed returns rt,

rt 7→ zt :=

∫ rt

−∞
pt(u)du (3)

we get a transformed series zt which should be i.i.d. U(0,1) if the predicted
conditional densities pt(.) agree with the true conditional densities ft(.). Ap-
plying the inverse of the normal distribution function

zt 7→ nt := Φ−1(zt), (4)

produces a series nt which is standard normally i.i.d. if the original returns
rt are distributed according to the predicted densities pt (see [2]).

Berkowitz [2] applied a likelihood-ratio test to the zt against the first
order autoregressive alternative nt − µ = ρ1(nt−1 − µ) + εt to test for i.i.d.
N(0,1). Instead, we can perform a Kolmogorov-Smirnov test for the simple
hypothesis that the nt are sampled from a standard normal distribution. This
is our Test 1. A model is accepted if the p-value is higher than 5%.

In order to test additionally whether the conditional variance of the nt is
constant and equal to one, de Raaij and Raunig [14] consider the regressions

nt = β0 + β1nt−1 + ut (5)

n2
t = γ0 + γ1n

2
t−1 + vt (6)

where ut and vt are non-autocorrelated with zero expectation conditional on
their own past values. In case the nt have zero mean and are uncorrelated

11Backtesting for example amounts to a test of a quantile of the predicted distributions.
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we have β0 = 0 and β1 = 0. In case the nt have constant conditional unit
variance we have γ0 = 1 and γ1 = 0. To test whether these restrictions
are satisfied, de Raaij and Raunig [14] propose a joint Wald test of the four
equalities β0 = 0, β1 = 0, γ0 = 1, and γ1 = 0. Additionally, they use the
Jarque-Bera test to see whether the nt have skewness zero and kurtosis equal
to three. The Jarque-Bera test without the Wald test would not be very
powerful since it does not test for mean and variance.

According, we perform the following Test 2. A model is accepted if the
p-value of the Jarque-Bera test is higher than 5% and the p-value of the joint
Wald test for β0 = β1 = γ1 = 0 and γ0 = 1 is higher than 5%.

2.5 Test results

The two tests outlined in Section 2.4 were applied to 19 market data time
series. For these series we used daily data from Bloomberg starting at the
dates indicated below and ending 28 February, 2004.

Equity Indices
Dow Jones Industrial Average 03-Jan-1970
DAX 03-Jan-1970
Nikkei 225 06-Jan-1970
Austrian Traded Index 09-Jan-1986
FTSE 100 04-Jan-1984
Swiss Market Index 02-Jul-1988

Interest Rates
US Govt. 3 months 02-Jun-1983
US Govt. 6 months 02-Jun-1983
US Govt. 2 years 01-Feb-1977
US Govt. 5 years 03-Jan-1970
US Govt. 10 years 03-Jan-1970
US Govt. 30 years 02-Dec-1980
Germany Euro-deposits 6 months∗ 03-Jan-1975
Germany Govt. 10 years 04-Jan-1989
Japan Govt. 10 years 23-Oct-1987

Exchange Rates
EUR/USD 05-Jan-1971
EUR/GBP 05-Jan-1971
EUR/CHF 05-Jan-1971
EUR/JPY 05-Jan-1971
∗ Source: Datastream
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Table 1 summarises the test results. For each model, this table shows
for how many of the 19 time series the model was accepted in Test 1 and
Test 2. Additionally, the average of p-values of the rejected time series is
given. A low value of this average indicates that rejections on average were
unambiguous.

According to Test 2, which is more selective, the 60d G EVT model is
best. It is acceptable for 15 out of 19 time series. The second best model,
60d EVT, is acceptable for 13 out of 19 time series. According the more
liberal Test 1, the situation is less clear. 60d G norm is acceptable for 17 time
series, 60d norm and 30d t are acceptable for 16 time series; 60d G EVT,
60d G t, and 60d EVT are acceptable for 15 time series.

Furthermore we see that results improve as the length of the basic period
increases and the number of aggregation steps decreases. Aggregating models
for high frequency data in general leads to worse results than discarding the
high frequency data and estimating the models for 60 days returns only from
60 days data.

We also see that in a comparison of models with the same aggregation
level, models which take into account GARCH effects fare better than con-
stant volatility models. For most models the GARCH versions are better
than the constant volatility versions. The two only exceptions are 20d G t,
which according to Test 2 is worse than the 20d t model, and 30d G t, which
according to Test 1 is worse than the 30d t model. For all other models, in
both tests the GARCH versions are better or equally good as the constant
volatility versions.

It might be interesting to note that Test 2 is more selective than Test
1. For all models, Test 2 accepts this model for fewer or equally many time
series as Test 1.

3 The Importance of Modelling and Evaluating Joint
Moves of Credit and Market Risk Factors

In this section we investigate the importance of integrated credit and market
risk measurement as compared to summing up separate risk numbers for
credit and for market risk. In standard credit risk models market risk factors
are usually assumed to be deterministic [6]. This is a major obstacle to an
integration of market and credit risk.

An integrated view of credit and market risk might be necessary in sit-
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Test 1 (KS) av. P Test 2 (JB+W) av. P
Model # accept. for non-acc. # accept. for non-acc.
1d norm 0 0.0003 0 0
1d t 0 0.0063 0 0.0003
1d EVT 0 0.0004 0 0
1d G norm 0 0.0022 0 0.0001
1d G t 2 0.0068 0 0.0004
1d G EVT 0 0.0002 0 0
5d norm 0 0 0 0
5d t 1 0.0005 0 0
5d EVT 0 0.0001 0 0
5d G norm 0 0.0005 0 0
5d G t 1 0.0012 0 0.0001
5d G EVT 0 0.0002 0 0
10d norm 0 0.0013 0 0.0001
10d t 2 0.0057 0 0.0003
10d EVT 1 0.0021 0 0.0001
10d G norm 0 0.0051 0 0.0003
10d G t 3 0.0027 0 0.0001
10d G EVT 2 0.0018 0 0.0001
20d norm 2 0.0016 0 0.0001
20d t 6 0.0147 1 0.0008
20d EVT 1 0.0078 0 0.0004
20d G norm 2 0.0064 0 0.0003
20d G t 7 0.0143 0 0.0008
20d G EVT 4 0.0051 0 0.0003
30d norm 5 0.0147 0 0.0008
30d t 16 0.01 8 0.0009
30d EVT 8 0.0208 1 0.0012
30d G norm 5 0.0186 0 0.001
30d G t 14 0.021 11 0.0026
30d G EVT 10 0.0172 2 0.001
60d norm 16 0.0201 9 0.002
60d t 13 0.0118 9 0.0012
60d EVT 15 0.0207 13 0.0034
60d G norm 17 0.0016 10 0.0002
60d G t 15 0.0068 11 0.0008
60d G EVT 15 0.0201 15 0.005

Table 1: Summary of test results. For each model, this table shows for how
many of the 19 time series the model was accepted in Test 1 and Test 2.
Additionally, the average of p-values of the rejected time series is given.
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uations, in which credit risk depends on market risk factors, or market risk
exposure depends on credit risk. A historical example of such a situation
are the portfolios held by some banks during the Russian crisis of 1998.
Those banks had dollar/rubel forwards with Russian banks and matching
rubel/dollar forwards with US banks. These positions were fully hedged
against moves in the dollar/rubel exchange rate. Furthermore, for these po-
sitions default risk was irrelevant as long as the exchange rate did not move.
If one counter-party defaulted, it was always possible to get the currency de-
liverable to the other counter-party on the market at no loss if the exchange
rate did not move. And a move of exchange rates was very improbable in
those times of the managed rubel exchange rate regime. So from a pure mar-
ket risk and a pure credit risk point of view the risk of the portfolio was zero.
However, during the Russian crisis in August 1998, adverse credit events and
market moves occured simultaneously. The Russian counterparties defaulted
and at the same time the value of the rubel dropped dramatically. The USD
deliverable to the US banks had to be purchased on the market and the rubel
they got in return were not much worth. This led to considerable losses for
the banks involved.

In the present paper we consider two sample portfolios with similar char-
acteristics. The bond portfolio we consider consists of a long and a short
zero coupon bond due in 11 years with a face value of 1,000 EUR. The short
bond position is assumed to be default risk-free, while the long position is
with an obligor of average Austrian default risk. The value of the portfolio
(to a risk neutral investor) at a time horizon of one year is thus given by

1{no default in year 1}1000(1 + r10)
−10

10∏
t=1

(1− pt)− 1000(1 + r10)
−10, (7)

where r10 is the risk free 10 year EUR interest rate, and pt are the probabilities
of default in year t starting at the time horzizon in one year. The recovery
rate is assumed to be zero.

The default probabilities pt are assumed to be determined from some
linear combination of macroeconomic variables, as in Wilson [16] or Boss [3]:

pt =
1

1 + e−yt
, (8)

where, for the sake of simplicity, yt is assumed to depend only on the one most
relevant macroeconomic risk factor, namely the Austrian industry production
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IPt in year t via the equation ∆yt = β1 + β2∆IPt. The constants β1, β2 are
estimated from default data.

The portfolio pricing formula (7) is valid only for a risk neutral investor.
The reason for this is that via (8) the default probabilities depend on indus-
try production, which is not a traded asset. Therefore there is no unique risk
neutral probability measure, the market is incomplete. However, any indi-
vidual investor with some given utility function can evaluate the portfolio by
requiring that the expected utility of the portfolio payoff equals the utility
of the portfolio value. For risk neutral investors, i.e. if the utility function
is linear, the portfolio value determined in this way is the expected payoff of
the portfolio. This is given by the portfolio value function (7).

The dynamics of industry production is determined from a vector au-
toregressive modell from a set of five macroeconomic variables. The first
macroeconomic variable is industry production itself, the four others are the
three month interest rate, the EUR/USD exchange rate, the inflation rate,
and the slope of the yield curve. The dynamics of the macroeconomic vari-
ables is determined by

mt = c + Amt−1 + εt, (9)

where A is a matrix of autoregressive terms and the components of the error
vector εt are assumed to be normally distributed with (0, Σ) and independent
of εt−1. The parameter vector c and the matrix A are estimated from the
historical data of the five macroeconomic variables. By writing this model
10 time steps into the future we get forecasts of m1,t = IPt (and if desired
also of the other macroeconomic variables m2, . . . ,m5). In a simplifying low-
dimensional picture one can consider the extected value of the portfolio at
the time horizon of one year to be a function only of future values of the
market risk factor r10 and of the credit risk factor IP1, with the expectation
taken over the variables IP2, . . . , IP10. Figure 3 plots the expected portfolio
value as a function of these two risk factors.

To estimate the model we used quarterly data from 1969 to 2003 for r10

and the macroeconomic risk factors. In order to avoid seasonal effects the
quarterly data were aggregated to a yearly basis. The default probabilities
pt are determined as the yearly actual default rates among all Austrian com-
panies. For the log-returns of r10 we assumed by a GARCH(1,1)-model with
normal residuals. To get a joint distribution of the market and the credit risk
factor we coupled the marginal distributions of the risk factors by a Gaussian
copula.
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Figure 3: Expected present value of the bond portfolio as a function of the
10 yr interest rate and industry production at a time horizon of one year,
with the expectation taken over the variables IP2, . . . , IP10. The portfolio
value does not change too much if only the interest rate, or only the industry
production changes from its current level of 4.1% resp. 499.6. However, if
both change simultaneously, the losses are considerable. This gives a first
intuition why an integrated view on market and credit risk is necessary.

How does the risk profile of this portfolio look like from an integrated
market and credit risk perspective, as compared to a mere sum of market
and credit risk? To investigate this question we approximated four different
profit/loss functions of the portfolio from 1.000.000 Monte Carlo paths of the
market risk factor r10 and the macro-model (9) including IP1, . . . , IP10.

The four profit/loss functions are the following. (0) Pure market risk,
without taking into account the possibility of default is zero, since the port-
folio is perfectly hedged to moves of the market risk factor r10. This is
displayed in Column (0) of Table 2.

(1) Credit risk by itself, without taking into account the possibility of
interest rate changes, is considerable. Column (1) of Table 2 gives Value at
Risk (VaR) and Expected Shortfall (ES) numbers of the profit/loss simulated
from scenarios with the interest rate fixed at its current value and with vary-
ing values of industry production. The left tail of this profit/loss distribution
is the dashed function in Figure 4 with a step at 696.5 EUR. The worst thing
that can happen in this pure credit risk perspective is that the counter-party

15



of the long position defaults in the first year. This occurs with a probability
of roughly 2.2% and leads to a loss of 696.5 EUR.

(2) A first crude integration of market and credit risk is achieved by
considering the market risk at a constant probability of default. Column
(2) of Table 2 gives VaR and ES numbers of the profit/loss simulated from
scenarios with varying levels of the interest rate and with industry production
fixed at its current value. The left tail of this profit/loss distribution is the
dashed-dotted line in Figure 4. In this perspective a default of the counter-
party of the long position in the first year does not lead to one certain loss
number. Rather, the effect of the default depends on the level of the interest
rate. In case of adverse moves of the interest rate the loss can be considerably
larger than 696.5 EUR.

(3) Full integration of market and credit risk is achieved by varying the
market and the credit risk factors simultaneously according to their joint dis-
tribution. Column (3) of Table 2 gives VaR and ES numbers of the profit/loss
simulated from scenarios with varying levels of the interest rate and of indus-
try production. The left tail of this profit/loss distribution is the solid line
in Figure 4. As for the crude integration (2), with full integration (3) the
effect of default in the first year depends on the interest rate level and can
therfore be considerably higher than 696.5 EUR. Additionally, the default
probability of the counterparty during years 2 through 11 can vary due to
changes in industry production. This results in higher loss potentials than
for crude integration (2).

Measuring market and credit risk in an integrated way spots risks that
are hidden to a simple addition of market and credit risk numbers. The size
of the newly detected risks are displayed in the last two columns of Table 2.
The second last column gives the integration effect achieved by the crude
integration: risk numbers for market risk with constant default probability
minus the sum of risk numbers for pure market risk and pure credit risk. The
last column shows the effects of full integration: risk numbers for integrated
market and credit risk minus the sum of risk numbers for pure market risk
and pure credit risk. Positive numbers in these columns indicate that the
risk measured in an integrated view is higher than the sum of pure market
and pure credit risk. At all quantiles, the integrated point of view gives
consistently higher VaR and ES numbers.

We also observe that the difference between full integration and crude
integration (market risk plus constant PD) is not always small. In particular
for the 5% and the 2.5% confidence levels, crude integration conveys the false
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VaR (0) (1) (2) (3) (2)-(1)-(0) (3)-(1)-(0)
MR CR MR Intd integr. integr.

α no CR no MR unchgd CR MR&CR effect effect
0.001 0 696.5 766.8 768.1 70.3 71.6

0.0025 0 696.5 750.0 747.2 53.5 50.7
0.005 0 696.5 730.9 727.6 34.4 31.0
0.01 0 696.5 701.8 700.9 5.2 4.3

0.025 0 226.6 142.6 228.9 -84.0 2.3
0.05 0 198.3 137.8 199.4 -60.5 1.1

ES (0) (1) (2) (3) (2)-(1)-(0) (3)-(1)-(0)
MR CR MR Intd integr. integr.

α no CR no MR unchgd CR MR&CR effect effect
0.001 0 696.5 782.3 782.7 85.8 86.2

0.0025 0 696.5 767.3 766.8 70.8 70.3
0.005 0 696.5 753.7 751.6 57.1 55.1
0.01 0 696.5 734.8 732.8 38.3 36.3

0.025 0 623.5 612.9 623.7 -10.7 0.1
0.05 0 416.0 376.2 416.8 -39.8 0.9

Table 2: Value at Risk and Expected Shortfall numbers for the bond portfolio
at various confidence levels and with various risk measurement techniques.
Column (0) displays risk numbers from a pure market risk point of view,
and column (1) from a pure credit risk point of view. Column (2) shows
risk numbers from a market risk point of view which takes into account the
possibility of default, but at a constant default probability. Column (3) gives
risk numbers from a fully integrated market and credit risk perspective. The
size of the integration effect is given in the last two columns. The positive
numbers indicate higher risk in the integrated perspective.
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Figure 4: The cumulative distribution functions of the profit/loss of the bond
portfolio for various risk measurement techniques. The profit/loss distribu-
tion from a pure market risk point of view (Method (0)) is not visible on the
plot, since it is peaked at zero. Visible are the profit/loss distributions from
a pure credit risk point of view (Method (1), dashed line), from a market
risk point of view incorporating credit risk at a constant default probability
(Method (2), dashed-dotted line), and from a fully integrated market and
credit risk perspective (Method (3), solid line).

illusion that credit and market risk set off each other. Full integration reveals
that this is not the case. Crude integration is not a reliable substitute for
full integration.

Finally consider a portfolio of matching long and short European calls on
the Dow Jones Industrial index with a strike price of 8500 USD maturing
exactly at the time horizon of one year. (Since the options mature exactly
at the time of evaluation, the risk-free interest rate and the volatility of the
underlying are irrelevant for the option value, which is simply the difference
of the value of the underlying and the strike price.) The long position is
exposed to default risk, whereas for the short position default of the counter-
party is irrelevant. Table 3 compares the VaR and ES numbers for the
option portfolio under the four risk measurement perspectives. As the last
two columns show, risk is consistently higher in the integrated perspective
for this portfolio as well.
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VaR (0) (1) (2) (3) (2)-(1)-(0) (3)-(1)-(0)
MR CR MR Intd integr. integr.

α no CR no MR unchgd CR MR&CR effect effect
0.001 0 223.2 3583.0 3714.7 3359.8 3491.5

0.0025 0 223.2 2748.2 2715.8 2525.0 2492.6
0.005 0 223.2 1956.0 1941.3 1732.9 1718.1
0.01 0 223.2 1017.3 936.2 794.1 713.1

0.025 0 0 0 0 0 0
0.05 0 0 0 0 0 0

ES (0) (1) (2) (3) (2)-(1)-(0) (3)-(1)-(0)
MR CR MR Intd integr. integr.

α no CR no MR unchgd CR MR&CR effect effect
0.001 0 223.2 4522.3 4622.6 4299.2 4399.5

0.0025 0 223.2 3661.9 3729.4 3438.8 3506.3
0.005 0 223.2 2990.6 3012.8 2767.4 2789.7
0.01 0 223.2 2224.1 2218.7 2000.9 1995.5

0.025 0 196.0 1013.2 986.4 817.2 790.4
0.05 0 98.0 506.6 493.2 408.6 395.2

Table 3: Value at Risk and Expected Shortfall numbers for the option portfolio
at various confidence levels and with various risk measurement techniques.
Column (0) displays risk numbers from a pure market risk point of view,
and column (1) from a pure credit risk point of view. Column (2) shows
risk numbers from a market risk point of view which takes into account the
possibility of default, but at a constant default probability. Column (3) gives
risk numbers from a fully integrated market and credit risk perspective. The
size of the integration effect is given in the last two columns. The positive
numbers indicate higher risk in the integrated perspective.

19



4 Conclusions

In this paper we investigated two important aspects of the integrated mea-
surement of credit and market risk: market risk factor modelling at long time
horizons and the importance considering simultaneous moves of market and
credit risk factors. Measuring market and credit risk in an integrated way
spots risks that are hidden to a simple addition of pure market and credit
risk numbers.

Other important aspects of integration have not been addressed: (1) Mea-
suring credit and market risk on the same time horizon requires not only a
model of market risk factors at the longer time horizon of credit risk data,
but also a treatment of the possible rebalancing actions of portfolio man-
agers over the longer time horizon. (2) An integrated model should correctly
model the market price dependence not just of the liabilities but also of the
collaterals. In particular, it should correctly model the correlation between
values of the various collaterals. This requires a multivariate model of the
values of collaterals.
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