Comments by Rafael Repullo on

Financing Choices of Banks: The Role of Non-Binding Capital Requirements by

UJ

Jie Gan

Basel Committee Workshop

17 May 2004

Introduction

Empirical observation

Banks hold more capital than required by regulation

• Question

Why banks hold excess capital?

• Relevance

Discussion of Basel II focused on minimum requirements Perhaps more important is what will happen with total capital

Introduction

- Existing explanations
 - Supervisory interference: Prompt corrective action
 - Market discipline: Keep good ratings
 - Preservation of future rents
- Gan's explanation
 - Limited profitable investment opportunities

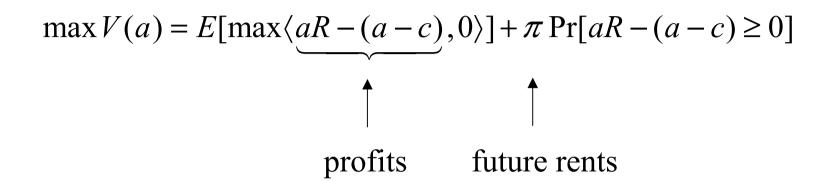
The model

- Bank's balance sheet
 - Fixed capital c > 0
 - Endogenous (insured) deposits $d \ge 0 \rightarrow$ deposit rate = 0
 - Endogenous assets $a = c + d \rightarrow \text{gross return} = R$
- Assumptions
 - A1 Lognormal returns

$$\log R = \mu - \frac{\sigma^2}{2} + \sigma z$$
, with $z \sim N(0,1) \rightarrow E(R) = e^{\mu}$

A2 Shareholders are risk neutral and have zero discount rate A3 Capital requirement: $c \ge ka \iff a \le c/k = \overline{a}$

Bank's objective function



By the properties of the normal distribution

$$V(a) = ae^{\mu}N(x) - (a-c)N(x-\sigma) + \pi N(x-\sigma)$$

$$\rightarrow x = \frac{1}{\sigma} \log \frac{a e^{\mu}}{a - c} + \frac{\sigma}{2}$$

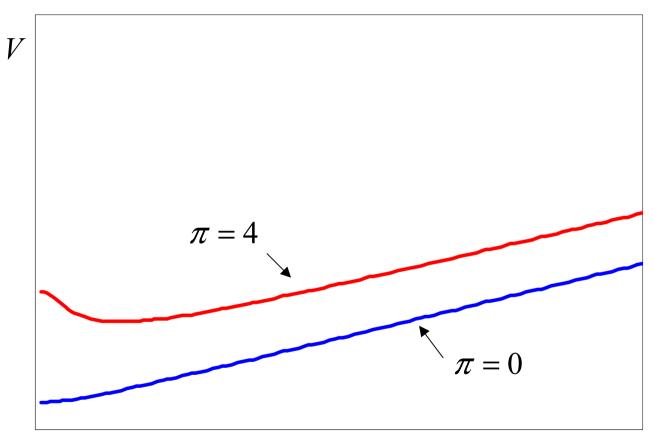
Three cases

- Investment in securities: $\mu = 0$
- Investment in loans: $\mu(a) > 0$, with $\mu'(a) < 0$
- Investment in both loans and securities

• Functional forms and parameter values

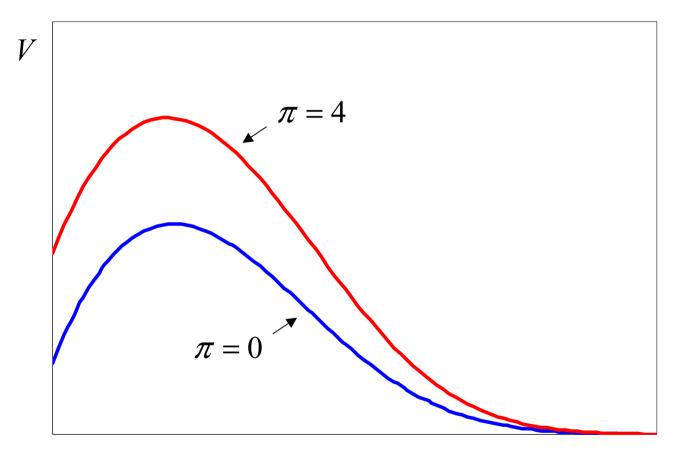
$$\mu(a) = 1 - \frac{a}{20}$$
 and $\sigma = 0.35$

Investment in securities



a

Investment in loans



a

Investment in loans and securities

• Return of a portfolio invested in loans (λ) and securities (1– λ)

$$R = \lambda R_l + (1 - \lambda) R_s$$

- Problem: sum of two lognormal variables is not lognormal
- Solution: assume

$$\log R_l = \mu_l - \frac{\sigma^2}{2} + \sigma z$$
 and $\log R_s = -\frac{\sigma^2}{2} + \sigma z$

with the same σ and the same $z \sim N(0,1)$ for both returns

• Then $\log R = \mu - \frac{\sigma^2}{2} + \sigma z$ with $\mu = \log[\lambda e^{\mu_l} + (1 - \lambda)]$

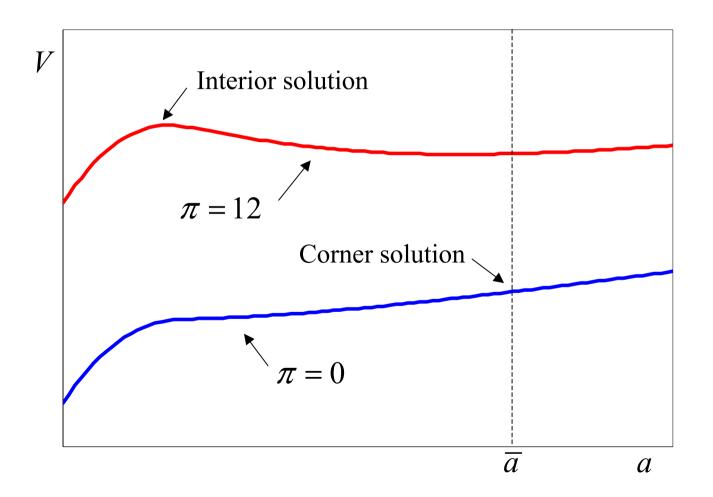
Investment in loans and securities

 $\max V(a,\lambda) = ae^{\mu}N(x) - (a-c)N(x-\sigma) + \pi N(x-\sigma)$

$$\rightarrow x = \frac{1}{\sigma} \log \frac{ae^{\mu}}{a-c} + \frac{\sigma}{2}$$

$$\rightarrow \mu = \log[\lambda e^{\mu(\lambda a)} + (1 - \lambda)]$$

Investment in loans and securities



Main comment

- If c > ka shareholders may prefer to pay excess capital
- For $\pi = 0$ we have corner solution (i.e. binding requirements)

$$V(a,d) = ae^{\mu}N(x) - [a - (c - d)]N(x - \sigma) + d$$

$$\uparrow$$

$$dividends$$

$$\rightarrow \frac{\partial V}{\partial d} = 1 - N(x - \sigma) > 0$$

• For $\pi > 0$ we may have interior solution

Other comments

• For low *a* shareholders would like to short-sell securities ($\lambda > 1$) \rightarrow Intuition: same risk factor for both loans and securities

• Future rents should be endogenized

 \rightarrow Bellman equation

$$V^* = \max_{a} \left[ae^{\mu} N(x) - (a-c)N(x-\sigma) + V^*N(x-\sigma) \right]$$

Concluding remarks

- Explanation of non-binding requirements is not convincing
 - \rightarrow Requires special distributional assumptions
 - \rightarrow Requires to rule out dividend payments
- Fall back to existing explanations
- Need to understand costs of raising (and reducing) bank equity