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1 Introduction

In their many variants on the basic framework of Merton (1974), structural models

of credit risk rest on a more or less literal interpretation of the borrower’s balance

sheet. The firm’s fixed liabilities constitute a barrier point for the value of its assets.

If assets drop below that barrier, the firm is unable to support its debt and therefore

defaults. Assuming the current asset value and fixed liabilities are observable, we

need only specify the stochastic behavior of assets and debt issuance to determine

the probability of firm default at any given horizon. In pricing applications of these

models, one is interested in the stochastic processes under the risk-neutral measure.

Risk management applications, which are the focus of this paper, require specification

under the natural measure.

Once a model is specified, its unknown parameters may be calibrated to observed

data by either direct or indirect methods. The direct approach requires that one

collect detailed information on an obligor’s balance sheet in order to estimate its fixed

liabilities, which are generally assumed to be non-stochastic. The obligor’s capacity

to carry these liabilities depends on the market value of its assets, which cannot

be directly observed. However, by treating equity as a put option on underlying

assets, one can use observed equity prices and volatility to recover the current value

and volatility of the of the obligor’s assets. This procedure depends strongly on the

assumed distribution for the asset return process. In practice, log-normality is nearly

always imposed.1

Under the indirect approach, one starts with agency ratings of the type issued by

S&P and Moody’s. An obligor’s current rating is taken to be a sufficient statistic for

some structural measure of its credit quality. In credit risk management applications,

it is generally assumed that obligors in the same rating grade share the same distance

to default. We can think of the distance to default as a measure of an obligor’s

leverage relative to the volatility of its asset values. As the value an obligor’s assets

changes over time, its distance to default changes as well. If assets fall below the

value of fixed liabilities the distance to default drops below zero, and the obligor

becomes insolvent. Given assumptions about the asset return process, an obligor’s

1The KMV model is a partial exception. Log-normality is assumed for the purpose of backing out
the asset return process from the equity return process, but is replaced by an empirical distribution
for the purpose of estimating a default probability. The resulting model is not entirely self-consistent,
but offers much improved empirical fit over a strict log-normal model
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distance to default is all that is needed to determine its default probability at a fixed

horizon date. By examining historical patterns of default for each rating grade, one

can estimate unknown parameters of the return distribution process as well as the

distance to default associated with each grade.

A virtue of the indirect approach to modeling credit risk is that it leverages the

comparative advantage of the ratings agencies in interpreting balance sheet infor-

mation. Extracting a default barrier from accounting statements is not only time-

intensive, but may require significant exercise of judgment in handling complex lia-

bility structures. The agencies have decades of experience at balance-sheet analysis,

as well as access to private information that is not available in public filings. The

potential drawback to the indirect method is that it relies on rather strong assump-

tions about the rating agencies’ objective functions and methodologies. It is widely

acknowledged that agency ratings can be slow to respond to new information. Less

widely recognized is that ratings have traditionally had only a qualitative interpre-

tation. Even now, the agency’s judgment on a firm’s one-year default probability is

only one factor considered in rating assignment. Rating agencies may also consider

the ability of the firm to withstand the trough of a business cycle (i.e., so-called

“through the cycle” rating), as well as the loss a senior unsecured claimant is likely

to experience in the event of default.

To explore the efficacy of the indirect approach, we begin with a benchmark rating

assignment model. We assume that the agency observes the value of an obligor’s

distance to default at both the as-of date and at the horizon, and that the change from

as-of date to horizon is normally distributed with unit variance.2 By construction,

firms within a given rating class then have a common distance to default at the

as-of date and a common distribution over outcomes at the horizon. In the spirit

of CreditMetrics and KMV Portfolio Manager, we introduce correlations in asset

values across firms by expressing the change in distance to default as the sum of a

systematic risk factor that is common to all obligors and an idiosyncratic risk factor

that is unique to each obligor. The degree of correlation across obligors depends on

the relative importance of the systematic risk factor.

This simple rating assignment model contains three types of parameters that must

2This assumption of unit variance is not restrictive. It follows directly for the definition of distance
to default as the volatility normalized log inverse leverage ratio. However, as we shall see presently,
the normality assumption is quite important.
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be calibrated to observed data. A vector of transition thresholds partitions the range

of all possible realized default distances into intervals. Each interval is associated

with a particular final rating grade. A vector of initial default distances describes

the mean of the distribution of final distances for each grade. Finally, factor loadings

determine the correlation across firms in rating migrations and defaults. All three

sets of parameters can be estimated using annual data on the number of firms in each

rating grade and their final grade (or default status) at the end of one year.

Comparing the matrix of one-year rating transition probabilities implied by the

benchmark model with a model-free transition matrix estimated directly from rating

assignment data provides a test of the benchmark model’s first-moment predictions.

We find that the model does a good job of fitting the probability that a firm will retain

its initial rating after one year, but it does a very poor job of fitting the probability

that a firm will move two or more grades away from its initial rating.3

Our goal in this paper is to identify ways of relaxing the strong assumptions

underlying both the structural default model and the benchmark rating assignment

model to better capture observed features of rating transition data. We focus on

generalizing the model in ways that are (1) parsimonious, and (2) consistent with an

underlying structural model of firm and rating agency behavior.

We proceed along two lines. First, we relax the assumption that the change in an

obligor’s distance to default over the assessment horizon is normally distributed. An

extensive body of research on stock price data suggests that equity returns, and by

implication asset returns are most appropriately modeled as having been drawn from

thick-tailed distributions (Mittnik and Rachev 1999). This is consistent with our

finding that the benchmark model places unrealistically low weights on large rating

changes. The normality assumption can be relaxed while preserving the mathematical

structure of the Merton model by assuming that the distribution of the change in

default distance is a member of the alpha-stable family. The alpha-stable distribution

family includes the normal distribution as a limiting case, but it also includes a range

of thicker-tailed distributions. Transition matrices estimated from an alpha-stable

model do a better job of predicting large rating changes than those estimated from

the normal model, however, they predict unrealistically high default probabilities for

3CreditMetrics uses a framework similar to our own but treats transitions from each initial
rating grade as a distinct random process. This model generates very reasonable rating transition
probabilities, but, like the KMV model, it cannot be fully reconciled with the Merton model from
which it is derived.
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high-grade obligors.

Our second approach to generalizing the benchmark model focuses on the informa-

tion set available to the rating agencies. A key assumption of the benchmark model

is that the rating agency observe an obligor’s distance to default at the as-of date and

the horizon date without error. If this assumption is relaxed, then at any point in

time a firm may be much closer to the default boundary than is implied by its grade.

The presence of incomplete information in the rating process may therefore help ex-

plain why the benchmark model does a poor job of predicting default probabilities for

higher-rated firms. We find that a straightforward extension of the benchmark model

along the lines of Duffie and Lando (1999) significantly improves predicted default

probabilities without dramatically increasing the number of parameters that must be

estimated.

2 Data

An important practical advantage of the indirect approach to modeling credit risk is

that its data requirements are relatively modest. This study makes use of annual ag-

gregate date on ratings by Moody’s Investment Service. Moody’s rates primarily large

corporate and sovereign bond issuers. To ensure a relatively homogeneous population,

we limit our sample to include only US, non-financial, non-sovereign obligors.4

Moody’s uses seven rating grades ranging from ’Aaa’ (high-quality investment

grade) to ’C’ (speculative grade). In 1983 Moody’s refined its rating system by

appending ’+’ or ’-’ to each major grade. Transitions rates in 1983 were far higher

than those observed in any other year, suggesting that Moody’s may have adjusted its

rating criteria at the same time it added detail to its rating scale. For this reason we

restrict our analysis to years after 1983. For simplicity and consistency with previous

research data are aggregated to the major grade level.

For each June-to-June, twelve-month interval from June, 1984 to June, 2000 data

are compiled on the number of obligors within each grade that transition to each

other grade or default. If an obligor’s rating is withdrawn over the course of a your,

it is excluded from the sample for that year.5

4Nickell, Perraudin and Varotto (2000) find evidence that the properties of rating transitions
differ by obligor domicile and industry.

5On average 4.9 percent of ratings are withdrawn in a given year. Ratings may be withdrawn if
an obligor is a party to a merger, or if its public debt is retired.
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Table 1 reports the number of obligors assigned to each grade at the beginning of

a sample year. Most obligors are assigned to the middle grades, while the number of

Aaa and C-rated obligors is exceptionally small. As we shall see presently, differences

in the number of obligors assigned to each grade has implications for the way observed

transition data are interpreted. The number of obligors assigned to the lower grades

grew dramatically over the sample period, reflecting the advent of the market for junk

bonds.

Table 2 reports the average one-year transition matrix taken over the 16 sample

years. We will frequently refer to this table in the analysis that follows. It provides

a target that a well specified structural model should be able to approximate. A

few essential features of the empirical transition matrix are worth noting. First, the

overwhelming majority of obligors remain in the same grade over the course of a

year. By-and-large, rating transitions are relatively rare, but a significant fraction of

those transitions that occur may span more than one grade. Second, average default

frequencies rise dramatically as one moves from higher to lower grades. This indicates

that, as expected, Moody’s ratings convey important information about the one-year

default probabilities of obligors. Third, obligors are more likely to be downgraded

than to be upgraded. This fact is almost certainly due largely to the fact that firms’

cost of debt depends on their rating. Firms that expect to receive a low rating are

unlikely to issue debt. Thus, few speculative grade firms issue debt. On the other

hand, those firms that have previously issued debt may decline to speculative grade.

Thus, on average, firms will tend to have high ratings initially, and see these ratings

decline over time. Fourth, no high-grade obligors defaulted, and no speculative-

grade obligors transitioned to high investment grades over the course of a single year.

Obviously, since no obligor is truly riskless, the fact that we observe no defaults for

some grades must be taken to imply that the true probabilities of these defaults are

small but non-zero. More generally, null transition frequencies are almost certainly a

result of the relatively small number of obligors assigned to some grades, rather than

an indication that some transitions are impossible.

Figure 1 provides information on observed upgrade and downgrade frequencies

over time. A single bar in the figure corresponds to a particular initial rating grade and

year. Each bar is partitioned into three intervals that show the proportion of obligors

in a grade-year that were upgraded (top), remained in the same grade (middle), or

were downgraded (bottom). Notice that the frequency of upgrades and downgrades

5



varies substantially from grade to grade and across years. The high volatility of

transitions frequencies for grades C/Caa and Aaa can be discounted, to some degree,

because of the small numbers of obligors actually assigned those grades. However,

significant temporal differences in observed upgrade and downgrade frequencies can

also be observed in the middle grades which each contain large numbers of obligors.

For example, 1998 saw higher than average upgrade frequencies for nearly every grade,

while 1999 so higher than average downgrade frequencies. Rating transitions appear

to be correlated across obligors, suggesting the presence of systematic shocks that

affect the credit quality of many obligors at once.

3 A Baseline Structural Transition Model

3.1 The Default Model

The starting point for any structural model of rating transitions is a description of the

stochastic process that drives obligor default. We use a simple discrete time version

of Merton’s (1974) now ubiquitous stochastic default model. According to this model,

an obligor defaults when the value of its assets falls below the value of its liabilities,

or equivalent when its inverse leverage ratio (the ratio of liabilities to assets) falls

below one. In applications such as this one, it is convenient to work with the natural

logarithm of the inverse leverage ratio. Let Y0 denote an obligor’s log inverse leverage

ration at the current as-of date, and let Y1 denote the value of this variable at a fixed

future horizon date. The relationship between Y0 and Y1 is given by

Y1 = Y0 + σu (1)

u is a random variable with mean zero and unit volatility, The parameter σ captures

the volatility of firm leverage.

By dividing both sides of (1) by σ we can express the model in units that are

invariant to differences in leverage volatilities across obligors. Let yt = Yt/σ so that

(1) becomes

y1 = y0 + u.

y0 and y1 respectively measure the obligor’s as-of and horizon distance to default. An
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obligor will default at the horizon date if y1 < 0. If the marginal distribution of u is

identical across obligors, then y0 is sufficient to determine the marginal probability

that a particular obligor will default at the horizon date. This probability is given by

p0 = F (−y0)

where F (u) is the marginal cumulative density function for u.

u need not be independent across firms. Systematic shocks, such as unforeseen

changes in macroeconomic conditions, may affect the asset values of many obligors

simultaneously. We account for such shocks by expressing u as the weighted sum of

two variables, a systematic risk factor x and an idiosyncratic risk factor ε;

u = ωx+ (1 − ω2)1/2ε.

ω, called the factor loading, is a model parameter that can range from zero to one. It

describes the share of the change in distance to default explained by the systematic

risk factor. x is common to all obligors, whereas ε is obligor-specific and is independent

across obligors. For the time being, both variables are assumed to have standard

normal distributed. x and ε are independent over time.6

The additive properties of normal random variables imply that u has a standard

normal marginal distribution and is independent across time. The stochastic features

of u have important implications for firm defaults. The normality assumptions, while

convenient, is quite restrictive. It will be relaxed in Section 4. The assumption that

u is independent over time implies that a firm’s distance to default at the as-of date

is an efficient predictor of its default probability at the horizon date. We will allow

for the possibility that rating agencies do not make use of these efficient predictors

in section 5.

3.2 The Rating Assignment Model

Assume that at the as-of date, the rating agency assigns grades to obligors on the

basis of their probabilities of default at or before the horizon date. Given the structure

6More general implementations of the Merton framework allow for the possibility of more than
one systematic risk factor, permitting a richer structure of correlations in asset values and defaults
across obligors. In practice, the data requirements needed to estimate multiple risk factor models
are substantially more restrictive than those needed to estimate single factor models.
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of our default model, this is equivalent to assuming that an obligor’s grade depends

on y0, its distance to default at the as-of date. To map default distances into ratings,

the continuum of possible values of y0 is partitioned into I intervals, each of which

corresponds to a single rating grade (see Figure 2). Let γi denote the upper threshold

for the ith grade so that an obligor is assigned grade i if γi−1 < y0 ≤ γi. There is no

upper threshold for the highest grade, so an obligor is assigned grade I if y0 > γI−1.

Furthermore, since y0 < 0 implies than an obligor is currently insolvent, zero is the

lower threshold for grade 1.

At the assessment horizon, the grades of those obligors that have not defaulted

are reassessed. Grades are assigned at the horizon date based on y1 using the same

algorithm used for assigning grades at the as-of date. Obligors transition between

grades as their distances to default change over time. The transition probabilities

for an obligor between the as-of date and the horizon date depend on the obligor’s

initial distance to default, and the agency’s chosen rating thresholds. For simplicity,

we assume that all obligors in grade i at the as-of date share the same initial distance

to default, y0
i .

7

3.3 Marginal Transition Probabilities

To understand the implications of our baseline modeling assumptions for estimated

transitions probabilities it is helpful to contrast the structural model with a more

general, but in some ways more limited, reduced form transition model. Marginal

transition probabilities can be described by an I×I matrix of reduced form transition

thresholds. Let gij be a scalar with the property that an obligor in grade i at the

as-of date will arrive in grade j or lower at the horizon date if u ≤ gij. The transition

probabilities for obligors in grade i are then

pi0 = F (gi0)

pij = F (gij) − F (gi,j−1) for 1 ≤ j ≤ I − 1

piI = 1 − F (gi,I−1).

7If grades form a reasonably fine partition of the range of possible default distances, the assump-
tion of homogeneity within grades is innocuous. This assumption dramatically simplifies exposition
and model estimation from aggregate data. If richer obligor-specific data were used, this assumption
could be relaxed.
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where j = 0 denotes default.

One can estimate the reduced form transition thresholds directly from default fre-

quency data of the sort presented in Section 2. Indeed, this is exactly what is done

when the RiskMetrics Group’s CreditMetrics model is calibrated to historical data

(Gupton, Finger and Bhatia 1997)[Chapter 6]. Because there are exactly as many

reduced form thresholds as transition probabilities, this approach produces estimated

transition probabilities that exactly match the transition frequencies reported in Table

2. However, reduced form models provide only limited insights into the stochastic pro-

cess driving firm defaults and the behavior of rating agencies. Observe in particular

that the reduced form transition thresholds have no natural economic interpretation

because they imply nothing about how transitions between pairs of grades are related

to one another. A second drawback to highly parameterized models such as the re-

duced form specification is that they are likely to “over-fit” historical data, limiting

their usefulness for forecasting applications.

The reduced form thresholds can be linked to the structural parameters of our

baseline model by equating the rating transitions conditions implied by each. Under

the reduced form model an obligor currently in grade i will transition to grade j or

lower if u ≤ gij , while under the baseline model the same obligor will transition to

grade j or lower if y0
i + u ≤ γj. Thus, the two models imply the same transition

probability when gij = γj − d0
i . Repeating this logic for all possible transitions yields

the following mapping from structural to reduced form parameters:

gij =

{
y0

i if j = 0

γj − y0
i if 1 ≤ j ≤ I − i

. (2)

The structural model is substantially more parsimonious than the reduced form

model. There are I2 reduced form transition thresholds, but only 2I − 1 structural

parameters. Transition probabilities predicted by the structural model cannot be ex-

pected to exactly match observed transition frequencies. However, if the assumptions

underlying the structural model are reasonably accurate, the estimated and observed

transition probabilities should be close to one-another.
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3.4 Parameter Estimates

Parameters for the structural model are estimated using a two-stage, hybrid method-

of-moments/maximum likelihood procedure. In the first stage, the vector of as-of

default distances (y0
1 . . . y

0
I ) and the vector of agency rating assignment thresholds

(γ1 . . . γI−1) are estimated by fitting the predicted structural transition probabilities

to the observed transition frequencies reported in Table 2. In the second stage, the

factor loading ω is estimated by simulated maximum likelihood, holding the first-stage

parameter estimates fixed.

Column (a) of Table 3 presents the structural parameter estimates for the baseline

model. These parameters exhibit expected relationships to one-another. The initial

distances to default for obligors assigned to higher grades are greater than those of

obligors assigned to lower grades. The initial distance to default for each grade lies

between the upper and lower rating thresholds for that grade.

To determine how well the baseline model captures observed patterns in rating

transitions, the structural parameters are used to predict a matrix of marginal tran-

sition probabilities (Table 4). Comparing this matrix with the matrix of observed

transition frequencies in Table 2, we see that the model does an excellent job of fit-

ting the probabilities that obligors will remain in the same grade. The predicted

probabilities that obligors in a grade will transition to adjacent grades are also rea-

sonable close to the observed frequencies. However, the baseline model dramatically

understates the likelihood that an obligor will move two or more grades from its initial

rating over the course of a year. For all but the lowest speculative grade, predicted

default probabilities are far lower than observed default probabilities.

These results indicate that the structural model is too restrictive to accurately

describe the process of rating assignment and default. In the next two sections we

generalize the baseline model with an eye towards better capturing observed features

of the data.

4 Thick-Tailed Asset Return Distributions

Assuming that the year-to-year change in an obligor’s distance to default is normally

distributed, while convenient, may not be particularly realistic. Normally distributed

random variables have the property that the probability of relatively large or small
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realizations falls quickly toward zero. Thus, if most changes in distance to default are

relatively small, a normal model will predict that the probability of large changes is

negligible. This is precisely what our baseline model implies. Grade thresholds must

be sufficiently far apart to ensure that the probability that an obligor remains in its

own grade is high. But given these wide grades, the odds that a change in distance to

default drawn from a normal distribution will lead to a transition across many grades

is very nearly zero. Table 2 indicates that, in fact, such events are not terribly rare.

Research on equity return data suggests that the shocks affecting firms’ asset val-

ues (and by implication their default distances) are best modeled as coming from

a “thick-tailed” distribution. Unlike normal random variables, the probability of

drawing an exceptionally large or small realization of a thick-tailed variable can be

nontrivial, even if most draws of that variable tend to be relatively small. Thus, by

allowing for the possibility that changes in default distances have a thick-tailed distri-

bution, we permit a reasonable likelihood of multi-grade transitions in an environment

where most obligors do not change grades.

4.1 The alpha-stable distribution family

Though there are many thick-tailed distributions to choose from, practical considera-

tions impose some limitations on our modeling assumptions. An important character-

istic of the baseline model is that the systematic risk factor and the idiosyncratic risk

factor can be summed together to yield a change in default distance whose marginal

distribution does not depend on the factor loading parameter ω. This means that

all model parameters except the factor loading can be identified and estimated from

data on average transition frequencies. It is this fact that allows us to separate our

estimation of model parameters into two stages. More importantly, it affords a degree

of robustness to possible errors in assumptions about systematic risk and transition

correlations. For example, estimated default distances and grade thresholds can be

consistently estimated, even if our one systematic risk factor assumption is incorrect.

For these reasons we prefer to choose a thick-tailed distribution that preserves the

separability between the factor loading and other model parameters.

The alpha-stable distribution family meets all of our modeling requirements. This

family includes as special cases the normal distribution as well as the well-known,

thick-tailed, Cauchy distribution (Fama and Role 1968). All members of this family
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are additively stable, so that if systematic risk factors and idiosyncratic risk factors are

drawn from identical alpha-stable distributions, changes in default distances will also

be drawn from an alpha-stable distribution. For simplicity, we restrict our analysis

to symmetric alpha-stable distributions.8

The tail-thickness, or kurtosis, of alpha-stable distributions depends on a shape

parameter α that can range from zero to two. α = 2 yields a normal distribution,

while α = 1 yields a Cauchy distributions. More generally, lower values of α corre-

spond to greater kurtosis. Figure 3 illustrates the effect of changes in α on the shape

of an alpha-stable probability density function. Notice that a change in α does not

simply affect the “spread” of the distribution, as would a change in variance. Rather,

it moves probability mass between the shoulders and the tails of the distribution. Dis-

tributions with α parameters that lie between one and two have unbounded variance

but bounded mean. Those with parameters that lie between zero and one have both

unbounded variance and unbounded mean. Because we believe it is unrealistic to

assume that expected changes in distance to default cannot be measured, we restrict

α to the range 1 < α ≤ 2.

4.2 Parameter Estimates

We incorporate the idea that the distribution of changes in distance to default has

thick tails by assuming that the systematic risk factor x and the idiosyncratic risk

factor ε are both drawn from appropriately normalized symmetric alpha-stable dis-

tribution with the same kurtosis parameter α,9 and that

u = ωX + (1 − ωα)1/αε. (3)

This generalization adds one additional parameter to our model, the single shape

parameter α.

Column (b) of Table 3 presents estimated structural parameters for the thick-

tailed model. As before, the default distances and grade thresholds bare the expected

relationships to one-another. These parameters are much larger in magnitude than

the baseline parameters, owing to the different shape of the distribution of default

8The alpha-stable family includes a range of skewed distributions. Preliminary results were not
sensitive to skewness, so we elected to focus only on symmetric distributions.

9In addition to the shape parameter, symmetric alpha-stable distributions depend on a location
and a scale parameter. These are normalized to 1 and 1/

√
2 respectively.
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distances. The estimated value for α, 1.14, is far from 2, suggesting that the normality

assumption of the baseline model is indeed overly restrictive.

Comparing Table 2 with Table 5 reveals that the more general model continues to

effectively predict the probabilities that obligors will remain in their current grades.

Moreover, higher, more realistic probabilities of multi-grade transitions are generated.

However, so much mass is placed in the extreme tails of the default distance distri-

bution that the model predicts unrealistically high default probabilities, particularly

for investment grade obligors.

Even when a relatively general stochastic default process is assumed, a rating

model in which an obligor’s distance to default determines both its grade and its

default probability does not appear able to explain observed features of the marginal

transition matrix. In the section that follows, we generalize the rating assignment

model to relax the strong link it imposes between the distance to default used for

assigning an obligor to a grade and that obligor’s probability of default.

5 Rating Assignment Errors

Duffie and Lando (1999) develop a term structure model in which bond investors

observe an obligor’s distance to default with some error. An implication of this

model is that at any point in time, an obligor’s forward looking default probability

may actually be much higher than would be suggested by its measured distance to

default. A similar approach can be taken to model bond rating transitions. If an

obligor’s true distance to default is imperfectly measured by the rating agency, then

the strong relationship between distance to default, grade, and default probability

implied by the baseline model can be relaxed.

5.1 A simple measurement error model

To capture the idea that a rating agency miss-measures distance to default, we must

distinguish between an obligor “true” distance to default yt, and the agency’s mea-

sured distance to default ŷt. The relationship between the two is given by

ŷt = yt + svt (4)
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where vt is the measurement error at time t, and s is a parameter that describes

the importance of the measurement error in determining the observed distance to

default.. To allow for the possibility that measurement errors are correlated over

time, we assume that vt follows the AR1 process,

vt = ψvt−1 + (1 − ψα)1/αet (5)

where ets are iid draws from an alpha-stable distributions. When ψ = 1 measurement

errors are constant over time. When ψ = 0, new and independent measurement errors

are made each period.

We assume that the agency uses only its measured default distances to assign rat-

ings. It should be noted that this assumption implies a degree of naivete‘ on the part

of the rating agency. It rules out the possibility that the rating agency updates its

assessment of an obligor’s distance to default as it observes that an obligor has not de-

faulted in the past. Incorporating such dynamics would imply that rating transitions

do not follow a first order Markov process. While relaxing the Markov assumption

would almost certainly prove fruitful, this generalization must await future research.

Let γ̂j denote the upper assignment threshold associated with grade j, and let ŷ0
i

denote the measured distance to default for obligors initially assigned to grade i. As

before, an obligor is assigned to grade j when γ̂j−1 < ŷt ≤ γ̂t. The probability that

an obligor in grade i will end the assessment period in grade j is

pij = P
[
γ̂j−1 < ŷ1 ≤ γ̂j | ŷ0

i

]
= P

[
γ̂j−1 − ŷ0

i < u+ sv1 − sv0 ≤ γ̂j − ŷ0
i | ŷ0

i

]
= F

(
γ̂j − ŷ0

i

(1 + ((1 − ψα) + (1 − ψ)α)s)1/α

)
− F

(
γ̂j−1 − ŷ0

i

(1 + ((1 − ψα) + (1 − ψ)α)sα)1/α

)
.

F (·) is the cumulative density function for the normalized symmetric alpha-stable

distribution with shape parameter α. The last equality follows from the additive

properties of alpha-stable variables.

Importantly, an obligor defaults only when its true distance to default falls below
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zero. Thus, the default probability for an obligor in grade i is

pi0 = P
[
y1 ≤ 0 | ŷ0

i

]
= P

[
u− sv0 ≤ −ŷ0

i | ŷ0
i

]
= F

(
−ŷ0

i

(1 + sα)1/α

)
.

To more easily compare the measurement error model with our earlier models, it

is helpful to rewrite the above equations in terms of parameters that more closely

match those of the baseline model. We will use the following reparameterization:

γj =
γ̂j

(1 + ((1 − ψα) + (1 − ψ)α)s)1/α

y0
i =

ŷ0
i

(1 + ((1 − ψα) + (1 − ψ)α)s)1/α

q =
(1 + ((1 − ψα) + (1 − ψ)α)s)1/α

(1 + sα)1/α
.

Substitution then yields a familiar mapping from structural parameters to reduced

form transition thresholds:

gij =

{
qy0

i if j = 0

γj − y0
i if 1 ≤ j ≤ I − 1

. (6)

The only difference between equation (6) and our baseline mapping is the new

structural parameter q. q drives a wedge between transition probabilities and default

probabilities. All else equal, default probabilities may be either higher or lower than

those implied by the baseline model depending on the magnitude of q, which is a

function of the overall importance of measurement errors (s) and the extent to which

these errors are correlated over time (ψ).

5.2 Parameter Estimates

Columns (c) and (d) of Table 3 show two sets of estimates of the structural parameters

in equation (6). In the first specification, the measurement error adjustment factor

q is assumed to be constant across grades. In the second specification, we allow for
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the possibility that this adjustment factor might itself depend on an obligor’s initial

grade. This situation could arise, for example, if obligors with lower credit quality

have poorer accounting practices, or alternatively, if rating agencies monitor lower

quality obligors more rigorously. To more easily nest these two models, q is expressed

as

q = exp(β0 + β1y
0
i ),

and β0 and β1 are estimated. In the constant measurement error specification β1 = 0.

A cursory examination of the matrix of marginal transition probabilities implied

by the constant measurement error specification (Table 6) reveals that this model

is not a great improvement over the thick-tailed model without measurement errors.

Predicted default probabilities for high grade bonds are far greater than those actually

observed.

In contrast, the matrix of transition probabilities implied by the grade-varying

measurement error specification shown in Table 7 exhibits many of the salient features

of Table 2. The probability that obligors remain in their current grades or transition

to adjacent grades match closely. Implied default probabilities fall dramatically as

one moves from lower to higher grades, and the default probabilities associated with

the highest grades appear quite reasonable. The largest discrepancies between the

predicted probability matrix and the empirical frequency matrix occur for transitions

of greater than one grade. The probabilities assigned by the structural model are

substantially higher than those observed. Nonetheless, the effectiveness of the grade-

varying measurement error specification as compared with the baseline specification

is impressive, particularly in light of the fact that it contains only three additional

parameters (α, β0, and β1).

6 Conclusions

The primary goal of this analysis was to develop a structural model of bond rat-

ing transitions. Structural empirical models provide two distinct benefits over more

highly-parameterized reduced form models. First, economic theory can generate pow-

erful restrictions, substantially reducing the number of parameters that must be esti-

mated. In applications such as this one where data are limited, parsimony is impor-
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tant. Models with fewer parameters are generally more easily identified by available

data, and their parameters can be estimated more efficiently. Highly parameterized

models have a tendency to “over-fit” observed data. reducing the effectiveness of out-

of-sample forecasts. The second advantage of structural models is that they provides

a rigorous, internally consistent framework from which we can draw economically

meaningful inferences. Because the parameters that characterize structural models

have economic interpretations, they lend themselves to scrutiny on theoretical as well

as empirical grounds.

With regard to the first benefit of structural modeling, our empirical exercise was

largely successful, The grade-varying measurement error model is able to described

most of the important features of an observed transition matrix containing 49 cells

using only 16 parameters. The second advantage of structural modeling was more

elusive. The parameter estimates for the grade-varying measurement error model

seem to imply unrealistically large differences in the importance of measurement

errors across grades. Thus, although this model does a good job describing observed

features of the data, it is less convincing as a description of the bond rating process.

These findings suggest that the process that drives rating transitions cannot be closely

tied to the process that drives default through a single solvency measure such as the

distance to default.

One possible explanation for our findings is that rating agencies apply different

standards for assigning grades at different points in the business cycle. Such “through-

the-cycle” rating would imply that transition probabilities change in a predictable way

over time. For example, if an agency applied stricter rating criteria during expansions

than during recessions, then the matrix of observed transition probabilities would

differ depending on whether an assessment period begins during an expansion or a

recession. Bahar and Negpal (1999) and Bangia, Diebold and Shuermann (2000)

find empirical evidence for this view. The idea of through-the-cycle rating can be

incorporated into our structural framework by allowing the upper grade transition

thresholds to depend on macroeconomic variables such as an indicator for recessions.

This extension will be the subject of future research.
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Year Caa/C B Ba Baa A Aa Aaa Total
1984 2 117 225 224 347 165 40 1120
1985 4 140 260 232 359 192 36 1223
1986 9 172 326 233 356 168 45 1309
1987 12 253 410 231 337 168 44 1455
1988 7 282 372 249 338 161 51 1460
1989 7 309 391 241 337 141 47 1473
1990 12 283 348 245 346 136 46 1416
1991 15 227 273 256 337 135 39 1282
1992 16 183 260 259 333 119 35 1205
1993 16 215 264 279 333 108 28 1245
1994 36 311 295 303 351 101 27 1424
1995 50 364 290 310 363 90 25 1492
1996 64 391 317 332 380 96 25 1605
1997 62 429 324 380 390 90 27 1702
1998 105 581 393 425 400 87 25 2016
1999 136 612 408 487 409 90 19 2161
Average 34.6 304.3 322.3 292.9 357.3 127.9 34.9 1474.1

Table 1: Number of obligors in each rating grade, by year.

Initial Year-End Grade
Grade Default Caa/C B Ba Baa A Aa Aaa
Caa/C 0.1638 0.7420 0.0646 0.0202 0.0094 0.0000 0.0000 0.0000
B 0.0779 0.0263 0.8309 0.0556 0.0067 0.0017 0.0007 0.0002
Ba 0.0172 0.0033 0.0932 0.8311 0.0490 0.0056 0.0003 0.0002
Baa 0.0008 0.0007 0.0087 0.0473 0.8930 0.0485 0.0009 0.0000
A 0.0000 0.0000 0.0021 0.0079 0.0549 0.9164 0.0184 0.0004
Aa 0.0000 0.0000 0.0004 0.0008 0.0056 0.0986 0.8878 0.0069
Aaa 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 0.0710 0.9252

Table 2: Average one-your transition frequencies.
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Figure 1: Shares of obligors upgrades and downgraded over one year, by initial grade
and year.
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Figure 2: Partition of the range of possible default distances into rating grades.
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(a) (b) (c) (d)
Thick-Tailed Thick-Tailed
Returns with Returns with

Baseline Thick-Tailed Constant Variable
Model Asset Returns Rating Errors Rating Errors

Upper Grade Thresholds (γj)
Caa/C 2.2912 2.9792 4.8741 337.0140
B 5.0617 7.4792 8.0733 340.5062
Ba 7.8656 12.5855 11.4024 344.1889
Baa 11.0913 19.4199 15.4614 348.8219
A 17.9753 34.5541 20.9271 355.7309
Aa 22.8465 57.7742 28.6274 368.4784

Initial Distance to Default (yi)
Caa/C 0.9781 1.1361 3.4107 335.4426
B 3.5475 4.6893 6.2550 338.4850
Ba 6.2682 9.1440 9.4034 341.9108
Baa 9.4412 15.7076 13.3549 346.3965
A 12.6060 22.1702 17.2854 350.8508
Aa 19.2270 36.3217 22.3180 357.2070
Aaa 23.2878 60.1735 31.3163 370.3277

Tail Shape Parameter (α) 2 1.14 1.54 1.40
Measurement Error Parameters
Intercept (β0) 0 0 -1.2112 -71.5605
Slope (β1) 0 0 0 0.1961

Restricted parameter values are shown in bold.

Table 3: Structural parameter estimates.

Initial Year-End Grade
Grade Default Caa/C B Ba Baa A Aa Aaa
Caa/C 0.1640 0.7414 0.0946 0.0000 0.0000 0.0000 0.0000 0.0000
B 0.0002 0.1043 0.8305 0.0650 0.0000 0.0000 0.0000 0.0000
Ba 0.0000 0.0000 0.1138 0.8311 0.0551 0.0000 0.0000 0.0000
Baa 0.0000 0.0000 0.0000 0.0575 0.8930 0.0495 0.0000 0.0000
A 0.0000 0.0000 0.0000 0.0000 0.0649 0.9351 0.0000 0.0000
Aa 0.0000 0.0000 0.0000 0.0000 0.0000 0.1053 0.8945 0.0001
Aaa 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0747 0.9253

Table 4: Predicted transition probabilities for baseline model.
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Initial Year-End Grade
Grade Default Caa/C B Ba Baa A Aa Aaa
Caa/C 0.1664 0.7330 0.0763 0.0120 0.0051 0.0036 0.0016 0.0020
B 0.0345 0.0747 0.8279 0.0440 0.0097 0.0051 0.0020 0.0021
Ba 0.0159 0.0092 0.0873 0.8382 0.0354 0.0090 0.0026 0.0023
Baa 0.0085 0.0023 0.0070 0.0359 0.9000 0.0394 0.0042 0.0028
A 0.0058 0.0010 0.0024 0.0059 0.0488 0.9248 0.0079 0.0033
Aa 0.0033 0.0003 0.0007 0.0011 0.0025 0.0974 0.8887 0.0060
Aaa 0.0018 0.0001 0.0002 0.0003 0.0005 0.0020 0.0699 0.9252

Table 5: Predicted transition probabilities for thick-tailed asset returns model.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15
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0.3

0.35
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x

f(
x)
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1.1 

Figure 3: Three alpha-stable probability destribution functions with α parameters 2,
1.5, and 1.1.
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Initial Year-End Grade
Grade Default Caa/C B Ba Baa A Aa Aaa
Caa/C 0.1669 0.7364 0.0853 0.0067 0.0022 0.0011 0.0006 0.0007
B 0.0621 0.0444 0.8283 0.0555 0.0059 0.0019 0.0009 0.0009
Ba 0.0283 0.0000 0.1014 0.8324 0.0469 0.0047 0.0015 0.0011
Baa 0.0150 0.0000 0.0050 0.0476 0.8942 0.0439 0.0036 0.0015
A 0.0096 0.0000 0.0014 0.0040 0.0570 0.9178 0.0151 0.0023
Aa 0.0063 0.0000 0.0005 0.0010 0.0031 0.0993 0.8893 0.0054
Aaa 0.0036 0.0000 0.0002 0.0002 0.0005 0.0015 0.0717 0.9253

Table 6: Predicted transition probabilities for constant measurement error model.

Initial Year-End Grade
Grade Default Caa/C B Ba Baa A Aa Aaa
Caa/C 0.1663 0.7377 0.0804 0.0086 0.0032 0.0017 0.0010 0.0011
B 0.0706 0.0352 0.8292 0.0519 0.0076 0.0028 0.0014 0.0012
Ba 0.0241 0.0000 0.0968 0.8331 0.0439 0.0062 0.0022 0.0014
Baa 0.0064 0.0000 0.0061 0.0440 0.8949 0.0423 0.0045 0.0019
A 0.0018 0.0018 0.0019 0.0049 0.0542 0.9190 0.0139 0.0026
Aa 0.0003 0.0018 0.0007 0.0012 0.0035 0.0979 0.8898 0.0048
Aaa 0.0000 0.0010 0.0002 0.0002 0.0005 0.0014 0.0714 0.9252

Table 7: Predicted transition probabilities for grade-varying measurement error
model.
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