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Abstract 

So far, regulatory capital requirements for credit risk portfolios are calculated in a bottom
up approach by determining the requirements at asset level and then adding up them. In 

contrast, economic capital for a credit risk portfolio is calculated for the portfolio as a whole 

and then decomposed into risk contributions of assets or subportfolios for, e.g., diagnostic 

purposes like identifying risk concentrations. In the “Asymptotic Single Risk Factor” model 
that underlies the most important part of the “Basel II Accord”, bottomup and topdown 

approach yield identical results. However, the model fails in detecting exposure concentra
tions and recognizing diversification effects. We investigate multifactor extensions of the 

ASRF model and derive exact formulae for the risk contributions to ValueatRisk and Ex
pected Shortfall. As an application of the risk contribution formulae we introduce a new 

concept for a diversification index. The use of this new index is illustrated with an example 

calculated with a twofactor model. The results with this model indicate that there can be 

a substantial reduction of risk contributions by diversification effects. 

Introduction 

Credit risk, i.e. the risk that borrowers do not fully meet their obligations, is considered the most 
important risk banks are facing. During the past decade, therefore, banks as well as banking 

supervisory authorities put considerable efforts in developing models for quantitative assessments 
of credit risk. These efforts were accompanied by a growing interest of the academic community 

in credit risk models. Compared to models of market risk or actuarial models, credit risk models 
have some interesting special features. In particular, they produce nonnormal loss distributions 
and reflect the empirically observed dependence of credit events. 

While the more advanced large banks rely more and more on very sophisticated credit risk 

models in order to take into account these features, banking supervisors worldwide intend to 
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implement a minimum standard of credit risk modelling which can also be met by smaller banks. 
The process of designing this standard (“Basel II”) is coordinated by the Basel Committee 

on Banking Supervision (BCBS). Although some details are still under discussion, the BCBS 

published at the end of June 2004 a framework with the status quo of its recommendations 
(BCBS, 2004). Most important in this socalled “Basel II Accord” is the part on the “Internal 
Ratings Based Approach” (IRBA) for the determination of regulatory capital requirements for 
credit risk. It is regarded as a first step towards a supervisory recognition of advanced credit 
risk models and economic capital calculations. 

According to the IRBA, the regulatory minimum capital for a credit risk portfolio is calculated 

in a bottomup approach by determining capital requirements at asset level and adding up them. 
The capital requirements of the assets are expressed as 8 percent of the socalled “risk weights”. 
The risk weight functions were developed by considering a special credit portfolio model, the 

socalled “Asymptotic Single Risk Factor Model” (ASRF model, Gordy, 2003). This model is 
characterized by its computational simplicity and the property that the risk weights of single 

credit assets depend only upon the characteristics of these assets, but not upon the composition 

of the portfolio (“portfolio invariance”). As a consequence, the model can reflect neither exposure 

concentrations nor segmentation effects (say by industry branches). 

The model’s inability to detect exposure concentrations entails a potential underestimation 

of the risk inherent in the portfolio, whereas its fault in recognizing the diversification effects 
following from segmentation could result in a potential overestimation of portfolio risk. The Basel 
Committee decided to deal in Pillar 2 of the Basel II Accord (BCBS, 2004) with the potential 
underestimation of risk concentration. As a consequence there is no automatism of extended 

regulatory capital requirements for risk concentrations, but banks will have to demonstrate 

to the supervisors that they have established appropriate procedures to keep concentrations 
under control. Nevertheless, there are methods to measure quantitatively risk concentrations. 
A quantitative way of tackling the exposure concentration issue was suggested in Emmer and 

Tasche (2005), for instance. 

In the present paper, we suggest a minimal – in the spirit of Emmer and Tasche (2005) – 

extension of the Basel II model that allows to study the effects of segmentation on portfolio risk. 
Admitting several risk factors instead of a single factor only and applying the same transition 

to the limit as described in Gordy (2003), we arrive at versions of the model that remove the 

no segmentation restriction. Alternatively, our class of models can be regarded as special cases 
of the asymptotic models introduced by Lucas et al. (2001, Theorem 1). 

As determining risk contributions or, economically speaking, capital requirements for assets or 
subportfolios, is a main purpose when using credit risk models, deriving exact formulae for risk 

contributions to “Valueatrisk” (VaR) and “Expected Shortfall” (ES) in the asymptotic multi 
risk factors setting represents the main contribution of our paper to the subject. Our results 
complement results on the differentiation of VaR and ES presented in Gouriéroux et al. (2000), 
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Lemus (1999), and Tasche (1999). From a computational point of view, the resulting formulae 

are more demanding than in the one factor case, and – necessarily, as otherwise diversification 

effects could not be recognized – they are not portfolio invariant any longer. As an application 

of the risk contribution formulae we introduce then a new concept for a diversification index. 
This index can be computed at portfolio as well as at subportfolio or asset level, thus allowing 

for identifying the causes of bad diversification. The use of these new indices is illustrated with 

an example calculated with a twofactor model. The results with this model indicate that there 

can be a substantial reduction of risk contributions by diversification effects. 

The material presented here is closely related to work by Pykhtin (2004) and Garcia et al. 
(2004). Pykhtin describes an approximation of multifactor models by singlefactor models, thus 
transferring the computational simplicity of singlefactor models to multifactor models. Garcia 

et al. propose “factor adjustments” to the risk contributions from a singlefactor model in order to 

reflect diversification effects. As our results on the risk contribution formulae are not approximate 

but exact they could be used for benchmarking the results by Pykhtin and Garcia et al. 

This paper is organized as follows: In Section 2 we introduce the class of models we are going 

to analyze and derive some basic properties. In Section 3 we shortly recall the Euler allocation 

principle that justifies the use of partial derivatives as risk contributions and derive then the 

announced formulae for risk contributions to VaR and ES in the asymptotic multifactor setting. 
A potential application of the risk contribution formulae for the purpose of identifying sources 
of concentration risk is suggested in Section 4 where a new concept for a diversification index 

is introduced. Section 5 gives a numerical illustration of a potential application of the formulae 

and the diversification index. We conclude with some summarizing comments in Section 6. 

Asymptotic multifactor models: basic properties 

The starting point for the factor models1 we are going to consider is a random variable L̃(u) = 

L̃(u1, . . . , un) that reflects the loss suffered from a portfolio of n credit assets, with respective 

exposures ui. The tilde indicates that we regard the original loss variable, without any approxi
mation procedure. The variable L̃(u) can be interpreted as the absolute loss, measured in units of 
some currency. Then the ui are absolute exposures2 and amounts of money. Alternatively, L̃(u) 
can also be understood as relative loss, indicating the percentage of the sum of all exposures 
that is lost. In this case the ui are nonnegative numbers without units that add up to 1. 

Formally, the original loss variable L̃(u) is given as 
n

L̃ = ui 1Di . (2.1) 
i=1 

1See Bluhm et al. (2002) and the references therein for more information on credit risk models. 
2 ui may be thought as a face value multiplied with some factor that expresses the average loss rate in case of 

default. 
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The term 1Di is the default indicator variable for asset i, i.e. it takes the value of 1 if i defaults 
and 0 if not. As a consequence, the sum in (2.1) will be built up with only those ui’s that relate 

to defaulted assets i. For factor models, it is quite common to specify the default events Di by ��k � 
Di = ρi,j Sj + ωi ξi ≤ ti , i = 1, . . . , n, (2.2)

j=1 

with the following for the involved constants and random variables: 

•	 The random variables S1, . . . , Sk are the systematic risk factors. They are assumed to 

capture the dependence of the default events. In general, we have k � n. Within this 
paper, we assume that the factor variables are standardized, i.e. 

E[Sj ] = 0 and var[Sj ] = 1, j = 1, . . . , k.	 (2.3) 

The S1, . . . , Sk may be stochastically dependent, but they do not have do be. 

•	 The random variables ξ1, . . . , ξn are the idiosyncratic risk drivers. They are also standard
ized, i.e. 

E[ξi] = 0 and var[ξi] = 1, i = 1, . . . , n. (2.4) 

ξ1, . . . , ξn, (S1, . . . , Sk ) are stochastically independent. As a consequence, conditional on 

(S1, . . . , Sk ), the default events Di, i = 1, . . . , n are independent. 

•	 The constants ρi,j , i = 1, . . . , n, j = 1, . . . , k are the factor loadings of the systematic 

factors. We assume that 
k

ρi,j ρi,� corr[Sj , S�] ≤ 1, i = 1, . . . , n. (2.5) 
j=1,�=1 

By (2.5) and the standardization assumption on the Sj and ξi the idiosyncratic loadings 

ωi, i = . . . , n are well defined by � k

ωi = �1 − ρi,j ρi,� corr[Sj , S�]. (2.6) 
j=1,�=1 

As a further consequence of (2.5) and (2.6) and of the standardization assumptions also 

the asset values changes 
�k

j=1 ρi,j Sj + ωi ξi are standardized. 

•	 The constant ti, i = 1, . . . , n is called default threshold. It can be thought as a critical loss 
in value of borrower i’s assets that causes the borrower to default on asset i. It is common 

to derive ti from borrower i’s (assumed to be known) probability of default pi. Hence, we 

determine ti such that � �k � 
P[Di] = P ρi,j Sj + ωi ξi ≤ ti = pi, i = 1, . . . n. (2.7)

j=1 

When the idiosyncratic risk drivers ξi and the factor variables are all standard normally 

distributed, also the asset value changes 
�

j
k 
=1 ρi,j Sj + ωi ξi are standard normal. Let Φ 

denote the standard normal distribution function. By (2.7) we then have pi = Φ(ti). 
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For the sake of a more concise notation we define 

S = (S2, . . . , Sk), s� = (s2, . . . , sk) (2.11a) 

and for fixed u 
n

G(v, s�) = uj gj(v, s�). (2.11b) 
j=1 

By Assumption 2.2, then, for fixed s�, v �→ G(v, s�) is invertible. Write G(·, s�)−1 for the inverse 

function of v �→ G(v, s�). Write additionally G(·, s�)−1(0) = ∞ and G(·, s�)−1(z) = −∞ for z ≥ 
n 
j=1 uj . Having fixed the assumptions and notations, we can prove a result on the calculation 

of moments that in particular implies that the distribution of the generalized loss variable L(u) 
has a density. 

Proposition 2.3 Let F : [0, 1] → R be arbitrary and L(u) be the loss variable defined by (2.10). 
nThen, under Assumption4 2.2, for any 0 ≤ z ≤ j=1 uj and i ∈ {1, . . . , n} we have: � � � � � �� � � z F gi(G(·, S)−1(t), S) h G(·, S)−1(t) | S

E F (gi(S)) 1{L(u)≤z} = − 
0 

E 
∂ G(v, S)�� 

v=G(·,S)−1 (t) 

dt. 
∂v �

Proof. 

E F (gi(S)) 1{L(u)≤z} = E F (gi(S1, S)) 1 {G(S1,S)≤z} | S = s� PS�−1(ds�) (2.12a) 

(taking into account G(·, s�)−1(0) = ∞) 

= 
∞ 

F gi(y, s�) h(y | s�) dy PS�−1(ds�) (2.12b) 
s)−1(z)G(·,�

(substituting y = G(·, s�)−1(t)) � � � � � � 
z F gi(G(·, s�)−1(t), s�) h G(·, s�)−1(t) | s�

= − 
0 

∂ G(v, S)�� 
v=G(·,S)−1(t) 

dtPS�−1(ds�). 
∂v �

The assertion follows by applying Fubini’s theorem. 2 

The choice F = 1 in Proposition 2.3 implies the existence of a density for the distribution of the 

generalized loss variable: 

Corollary 2.4 Under Assumption 2.2, the loss variable L(u) from (2.10) has the density fL(u) : 
n0, j=1 uj → [0,∞[, defined by ⎡ ⎤ 

fL(u)(t) = −E 
h G(·, S)−1(t) | S � �n � ⎣ 

∂ G(v, S)�� 
v=G(·,S)−1 (t) 

⎦ , t ∈ 0, uj . (2.13)� j=1 
∂v �

4In order to keep the representation of the results as intuitive and clear as possible here and in the following the 

proofs will not be rigorous but rather consist of calculations without consideration of continuity, differentiability 

etc. Moreover, for some of the results, additional assumptions on existence of moments etc. must be made. 
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Note that Gordy’s (2003) ASRF (Asymptotic Single Risk Factor) model is a special case of (2.8) 
with k = 1. Then the expectation in (2.13) disappears, and the density h and the inverse of G 

do not depend on s�. Nevertheless, in the case of nonconstant asset correlations or probabilities 
of default the calculation of the density of L(u) will involve numerical inversion of G even in the 

simple ASRF case. 

In case that an explicit representation of the conditional distribution of S1 given S� is known 

(e.g. if S is jointly normally distributed), Equation (2.12a) (with F = 1) yields a more efficient 
way to calculate the distribution function of L(u) than Corollary 2.4 does. The reason is that 
application of Corollary 2.4 would require evaluation of a kdimensional integral if S had a 

density, whereas the application of the following Proposition 2.5 would only require evaluation 

of a (k − 1)dimensional integral. 

Proposition 2.5 Under Assumption 2.2, the distribution function of the loss variable L(u) as 

given in (2.10) can be calculated by means of 

P[L(u) ≤ z] = P S1 ≥ G(·, S)−1(z) S = s� PS�−1(ds�). (2.14) 

Define, for α ∈ (0, 1) and any real random variable X , the αquantile of X by 

qα(X ) = min{x : P[X ≤ x] ≥ α}.	 (2.15a) 

Quantiles at high levels (e.g. 99.9%) are popular metrics for determining the economic capital 
of portfolios. Within the financial community, the αquantile of a loss distribution is commonly 

called ValueatRisk (VaR) at level α. In case of the generalized loss variable L(u) we write 

qα(L(u)) = qα(u).	 (2.15b) 

The quantiles of L(u) can be computed by numerical inversion of (2.14). 

We conclude this section by providing two alternative formulae for the calculation of another 
popular risk measure, the Expected Shortfall5, in the case of the asymptotic multifactor model 
under consideration. 

Remark 2.6 The Expected Shortfall ESα(L(u)) = E[L(u) L(u) ≥ qα(L(u))] at level α of the |
loss variable L(u) from (2.10) can alternatively be calculated with recourse to Corollary 2.4 or 

to Proposition 2.5. Note that the existence of a density of the distribution of L(u) (Corollary 

2.4) implies P[L(u) ≥ qα(L(u))] = 1 − α. From Corollary 2.4 we can therefore derive ⎡	 ⎤ � �	n � � 
j=1 uj � �

E[L(u) L(u) ≥ qα(L(u))] = −(1 − α)−1 t E 
h G(·, S�)−1(t) | S ⎦ dt. (2.16a)|	

qα(L(u)) 

⎣ 
∂ G(v, S)� 

v=G(·,S)−1(t)∂v �
See Acerbi and Tasche (2002) and the references given there for more details on Expected Shortfall vs. Value

atRisk. In particular, in case of discontinuous loss distributions the definition of ES has to be slightly modified 

in order to make it a risk measure superior to VaR. 
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∞
0 P[X ≥ x] dx for
From Proposition 2.5 we obtain (by making use of the formula E[X]
 = 

X ≥ 0) 

E[L(u) L(u) ≥ qα(L(u))] (2.16b) 
n 
j=1 uj 

S)−1(z) 

qα (L(u)) 

�

3 Computing the risk contributions 

When economic capital for a portfolio is determined by means of a homogeneous risk measure, 
by the Euler allocation principle the risk contributions of assets should be calculated as partial 
derivatives of the portfoliowide economic capital with respect to the exposures. In this section 

we first recall the Euler principle and derive then formulae for the derivatives of ValueatRisk6 

as defined by (2.15a) and Expected Shortfall as defined in Remark 2.6 in the context of the 

asymptotic multifactor model of Section 2. 

3.1 Euler allocation 

Suppose that realvalued random variables X1, . . . , Xn are given that stand for the profits and 

losses with the assets in a portfolio. Let Y denote the portfoliowide profit and loss, i.e. let 

qα(L(u)) + (1 − α)−1 PS�−1(d�P S1 ≤ G(·, s) dz.
S = s�
= | 

n

Y = Xi. (3.1) 
i=1 

The economic capital EC required by the portfolio is determined with a risk measure �, i.e. 

EC = �(Y ). (3.2) 

Definition 3.1 If � is a risk measure and V,W are random variables such that the derivative 
d �(h V + W )dh exists, then 

h=0 

d 
�(V | W ) = �(h V + W )

dh h=0 

is called contribution of V to the risk of W in respect of �. 

Assumption 3.2 The risk measure � is positively homogeneous, i.e. 

�(h Z) = h �(Z) 

for any random variable Z in the definition set of � and h > 0. 
6See Mausser and Rosen (2004) and the references therein for the practical issues when estimating VaR 

contributions from statistical samples. 
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If for every i the contribution of Xi to the risk of Y exists, then we have by Euler’s theorem on 

the representation of positively homogenous functions 

n

�(Y ) = �(Xi | Y ). (3.3) 
i=1 

The decomposition of the portfolio risk � as given by (3.3) is called Euler allocation. The use of 
the Euler allocation principle was justified by several authors with different reasonings: 

•	 Patrik et al. (1999) argued from a practitioner’s view emphasizing mainly the fact that 
the risk contributions according to the Euler principle by (3.3) naturally add up to the 

portfoliowide economic capital. 

•	 Litterman (1996) and Tasche (1999) pointed out that the Euler principle is fully compatible 

with economically sensible portfolio diagnostics and optimization. 

•	 Denault (2001) derived the Euler principle by gametheoretic considerations. 

•	 More recently Kalkbrener (2005) presented an axiomatic approach to capital allocation 

and risk contributions. One of his axioms requires that risk contributions do not exceed 

the corresponding standalone risks. From this axiom in connection with more technical 
conditions, in the context of subadditive and positively homogeneous risk measures, Kalk
brener concluded that the Euler principle is the only allocation principle to be compatible 

with the “no excession”axiom (see also Kalkbrener et al., 2004; Tasche, 2002). 

3.2 Partial derivatives of VaR and ES 

Before coming to the main result on the partial derivatives of VaR with respect to the exposures 
of the assets in the portfolio, we will shortly discuss the case of Gordy’s (2003) ASRF model. 

Example 3.3 In Gordy’s (2003) ASRF model Equation (2.10) reads 

n

L(u) = uj gj (X), (3.4) 
j=1 

where X stands for a standard normally distributed random variable, the single systematic factor, 
and the gj are strictly decreasing and continuous functions. As a consequence, the terms gj (X) 
in (3.4) are comonotonic random variables. From the comonotonic additivity of VaR and ES 

(see, e.g., Tasche, 2002) follows then for any α ∈ (0, 1) that 

n

qα(u) = uj qα(gj (X)) (3.5a) 
j=1 
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and


n

E[L(u) L(u) ≥ qα(u)] = uj E[gj (X) gj (X) ≥ qα(gj (X))]. (3.5b) || 
j=1 

As the righthand sides of (3.5a) and (3.5b) are linear in the exposure vector u, applying the 

Euler allocation principle with partial derivatives with respect to the components of u yields 

that the risk contributions to VaR or ES in the ASRF model model equal the corresponding 

standalone risks. 

In the following we compute the derivatives of VaR and ES in the context of an asymptotic 

multifactor model as given by (2.10). The validity of the results is subject to technical conditions 
similar to those of Tasche (1999, Section 5). For reasons of readability of the text we do not 
discuss these conditions here in detail. 

Write again qα(u) for qα(L(u))) and (slightly modifying the notation from (2.11b) but keeping 

(2.11a)) 

n

G(v, �s, w) = wj gj (v, s�) (3.6a) 
j=1 

as well as 

s, w)−1(z). (3.6b) s,w)(z) = G(·, �G−
(�1 

Note that existence of G−1 
s,w) is guaranteed by Assumption 2.2. Thus prepared, we can state 

the main result of this paper (Theorem 3.4 and Remark 3.5), namely that in the asymptotic 

multifactor model the risk contributions to VaR, calculated as partial derivatives, coincide with 

certain expectations conditional on the portfolio loss equalling VaR. 

Theorem 3.4 Under Assumption 2.27, the quantiles (VaRs) at level α ∈ (0, 1) of the generalized 

loss variable L(u) as defined in (2.10) are partially differentiable with respect to the portfolio 

weights ui of the single loss variables. The partial derivatives ∂qα(u) are given by ∂ui � � � � � � � �� � � � � �� h G−1 (qα(u)) S �−1 � gi G−
( �1 (qα(u)), S, u h G−1 (qα(u)) S 

S,u) S,u)∂qα(u)
= E � 

( � �� E 
S,u) ( �

∂ui ∂ G v, S, u � 
v=G

( 
−�1 (qα(u)) 

∂ G v, S, u � 
v=G−1∂v ∂v 

( � (qα(u))
S,u) S,u)

(3.7) 

nProof. Fix z ∈ 0, i=1 ui and observe that 

G G−
(�1 s, u = z for all �s, u s,u)(z), �

Some further technical conditions on uniform integrability of the random variables under consideration have 

to be required, cf. Tasche (1999, Lemma 5.3) for a similar result. 
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implies by (3.6a) 

∂ � �

0 = 

∂ui 
G G−

(�1 s, u)
s,u)(z), �
∂ ∂ � �� ∂ � �� 

= 
∂ui 

G−1 
(�s,u)(z) 

∂v 
G v, �s, u � 

v=G−1 
(�s,u)

(z)
+ 

∂wi 
G G−1 

(�s,u)(z), �s, w � 
w=u 

= 
∂ 

∂ui 
G−1 

(�s,u)(z) 
∂ 
∂v 

G 
� 
v, �s, u 

�� � 
v=G−1 

(�s,u)
(z)

+ gi 
� 
G−1 

(�s,u)(z), �s 
� 

and as a further consequence 

∂ 
∂ui 

G−1 
(�s,u)(z) = − 

gi 
� 
G−1 

(�s,u)(z), �s 
� 

∂ 
∂v G 

� 
v, �s, u 

�� � 
v=G−1 

(�s,u) (z) 

. (3.8a) 

Additionally, we have 

∂ 
∂z 

G−1 
(�s,u)(z) = 

� 
∂ 
∂v 

G 
� 
v, �s, u 

�� � 
v=G−1 

(�s,u)
(z) 

�−1 

. (3.8b) 

Assuming existence8 of ∂qα(u) , it can be implicitly determined as follows: ∂ui 

α = P[L(u) ≤ qα(u)] 

= E P[S1 ≥ G−1 (qα(u)) | S]
S,u)⎡ ⎤ 

= E ⎣ 
∞ 

h(y | S) dy ⎦ 
G−1 (qα(u))

S,u)

implies 

∂ � � 
0 = −E G−1 (qα(u)) h G−1 (qα(u)) | S . (3.9)

S,u) ( �∂ui ( � S,u)

By (3.8a) and (3.8b) we obtain 

∂
G−1 (z)�� 

z=qα(u) 

∂qα(u)∂
G−1 (qα(u)) = 

∂
G−1 (z)�� 

z=qα(u)
+ 

∂ui ( � S,u) ∂z ( �S,u) ∂ui ( � S,u) ∂ui � �−1 � � 
∂ � �� 

= G v, S, u � 
v=G−1 

∂qα(u) − gi 
� 
G−1 (qα(u)), S 

� 
. 

( � (qα(u)) S,u)∂v S,u) ∂ui ( �
(3.10) 

∂Replacing ∂ui 
G−

( �1 (qα(u)) in (3.9) by the righthand side of (3.10) and solving for ∂qα(u) yields 
S,u) ∂ui 

the assertion. 2 

Remark 3.5 Equation (3.7) may equivalently be written as 

∂qα(u) 
= E[gi(S) | L(u) = qα(u)]. (3.11)

∂ui 

8Under appropriate smoothness and moment conditions, existence can be proven by means of the implicit 

function theorem. 
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This follows from Proposition 2.3 and Corollary 2.4. For by Corollary 2.4, we have for any 
n z ∈ 0, i=1 ui ⎡ ⎤ � � z � �

E gi(S) 1{L(u)≤z} = E[gi(S) | L(u) = t] E ⎣ h G(·, S�)−1(t) | S ⎦ dt. (3.12a)− 
0 

∂ G(v, S)� 
v=G(·,S)−1(t)∂v �

On the other hand, Proposition 2.3 implies that ⎡ ⎤ � � � z ⎣ gi(G(·, S�)−1(t), S�) h 
� 
G(·, S�)−1(t) | S�

E gi(S) 1{L(u)≤z} = − 
0 

E 
∂ G(v, S)�� 

v=G(·,S)−1(t) 

⎦ dt. (3.12b) 
∂v �

Equating the righthand sides of (3.12a) and (3.12b) respectively implies by taking the derivative 

with respect to z and then letting z = qα(u) that E[gi(S) | L(u) = qα(u)] equals the righthand 

side of (3.7). 

A result analogous to Theorem 3.4 for VaR holds for ES as the following corollary shows. 

Corollary 3.6 Under Assumption 2.2, the Expected Shortfall risk measure E[L(u) L(u) ≥| 
qα(u)] of the generalized loss variable as defined in (2.10) is partially differentiable with respect 
to the weights ui. The partial derivatives can be computed as 

∂ 
E[L(u) L(u) ≥ qα(u)] = E[gi(S) L(u) ≥ qα(u)], i = 1, . . . , n. (3.13)

∂ui 
| | 

Proof. A straightforward calculation as in the proof of Proposition 2.3 (see (2.12b)) yields 

∂
(1 − α) E[L(u) L(u) ≥ qα(u)]

∂ui 
|⎛ 

n
�� G−1 (qα(u)) 

�⎞ 
S,u) � � ⎠= 

∂ ⎝� 
uj E 

( �
gj(y, S) h(y | S) dy

∂ui j=1 −∞ 

n � �� ∂ � � � � �� �= uj E G−1 (qα(u)) gj G−1 (qα(u)), S� h G−
( �1 (qα(u)) S 

S,u) ( �∂ui ( � S,u) S,u)
j=1 

+ E gi(S) 1{L(u)≥qα(u)} . (3.14) 
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� �
( � ( ��	 � � 

( �
� � 

� �� � � 
�

( ��	 � � 
( �� �� � � 

� 

Making use of identity (3.10) and of the definition of G−
( �1 (see (3.6a) and (3.6b)) we obtain 
S,u) 

n �	 �� ∂	 � � � � �� �uj E G−1 (qα(u)) gj G−
( �1 (qα(u)), S� h G−1 (qα(u)) S 

S,u) S,u)	 ( �∂ui ( �	 S,u)
j=1 ⎡�� �	 �� � � �⎤ 

n	 � �
∂qα(u) ⎢ j=1 uj gj G−

( �1 (qα(u)), S� h G−1 (qα(u)) S 
S,u)	 S,u) ⎥ = E ⎣	 � �� ( � ⎦ 

∂ui	 ∂ G v, S, u � 
v=G−1∂v	 (qα(u))

S,u)(⎡ ⎤�� �	 �� 
G−1 G−1 G−1S� S� h � �Sn (qα(u)), (qα(u)), (qα(u))j=1 uj gj gi

S,u) S,u) S,u)⎢ ⎥ − E 
v=G−1 �S,u) 

⎣ ⎦ 
S, u ∂ G v, ∂v (qα(u)) ⎡ � � � ⎤ 

( �	 � �
∂qα(u) ⎢ h G−1 (qα(u)) S 

S,u) ⎥ = qα(u) E ⎣ 
∂ 

� 
( � �� ⎦ 

∂ui G v, S, u � 
v=G−1∂v	 (qα(u))�S,u)⎡	

( � �⎤ 
G−1 S� h G−1 � �S(qα(u)), (qα(u))gi 

S,u) S,u)⎢ ⎥ − E 
1−Gv= �S,u)

⎣ ⎦ 
S, u ∂ G v, ∂v (qα(u))

( 

= 0, 

by Theorem 3.4. By means of (3.14) this implies the assertion.	 2 

Remark 3.7 At first sight, formulae (3.11) and (3.13) look very much like corresponding for
mulae for the derivatives of VaR and ES in Gouriéroux et al. (2000), Lemus (1999), and Tasche 

(1999). Note, however, that those formulae were not derived in an asymptotic multifactor set
ting like the ones here. On the other hand, the validity of the results by Gouriéroux et al. (2000), 
Lemus (1999), and Tasche (1999) is not restricted to the case of bounded loss variables of the 

assets. Therefore, the results from this paper and the earlier results complement each other. 

4 Defining a diversification index 

During the last few years three properties of risk measures � turned out to be potentially most 
important: 

•	 Positive homogeneity. See Assumption 3.2 for the formal definition. This assumption 

seems very natural as long as the asset or subportfolio under consideration does not 
dominate the portfolio and is not subject to liquidity risk. Moreover, by (3.3), positive 

homogeneity implies that, within a portfolio, the risk contributions add up to the total 
risk. This additivity property is of high practical importance. 

•	 Subadditivity. Subadditivity of a positively homogeneous risk measures is equivalent 
to the property that risk contributions are not larger than the corresponding standalone 
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� 

risks. Speaking in terms of Subsection 3.1, 

�(V + W ) ≤ �(V ) + �(W ) for all V,W ⇔ �(V W ) ≤ �(V ) for all V,W, (4.1)| 

if � is positively homogeneous (Tasche, 2002, Proposition 2.5). 

•	 Comonotonic additivity. Random variables V and W are called comonotonic if they 

can be represented as nondecreasing functions of a third random variable Z, i.e. 

V	 = hV (Z) and W = hW (Z) (4.2a) 

for some nondecreasing functions hV , hW . As comonotonicity is implied if V and W are 

correlated with correlation coefficient 1, it generalizes the concept of linear dependence. A 

risk measure � is called comonotonic additive if for any comonotonic random variables V 

and W 

�(V + W ) = �(V ) + �(W ).	 (4.2b) 

Thus comonotonic additivity can be interpreted as a specification of the worst case sce
narios for the subadditivity (4.1): nothing worse can occur than comonotonic random 

variables – which seems quite natural. 

Note that VaR is positively homogeneous and comonotonic additive but not subadditive and 

that ES is positively homogeneous, comonotonic additive and subadditive (see, e.g. Tasche, 
2002). As a consequence, finding worst case scenarios for given marginal distributions of V,W 

in (4.1) is easy in case of ES (take the comonotonic scenario) and nontrivial in case of VaR (see 

Embrechts et al., 2003; Luciano and Marena, 2003). 

As for positively homogeneous, comonotonic additive and subadditive risk measures nothing 

worse than the comonotonic case can happen, it seems natural9 to measure diversification by 

comparison with the comonotonic scenario. This suggests the following definition10 . 

nDefinition 4.1 Let X1, . . . , Xn be realvalued random variables and let Y = i=1 Xi. If � is a 

risk measure such that �(Y ), �(X1), . . . , �(Xn) are defined, then 

�(Y )
DI�(Y ) = � n �(Xi)i=1 

denotes the diversification index of portfolio Y with respect to the risk measure �. 
The fraction 

DI�(Xi | Y ) = 
�(Xi | Y ) 

�(Xi) 

with �(Xi | Y ) being the risk contribution of Xi as in Definition 3.1 denotes the diversification 

index of subportfolio Xi with respect to the risk measure �. 

Martin and Tasche (2005) suggest another approach to measuring diversification as they calculate the pro

portions of systematic and idiosyncratic risk within the total risk of the portfolio. 
10Without calling the concept “diversification index”, Memmel and Wehn (2005) calculate a diversification 

index for the German supervisor’s market price risk portfolio. 
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If � is subadditive and positively homogeneous, then by (4.1) both DI�(Y ) and DI�(Xi | Y ) will 
be bounded by 1. If � is additionally comonotonic additive, then the bound 1 can be reached 

by portfolios with comonotonic risks. Thus, with a reasonable risk measure, DI�(Y ) being close 

to 1 will indicate that there is no significant diversification in the portfolio. Similarly, a value of 
DI�(Xi | Y ) close to 1 will indicate that there is almost no diversification effect with asset i. 

Note that VaR by practical experience can be considered an almost subadditive risk measure 

(but see Kalkbrener et al., 2004, for an example of a subadditivity violation from practice). In 

the following section we will illustrate the use of the diversification indices from Definition 4.1 

by a numerical example. 

Numerical example 

In this section, we illustrate the application of the formulae for the loss distribution function 

(Proposition 2.5) and the risk contributions to VaR (Theorem 3.4) with a simple example. We 

consider a special case of model (2.10) with two independent normally distributed systematic 

factors and normally distributed idiosyncratic risk drivers as in Example 2.1. 

We assume that all but one of the assets are exposed to the first systematic factor only. Only one 

asset in the portfolio has additionally got an exposure to the second systematic factor. By varying 

the extent of this exposure to the second systematic factor we will obtain a dynamic picture of 
the effect of diversification by dependence on more than one systematic factors. Additionally, we 

will fix the exposure to the second systematic factor but vary the weights of the assets within 

the portfolio in order to get an impression of the dynamics of the diversification indices defined 

in Section 4. 

Note that our example model can be considered a special case of segmentation, as there is one 

segment of assets with exposure to the first systematic factor only and another (degenerated to 

a single asset) segment with exposure to both systematic factors. 

Example 5.1 Consider the loss variable ˜̃L(u) from Example 2.1 with independent standard 

normally distributed systematic factors S1 and S2 and independent (also of (S1, S2)) standard 

normally distributed idiosyncratic risk drivers ξ1, . . . , ξn. We consider the case of relative (to the 
ntotal exposure) loss, i.e. the case i=1 ui = 1. Additionally we assume 

pi = p, i = 1, . . . , n, (5.1) 

so that all assets have the same probability of default. With respect to the correlations with the 

systematic factors, we fix some � ∈ (0, 1) and let 

�1,1 = 
√

� w, �1,2 = 
� 

� (1 − w), (5.2a) 

�i,1 = 
√

�, �i,2 = 0, i = 2, . . . n, (5.2b) 
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where w ∈ [0, 1] is a weight parameter controlling the exposure of the first asset to the second 

factor. 

The squareroot representation in (5.2a) and (5.2b) was chosen in order to make the correlations 
comparable in size with those from BCBS (2004, §272). w = 1 means that we are in a single factor 
model, whereas w = 0 implies that the default indicator of the first asset is independent from 

the rest of the portfolio. Note that due to the almost homogeneous structure of the portfolio 

under consideration the approximate loss variable ˜̃L(u) obtains a relatively simple form, not 
depending any longer on n, namely 

Φ−1(p) −√� w S1 − 
� 

� (1 − w) S2 + (1 − u) Φ 
Φ−1(p) −√� S1 

� 

. (5.3)˜̃L(u) = u Φ √
1 − � 

√
1 − � 

Since by independence of S1 and S2 the random variables S1 and 
√

w S1 + 
√

1 − w S2 are both 

standard normally distributed, both random parts of ˜̃L(u) are identically distributed. This way, 
we ensure that in the example all observed differences in VaR or in the risk contributions are 

due to the factor structure only. 

For the first calculations we choose 

p = 0.1, � = 0.1, u = 0.1. (5.4) 

This choice is mainly driven by the desire to come up with illustrative results. Nevertheless, 
the values from (5.4) are not too far away from reality, as 10% probability of default may be 

observed in some retail credit portfolios. The value 10% for � is somewhere in the center of 
the span provided by BCBS (2004). A 10% weight for a single asset might appear quite high. 
However, this single asset could be seen as having been created from a nondegenerated portfolio 

segment by transition to the limit in the sense of (2.8). 

In order to assess the impact of factor diversification at portfolio level, first we calculate11 VaR
figures at different levels both for the single factor model as in (5.3) with w = 1 as well as for the 

two factor model with w = 0. Table 1 shows that the impact even in the case of an independent 
second factor and for high levels of VaR remains limited. 

This picture changes dramatically if we consider UL contributions with respect to VaR instead 

of total UL. “UL” means “unexpected loss” and is defined by choosing 

�(V ) = VaRα(V ) − E[V ] = qα(V ) − E[V ] = UL(V ) (5.5) 

in Definition 3.1. In Figure 1 we plot the relative contribution to UL with respect to 99.9%VaR 

of the first asset in the model in Example 5.1 against the extent of the asset’s exposure to the 

first factor (low values of w correspond to low exposure, values of w close to 1 correspond to high 

exposure). It turns out that the size of the risk contribution of the first asset can be reduced 

The more intricate calculations for this paper were conducted by means of the statistics software package R 

(cf. R Development Core Team, 2003). 
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Assuming conditional independence of the default events, given the realizations of the system
atic factors, entails by the law of large numbers that the loss variable L̃(u) can be reasonably 

approximated by a modified loss variable ˜̃ L(u) then deL(u). The approximate loss variable ˜̃

pends on the systematic factor only (cf. Gordy, 2003; Lucas et al., 2001). This is interpreted 

as elimination of the idiosyncratic risk by diversification. In general, the quality of the approxi
mation depends on conditions like the number of credit assets in the portfolio, the granularity 

of the portfolio, or the correlations of the asset value changes with the systematic factors. ˜̃L(u) 
is obtained from L̃(u) by replacing the default indicators 1Di with their best predictors given 

the systematic factors, i.e. with the conditional probabilities P[Di | (S1, . . . , Sk )]. Hence ˜̃L(u) is 
given by 

n
˜̃ � 
L(u) = ui P[Di | (S1, . . . , Sk )]. (2.8) 

i=1 

Example 2.1 If the default events are given by (2.2) and the idiosyncratic risk drivers ξi are 

standard normally distributed, then the approximate loss variable ˜̃L(u) can be written as 

n � �k � 
˜̃L(u) = 

� 
ui Φ 

ti −	 j=1 ρi,j Sj 
. (2.9)

ωii=1 

Example 2.1 suggests to consider a – compared to (2.8) – slightly generalized loss variable L(u) 

n n

L(u) = ui gi(S) = ui gi(S1, . . . , Sk ), (2.10) 
i=1 i=1 

with gi : Rk → [0, 1], i = 1, . . . , n decreasing3 at least in one (always the same) component of 
the vector argument. When investigating the generalized loss variable L(u) we will need some 

technical conditions as specified in the following assumption. 

Assumption 2.2 

1. The exposures ui, i = 1, . . . , n in definition (2.10) are nonnegative. 

2. For any fixed (k − 1)tuple (s2, . . . , sk ) the mapping 

n

s1 ui gi(s1, . . . , sk ), R → [0,∞[�→ 
i=1 

nis strictly decreasing, continuous, and onto 0, .i=1 ui 

3. There is a conditional density h(s1 | s2, . . . , sk ) of S1 given (S2, . . . , Sk ). 

The results of this paper hold also when “decreasing” is replaced by “increasing”. Some of the formulae then 

must be appropriately adapted. 
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Table 1: VaRs at different levels α for the asymptotic single (w = 1) and


twofactor (w = 0) models as in Example 5.1. Parameter values as in (5.4).


α 75% 90% 95% 97.5% 99% 99.9% 99.95% 

VaR (single factor) 13.0% 17.8% 21.1% 24.3% 28.3% 37.4% 40.0% 

VaR (two factors) 12.7% 17.0% 20.0% 22.9% 26.5% 34.7% 37.0% 

“two/single” 97.9% 95.8% 94.9% 94.3% 93.7% 92.8% 92.6% 

to almost 0 when it is exposed to the independent second systematic factor only. The rate of 
the reduction becomes the smaller the stronger the exposure to the first systematic factor is but 
remains significant. 

Figure 1: Relative contribution to 99.9%VaR of the first asset in the model in Exam
ple 5.1 as function of the extent of the asset’s exposure to the first factor (measured 

by w ∈ [0, 1]). Parameter values as in (5.4). 
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In order to illustrate the functioning of the diversification indices defined in Section 4 we fix the 

exposure of the first asset to the second factor by setting w = 0.5. We then make the weight u 

(see (5.3)) of the first asset in the portfolio move from 0% to 100%. We do so with two different 
values for the probability of default p of the first asset. First, we choose the same parameter 
setting as in (5.4). Then we change the value of p to 0.2. Figure 2 shows that the portfoliowide 

diversification index identifies a most diversified portfolio. In case of the fully symmetric setting 
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of (5.4) the most diversified portfolio is the one where the weights of the two assets are equal. 
When the probability of default of the first asset is changed to a higher value – 20% – the weight 
of the first asset in the most diversified allocation is reduced to a value significantly less than 

50% – as should be expected. 

Figure 2: Diversification index with respect to UL in sense of Definition 4.1 of loss 

variable ˜̃L(u) from Example 5.1. Represented for 2 values of default probability of 
first asset as function of weight u ∈ [0, 1] of first asset. 
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Figure 3 illustrates the connection between the two diversification indices from Definition 4.1. 
The solid line is – up to the scaling – identical to the dashed line in Figure 2, showing again the 

portfoliowide diversification index of the loss variable from (5.3). The dashed line in Figure 3 

reflects the corresponding risk contributionbased diversification index of the first asset. From 

the definition of the risk contribution by means of a derivative (see Definition 3.1) follows that 
the two lines intersect at just the weight of the first asset that yields the most diversified 

portfolio. According to Figure 3, welldiversified portfolios are those portfolios where portfolio
wide and risk contributionbased diversification indices are close together. A wide range of the 

diversification indices of a portfolio indicates that the portfolio is not very well diversified. 
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Figure 3: Diversification indices with respect to UL in sense of Definition 4.1 of loss 

variable ˜̃L(u) and first asset from Example 5.1. Represented as function of weight 
u ∈ [0, 1] of first asset. 
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6 Conclusions 

In this paper we have derived explicit formulae for risk contributions to VaR and ES in the 

context of asymptotic multifactor models, thus generalizing the capital requirements as provided 

by the Basel II Accord in the context of the ASRF (Asymptotic Single Risk Factor) model. The 

effort needed for the numerical calculations is higher than in the ASRF case but, as a numerical 
example shows, remains feasible at least in the case of twofactor models. The example also 

indicates that the effect of factor diversification on portfoliowide economic capital is moderate 

but can be significant for risk contributions of single assets or subportfolios. 

The risk contributions we analyze in the first sections of the paper can be used for calculating 

diversification indices for subportfolios or assets in a portfolio. If these indices, considered for 
all the assets in the portfolio, take a wide range, then there is a high potential for diversification 

in the portfolio. If, in contrast, the range of the indices is narrow, there is no potential left 
for diversification by changing the weights of the assets in the portfolio. In this case, more 

diversification can be only reached by adding new assets or by removing assets from the portfolio. 

This observation suggests the use of the newly developed diversification indices for reflecting 

factor diversification: assets found welldiversified by an index close to the portfoliowide index 

could receive a reduction of capital requirements. The sizes of such reductions could be estimated 

by means of an asymptotic twofactor model. Of course, the concrete choice of the model and 

its underlying parameters might have a strong impact on the estimates. Further research in this 
direction seems necessary. 
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