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Abstract 

In this paper, we investigate underestimation of sector concentration risk caused by as-

signing borrowers to wrong sectors. 

We consider a multi-factor default-mode Merton model with infinite granularity, and 

evaluate the influence of a portfolio manager’s mis-assignment of borrowers on estimation of 

model parameters and risk computation. The evaluations are made under following two con-

ditions; 1) The true sector definitions are made in advance, and a portfolio manager assigns 

each borrower to one of them with a possibility of mis-assignment to a wrong sector, 2) The 

portfolio manager defines sectors with a possibility that the definitions differ from the true 

sector definitions, and the borrowers are assigned to the sectors according to the manager’s 

definition. Under Condition 1, the true values of model parameters in terms of systematic 

factors are known to the manager, and parameters concerning idiosyncratic part (such as 

factor loadings) are estimated by the manager according to historical data. Under Condition 

2, the systematic factors themselves are defined by the manager and their parameters are 

also estimated by the manager. To evaluate the influence of the mis-assignment purely, we 

assume that the portfolio is infinitely fine-grained, and that the manager can utilize enough 

historical data to estimate the parameters without statistical fluctuations. We derive the val-

ues of parameters which the portfolio manager will estimate and input to his risk simulator 

for each case, and compute 99.9%-VAR using the values. 

By several experiments, we show that mis-assignment of borrowers generally leads to 

underestimation of the portfolio risk, and the amount of underestimation is generally larger 

under Condition 1 than that under Condition 2. These results suggests that to reduce 

the amount of underestimation, a portfolio manager should define suitable sectors for the 

portfolio but not use previously prepared general sector definition intact. 

The views or opinions in this paper are those of the authors and do not necessarily reflect those of the 
Financial Services Agency. 
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1 Introduction 

Multi-factor Merton-type portfolio models of credit risk have become very popular. To compute 

risk of the portfolio by these models, Monte Carlo simulations are generally executed, while the 

IRB approach in Basel 2 adopts an approximation trick to give analytical forms of VaR of the 

portfolio by assuming infinite granularity and single systematic factor in the portfolio[1][2][6]. 

In the case where the assumptions do not hold well, accuracy of the approximation decreases. 

In this paper, we call the difference between the true risk and the above approximated risk as 

concentration risk. 

Several techniques for analytical measurement of concentration risk have been developed. For 

example, Gordy proposed granularity adjustment techniques to estimate the concentration risk 

caused by breaking of the first assumption (infinite granularity)[2][3], and Pykhtin has developed 

a multi-factor adjustment technique to estimate the concentration risk cased by breaking the 

second assumption of single systematic factor[5]. Here, we call the second type concentration 

risk as sector concentration risk. 

In these techniques, adjustment amounts are given by functions of true granularity index of 

portfolio or true parameters of the multi-factor model. Also, in cases of computing concentration 

risk by Monte Carlo simulations, these true values are necessary. Practically, the true granularity 

index can be calculated from the portfolio data, but the true parameters of the multi-factor model 

such as correlations among systematic factors or factor loadings cannot be calculated from the 

portfolio data. These parameters must be estimated from historical data of asset returns after 

sectors of borrowers are defined correctly and the borrowers are assigned to the right sectors 

consistently with the systematic factors in the true model. 

If one wants to make the optimal sector definition and borrower assignment for the given 

portfolio, using one of statistical model selection theories (for example, [4]) based on historical 

asset return data will be a natural solution. However, the definition and assignment are gen-

erally made manually based on geographic regions or business sectors in practice, because of 

computation time, or readability of definition, or efficiency of portfolio management etc. Then, 

some of the borrowers might be assigned to wrong sectors, and some of the parameters needed 

to compute the true risk of the portfolio might be estimated incorrectly. Under this kind of 

risk management conditions, the computed portfolio risk (and sector concentration risk) will 

differ from the true value. Therefore, it is very important to evaluate the impact of incorrect 
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assignment of borrowers on the portfolio risk measurement. 

In this paper, we investigate underestimation of sector concentration risk caused by assigning 

borrowers to wrong sectors. 

We consider a multi-factor default-mode Merton model with infinite granularity, and evaluate 

the influence of a portfolio manager’s mis-assignment of borrowers on parameter estimation 

and risk computation. The evaluations are made under following two conditions; 1) The true 

sector definitions are made in advance, and a portfolio manager assigns each borrower to one of 

them with a possibility of mis-assignment to a wrong sector, 2) The portfolio manager defines 

sectors with a possibility that the definitions differ from the true sector definitions, and the 

borrowers are assigned to the sectors according to the definition made by the manager. Under 

Condition 1, the true values of model parameters in terms of systematic factors are known to the 

manager, and parameters concerning idiosyncratic part (such as factor loadings) are estimated 

by the manager according to historical asset return data. Under Condition 2, the systematic 

factors themselves are defined by the manager, and their parameters are also estimated by the 

manager. To evaluate the influence of the mis-assignment purely, we assume that the portfolio is 

infinitely fine-grained, and that the manager can utilize enough historical data for convergence of 

parameter estimations2 . We derive the values of model parameters which the portfolio manager 

will estimate and input to his risk simulator for each case, and compute 99.9%-VAR using the 

values. 

By several experiments, we show that mis-assignment of borrowers generally leads to un-

derestimation of the portfolio risk, and the amount of underestimation is generally larger under 

Condition 1 than that under Condition 2. These results suggests that to reduce the amount of 

underestimation, a portfolio manager should define suitable sectors for the portfolio but not use 

previously prepared general sector definition intact. 

2 Model  

We consider a multi-factor default-mode Merton model in this paper. Let M be the number of 

borrowers. 

Borrower i will default within a chosen time horizon with probability pi. Default happens 

Estimations do not necessarily converge to the parameter values of true model in these conditions where the 

manager mis-assigns borrowers. 
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when a continuous variable Xi describing the financial well-being of borrower i at the horizon falls 

below a threshold. We assume that variables {Xi} (which may be interpreted as the standardized 

asset returns) have standard normal distribution. The default threshold for borrower i is given 

by N−1(pi), where N−1(·) is the inverse of the cumulative normal distribution function. 

We assume that X = (X1, . . . ,XM ) is distributed according to a multi-dimensional normal 

distribution, and X depends on K normally distributed systematic risk factors Y1, . . . , YK : 

2Xi = riYSec(i) + 1 − ri ξi, 

where YS is a composite systematic factor (see [5] for example) of S-th sector, Sec(i) is  the  

sector that borrower i belongs to (Sec(·) :  {1, · · · ,M} → {1, · · · ,K}). For example, Sector 1 

corresponds to computer industry in Germany, Sector 2 corresponds to computer industry in 

Japan, Sector 3 corresponds to electricity industry in Germany, and Sector 4 corresponds to 

electricity industry in Japan, and so on. Sec(3) = 2 means that borrower 3 belongs to computer 

industry in Japan. Factor loading ri measures borrower i’s sensitivity to the systematic risk. 

ξis are the standardized normally distributed independent idiosyncratic shocks. Without loss of 

generality, we can assume E[YS ] =  0  and  V[YS ] = 1 for all S (standardized systematic factor). 

Let σSS� denote the correlation between YS and YS� , and  let  σ denote the covariance matrix of 

Y = (Y1, · · · , YK). 

Let us consider a portfolio consisting of subset of the above borrowers. Let Ai denote the 

principal of the i-th borrower, and wi be the relative value of Ai, wi = Ai/ Aj . If  Ai > 0 then  

borrower i is in the portfolio, and Ai = 0 means borrower i is not in the portfolio. 

Assuming LGD = 100%, portfolio loss rate is written as the weighted average of individual 

losses: 
M 

L = wi1{Xi ≤ N−1(pi)}, 
i=1 

where 1{·} is the indicator function. 

In the infinite granularity setting[2], the conditional limit loss rate 
⎡ ⎤ 

M 

⎣ ⎦L∞(Y) =  E [L|{Y}] =  wiN
N−1(pi) − riYSec(i) 

2
i=1 1 − ri 

is distributed according to the probability distribution of L where Y is distributed according


to N(0, σ). In this setting, VaR or ES (expected shortfall) can be computed by Monte Carlo


simulations generating random Ys according to the above normal distribution. That is, the
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portfolio manager can measure the true value of portfolio risk if the manager knows the right 

sector Sec(i) of borrower i for all i, and the true value of the parameters wi, pi, ri, and  σ for all 

i. 

3 Mis-assignment of Borrowers 

However, in practical conditions of risk management, the portfolio manager does not know some 

of them generally. The unknown values of them will be determined manually or by estimation 

from historical data of (proxies of ) asset returns, and inevitably that process involves errors. 

In this paper, we investigate the influence of incorrect determination of Sec(i)s, which rep-

resents the assignment of borrowers to the sectors, on estimation of the other parameters, and 

evaluate the influence on the portfolio risk computation. To evaluate the influence of the mis-

assignment purely, we assume that the portfolio is infinitely fine-grained and that the portfolio 

manager correctly estimates the default probability pis, that is, the manager knows the true 

value of pis. 

3.1 Condition 1: sector definitions are given 

At first, let us assume that the portfolio manager knows the true σ but there is a possibility 

that the manager assigns some borrowers to wrong sectors. This assumption corresponds to a 

situation where the sector definition and correlation analysis among sectors are made by someone 

correctly in advance, but the manager might make mistakes of mis-assigning borrowers to wrong 

sectors. 

¯ ¯Let Sec(i) denote the sector to which the manager assigns borrower i. If  Sec(i) =  Sec(i), 

= Sec(i), the borrower i is assigned to a borrower i is assigned to the right sector, but If Sec(i) � ¯ 

wrong sector. 

In this condition, the portfolio manager will determine the borrower i’s factor loading ri 

by estimating the correlation between Xi and Y ¯ The true value of this correlation is Sec(i). 

riσSec(i)Sec(i). The manager must estimate this value from historical data of Xi and YSec(i).¯ ¯

The accuracy of the estimation depends on the number of historical data n, and the average 
√

estimation error caused by statistical fluctuations has order O(1/ n). Here, to observe pure 

influences of mis-assignment of borrowers, let us assume that the manager has enough data 
√

(n → ∞) and the value riσSec(i)Sec(i) can be estimated deterministically (O(1/ n) → 0), that ¯
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is, the manager estimates the factor loading of the borrower i as riσSec(i)Sec(i). Let us define the ¯

value as ¯ ri ¯ri. (¯ = riσSec(i)Sec(i)). 

Then, the portfolio manager will measure the risk of the portfolio by computing the proba-

bility distribution of 
⎡ ⎤ 

M ∑ N−1(pi) − r̄iY ¯Sec(i)¯ ⎣ ⎦L∞(Y) =  E [L|{Y}] =  wiN √ 
2

i=1 1 − r̄i 

where Y is distributed according to N(0, σ). 

Limit loss rate ¯ L∞ differs from L∞ in the factor loadings and the following systematic factors. 

Since σSS� ≤ 1, r̄i ≤ ri holds. The factor loading estimated by the manager is not larger than 

the true value, and this leads to the possibility of underestimation of risk. In the section of 

Experiments, we will show that the mis-assignments generally cause underestimation of risk. 

3.2 Condition 2: the manager defines sectors. 

Next, let us assume that the portfolio manager defines sectors without knowing the true sector 

definition, and assigns the borrowers according to his own sector definitions. 

ˆLet K ′ be a number of sectors that the manager defined. Let Sec(i) denote the sector to 

which the manager assigned borrower i. We define several sets of borrowers as follows: 

ˆI[S, S′] ≡ {i|Sec(i) =  S, Sec(i) =  S′} 

I[S, ∗] ≡ {i|Sec(i) =  S} 

ˆI[∗, S′] ≡ {i|Sec(i) =  S′}. 

The manager will define a composite systematic factor ŶS of sector S by ŶS ≡ ŷS/ ĈS , where  

ŷS is the summation of Xis assigned to the sector; 

ŷS = Xi, 
i∈I[∗,S] 

and ĈS is a normalization factor to make V [ŶS ] =  1. 


CS using historical data of ˆ
The manager must estimate ˆ yS. Also, according to the defined 

systematic factors, the manager must estimate the covariance between ŶS and ŶS� to compute 

ˆ yS;the distribution of loss rate later. CS should be the standard deviation of ˆ
√ √ 

K K K√ ∑ ∑ ∑ ∑ ∑ ∑ 
SD[ŷS] =  √ √ σTT  � rjrj� + (1 − r2 

i ), 
T=1 T �=1 j∈I[T,S] j�∈I[T �,S] T=1 j∈I[T,S] 
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and the true value of the covariance between ŶS and ŶS� is given by 
∑K ∑K ∑ ∑ ∑ 2 

T=1T=1 T �=1 σTT  � j∈I[T,S] j�∈I[T �,S�] rjrj� + 
∑K

j∈I[T,S](1 − ri )1{S = S′}
. (1) 

yS ]SD[ˆSD[ˆ yS� ] 

Let us assume that the manager has enough historical data, and these values can be estimated 

CS as SD[ˆdeterministically, that is, the manager estimates ˆ yS], and the covariance between ŶS 

and ŶS� as above. Let ˆ σ be the matrix of them. σSS� be this estimated covariance, and ˆ

Then, the portfolio manager will determine the factor loading ri by estimating the correlation 

Y ˆbetween Xi and ˆ
Sec(i). For  i ∈ I[S, S′], this correlation is given by 

∑K ∑ 2ri j∈I[T,S�] rjσST + (1  − ri )T=1 

SD[ŷS� ] 
. 

Also, let us assume that the manager estimates the factor loading of the borrower i determinis-

tically as above. Let r̂i be this estimated factor loading. 

Then, the portfolio manager will measure the risk of the portfolio by computing the proba-

bility distribution of 
⎡ ⎤ 

∑ riY ˆ⎣ ⎦ ˆ Y} = wiN √ 
Sec(i)

L∞(Y) =  E 
[ 
L|{ ˆ

] M N−1(pi) − ˆ ˆ

2
i=1 1 − r̂i 

Y = (Ŷ1, · · · , ŶK � ) is distributed according to N(0, ˆwhere ˆ σ). 

In Condition 2, the estimated factor loading ˆ ri as it ri generally differs from the true value ¯

does in Condition 1. Moreover, the estimated probability distribution of the systematic factors Ŷ 

differs from the distribution of true systematic factors Y in Condition 2. Since the risk manager 

computes the risk of the portfolio using these estimated values, the computed risk is not equal 

to the true risk generally. In the section of Experiments, we will show that underestimation of 

risk occurs also in Condition 2. 

Experiment 

Here, we compute 99.9%-VaR of example portfolios under the above two conditions with several 

types of mis-assignment configurations. To express the configuration of mis-assignment, we 

introduce following variables; 

Q(S, S′) =  |I[S, S′ ]|/M (2) 

W (S, S′) =  wi, (3) 
i∈I[S,S�] 
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and their matrixes

⎛ ⎞ ⎛ ⎞ 

Q(1, 1) · · ·  Q(1,K ′ ) W (1, 1) · · ·  W (1,K ′) ⎜ ⎟ ⎜ ⎟ 

Q = 
⎜ ⎜ . . . 

. . . 
. . . 

⎟ ⎟ , W = 
⎜ ⎜ . . . 

. . . 
. . . 

⎟ ⎟ , ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 
Q(K, 1) · · ·  Q(K, K ′) W (K, 1) · · ·  W (K, K ′) 

where Q(S, S′) is the relative number of borrowers belonging to Sector S but assigned to Sector 

S’, and W (S, S′) is the relative amount of principal of borrowers belonging to Sector S but 

assigned to Sector S’. 

For simplicity, we assume that sector-wise homogeneity of the true model, that is, we assume 

that if Sec(i) =  Sec(j) then  pi = pj and ri = rj. However, note that the portfolio manager 

cannot utilize the homogeneity in the process of parameter estimation or sector definition because 

the manager does not know the true values of Sec(i)s. 

4.1 Portfolio 1: two sectors 

As a start point of this work, we assume a portfolio consisting of two sectors 1 and 2 in the true 

model3 here. We assume that the factor loading ri = 0.5 and the default probability pi = 0.5% 

for all i, and five cases of the correlation of the systematic factor σ12 = σ21 = 0.0, 0.2, 0.4, 0.6, 0.8. 

We consider three types of mis-assignment as follows: 

Type 1 (Bias to Sector 1): Some borrowers in Sector 2 are assigned to Sector 1. We assume 

that ⎛ ⎞ 

0.5 0 ⎜ ⎟
K = K ′ = 2, Q = W = ⎝ ⎠ , 

0.5e 0.5(1 − e) 

where e is mis-assignment rate. 

Type 2 (Assignment to third Sector): Some borrowers in Sector 1 or 2 are assigned to Sector 

3. Here, we assume that 
⎛ ⎞ 

0.5(1 − e) 0 0.5e ⎜ ⎟
K = 2,K ′ = 3, Q = W = ⎝ ⎠ . 

0 0.5(1 − e) 0.5e 

We also assume that the correlation σ13 = σ23 = σ12. 
3Note that K might be greater than two. The assumption means w(i) > 0 for  i = 1 or 2, and w(i) = 0  

otherwise. 
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Type 3 (Mixture of Sector 1 and 2): some borrowers in Sector 1/2 are assigned to Sector 

2/1. We assume that 
⎛ ⎞ 

K = K ′ = 2, Q = W = ⎜ ⎝ 
0.5(1 − e) 0.5e ⎟ ⎠ . 

0.5e 0.5(1 − e) 

In all types of the mis-assignment, the model estimated by the portfolio manager falls into 

the true model when the mis-assignment rate e is 0. In Type 1 and 2, the estimated model with 

e = 1 falls in to one-factor model, and the estimated model with e = 1 falls in to the true model 

in Type 3 in Condition 2. 

Figure 1, 2, and 3 respectively shows the computed 99.9%-VaR by Monte Carlo simulations 

with 100000 paths in the case where the true sector definition is given (Condition 1). Figure 4, 

5, and 6 respectively shows the 99.9%-VaR computed similarly in the case where the portfolio 

manager defines the sectors (Condition 2). 
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Figure 1: Computed VaR under Type 1 mis-assignment (Condition 1) 

We can see that mis-assignment of borrowers leads to underestimation of concentration risk 

generally, and the amount of underestimation is larger under Condition 1 than that of Condition 

2. 

In Type 1 mis-assignment, Condition 1 and 2 seem to differ in the high range of correlation 

of the systematic factors. For example, with σ12 = 0.8, underestimation occurs under Condition 

1 obviously, but it is negligible under Condition 2. 
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Figure 2: Computed VaR under Type 2 mis-assignment (Condition 1)
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Figure 3: Computed VaR under Type 3 mis-assignment (Condition 1)
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Figure 4: Computed VaR under Type 1 mis-assignment (Condition 2)
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Figure 5: Computed VaR under Type 2 mis-assignment (Condition 2)
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Figure 6: Computed VaR under Type 3 mis-assignment (Condition 2) 

In Type 2 and 3 mis-assignment, serious underestimation of sector concentration risk are ob-

served under Condition 1, where the portfolio manager uses the given sector definition. Though 

the underestimation under Condition 2 is much less than that under Condition 1, the amount of 

the underestimation reaches about 10% of the estimated risk at the mis-assignment rate e = 0.1 

with low systematic correlation σ12 = 0.  

We can also see that if the correlation σ12 of the systematic factor is larger than 0.4, under-

estimation of sector concentration risk does not occur practically under Condition 2 in all types 

of mis-assignment. 

4.2 Portfolio 2: ten sectors 

Here, we assume a portfolio consisting of ten sectors in the true model. We assume that the 

factor loading ri = 0.5 and the default probability pi = 0.5% for all i, and five cases of the 

correlation of the systematic factor σSS� = 0.0, 0.2, 0.4, 0.6, 0.8 where  S �= S′ . 

We consider three types of mis-assignment as follows: 

Type 1 (Bias to Sector 1): Some borrowers in Sector 2 to 10 are assigned to Sector 1. We 
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assume that 
⎛ ⎞ 

0.1 0 0 · · ·  0 ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ 0.1e 0.1(1 − e) 0 · · ·  0 ⎟ ⎟ ⎜ ⎟ 
K = K ′ = 10, Q = W = ⎜ ⎜ 

. . . 0 
. . . . . . 

. . . 
⎟ ⎟ . ⎜ ⎟ ⎜ ⎜ . . . 

. . . 
. . . . . . 0 

⎟ ⎟ ⎜ ⎟ ⎝ ⎠ 
0.1e 0 · · ·  0 0.1(1 − e) 

Type 2 (Assignment to Sector 11): Some borrowers in Sector 1 to 10 are assigned to Sector 

11. Here, we assume that 
⎛ ⎞ 

0.1(1 − e) 0 · · ·  0 0.1e ⎜ ⎟ ⎜ ⎟ 
⎜ 0

. . . . . ⎟⎜ . . .. . . . ⎟ ⎜ ⎟K = 10,K ′ = 11, Q = W = ⎜ . . . . . ⎟ ⎜ .. . . . ⎟. . 0 . ⎜ ⎟ ⎝ . ⎠ 
.0. · · ·  0 0.1(1 − e) 0.1e 

Type 3 (Mixture of ten sectors): some borrowers in each sector are assigned to other sectors. 

We assume that ⎛ ⎞ 

0.1(1 − e) 0.1e/9 · · ·  0.1e/9 ⎜ ⎟ ⎜ ⎟ . . ⎟⎜ . . ⎜ 0.1e/9
. . . .

. ⎟ ⎜ ⎟K = K ′ = 10, Q = W = ⎜ . . . . ⎟ ⎟⎜ .. . . . . 0.1e/9 ⎟⎜ ⎝ ⎠ 
0.1e/9 · · ·  0.1e/9 0.1(1 − e) 

In all types of the mis-assignment, the model estimated by the portfolio manager falls into 

the true model when the mis-assignment rate e is 0. In Type 1 and 2, the estimated model with 

e = 1 falls in to one-factor model. 

Figure 7, 8, and 9 respectively shows the computed 99.9%-VaR by Monte Carlo simulations 

with 100000 paths in the case where the true sector definition is given (Condition 1). Figure 10, 

11, and 12 respectively shows the 99.9%-VaR computed similarly in the case where the portfolio 

manager defines the sectors (Condition 2). 

Qualitative behavior of underestimation in this portfolio is similar to that of Portfolio 1. 

We can see that mis-assignment of borrowers leads to underestimation of concentration 

risk generally, and the amount of underestimation is larger under Condition 1 than that of 

Condition 2. We can also see that if the correlation σSS� of the systematic factor is larger than 

0.4, underestimation of sector concentration risk does not occur practically under Condition 2 

in all types of mis-assignment. 
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Figure 7: Computed VaR under Type 1 mis-assignment (Condition 1)

0.00

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1

Mis-assignment rate

9
9
.9
%
-V
a
R
 c
o
m
p
u
te
d
 b
y
 t
h
e
 r
is
k
 m
a
n
a
g
e
r

sigma12=0.8

sigma12=0.6

sigma12=0.4

sigma12=0.2

sigma12=0

Figure 8: Computed VaR under Type 2 mis-assignment (Condition 1)

14



0.00

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1

Mis-assignment rate

9
9
.9
%
-V
a
R
 c
o
m
p
u
te
d
 b
y
 t
h
e
 r
is
k
 m
a
n
a
g
e
r

sigma12=0.8

sigma12=0.6

sigma12=0.4

sigma12=0.2

sigma12=0

Figure 9: Computed VaR under Type 3 mis-assignment (Condition 1)
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Figure 10: Computed VaR under Type 1 mis-assignment (Condition 2)
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Figure 11: Computed VaR under Type 2 mis-assignment (Condition 2)
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Figure 12: Computed VaR under Type 3 mis-assignment (Condition 2)
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These results suggests that to reduce the amount of underestimation, a portfolio manager 

should define suitable sectors for the portfolio but not use previously prepared general sector 

definition intact. The results also suggest a possibility that the amount of underestimation might 

be negligible if the sector correlation is high enough. 

5 Conclusion and future work 

In this paper, we investigated underestimation of sector concentration risk caused by assigning 

borrowers to wrong sectors. We looked into two conditions of mis-assignment; 1) given sector 

definitions are used intact, and 2) sectors are defined by the portfolio manager. We derived the 

values of parameters which the portfolio manager will estimate, and compute 99.9%-VAR using 

the values. We observed that mis-assignment of borrowers generally leads to underestimation 

of the portfolio risk, and the amount of underestimation is generally larger under Condition 1 

than that under Condition 2. 

Evaluations of the influence of mis-assignment under following settings remain as future work; 

1) finite granularity, 2) limited historical data, 3) using statistical model selection theories. 
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