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Abstract 

We consider reducedform models for portfolio credit risk with interacting default 
intensities. In this class of models the impact of default of some firm on the default 
intensities of surviving firms is exogenously specified and the dependence structure 
of the default times is endogenously determined. We construct and study the model 
using Markov process techniques. We analyze in detail a model where the interaction 
between firms is of the meanfield type. Moreover, we discuss the pricing of portfolio 
related credit products such as basket default swaps and CDOs in our model. 

Keywords: Portfolio credit risk, default correlation, credit derivatives, meanfield 
interaction, Markov processes 

1 Introduction 

A major cause of concern in the pricing and management of the credit risk in a given 
loan or bond portfolio is the occurrence of disproportionately many defaults of different 
counterparties in the portfolio, a risk which is directly linked to the structure of the 
dependence between default events. Dependence between defaults stems from at least 
two nonexclusive sources. First the financial health of a firm varies with randomly 
fluctuating macroeconomic factors such changes in economic growth. Since different 
firms are affected by common macroeconomic factors, we have dependence between their 
defaults. This type of dependence between defaults can and has been modelled in the 
standard reducedform credit risk models with conditionally independent defaults; see for 
instance Duffie & Singleton (2003) or Lando (2004) for an overview. 

Moreover, dependence between defaults is caused by direct economic links between 
firms. These direct links lead to default contagion and counterparty risk. Loosely speak
ing this means that the conditional default probability of nondefaulted firms given the 
additional information that some firm has defaulted is higher than the unconditional 
default probability of these firms. As a consequence the credit spread of bonds issued 
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by nondefaulted firms increases given the news that some other firm has defaulted. In 
mathematical terms in reducedform models default contagion and counterparty risk lead 
to (upward) jumps in the default intensity of nondefaulted firms at the default time of 
other firms in the portfolio. The impact of the default of some firm on the conditional 
default probability of other firms can arise via different nonexclusive channels. On the 
one hand this impact can be caused by direct economic links between firms such as an 
intense business relation or a strong borrowerlender relationship. For instance the de
fault probability of a corporate bank is likely to increase if one of its major borrowers 
defaults. This direct channel of default interaction is termed counterparty risk. On the 
other hand, changes in the conditional default probability of nondefaulted firms can 
be caused by information effects: investors might revise their estimate of the financial 
health of nondefaulted firms in light of the news that a particular firm has defaulted. 
This phenomenon is usually termed (informationbased) default contagion. 

There is substantial empirical evidence for interaction between default events. A 
recent example is provided by the downfall of the energy giant Enron in autumn 2001. 
The news that Enron had used illegal accounting practices led to rising credit spreads for 
many other corporations, as bond investors lost confidence in the accounting statements 
of these corporations – a striking example of default contagion. Moreover, the stock price 
of major lenders to Enron fell in anticipation of large losses on these loans, reflecting 
counterparty risk. More formal empirical evidence for default contagion and counterparty 
risk is for instance provided by Lang & Stulz (1992) or by CollinDufresne, Goldstein & 
Helwege (2003b). 

The modelling of default contagion and counterparty risk has generated a lot of in
terest in the recent literature. The existing reducedform models with these features can 
be divided into two groups, copula models such as Schönbucher & Schubert (2001) and 
models with interacting intensities. In the copula models the copula and hence the de
pendence structure of the default times is exogenously specified; the default intensities 
and the amount of default contagion (the reaction of default intensities to defaults of 
other firms in the portfolio) are then endogenously derived from the model primitives. 
Copula models are quite popular in practice, since they are easy to calibrate to prices 
of defaultable bonds or Credit Default Swap (CDS) spreads. However, in general copula 
models the precise form of the default contagion depends on higher order derivatives of 
the copula, which makes the copula parameterization of default contagion quite unin
tuitive. This problem is less pronounced in the socalled factor copula models, which 
use ideas from survival analysis to model information based default contagion; see for 
instance Laurent & Gregory (2003) or Schönbucher (2004). 

As the title suggests, in the present paper we are interested in models with interact
ing intensities. In this class of models the impact of defaults on the default intensities 
of surviving firms is exogenously specified; the joint distribution of the default times is 
then endogenously derived. This leads to a very intuitive parameterization of counter
party risk and dependence between defaults in general. On the downside, the calibration 
of the model to defaultable term structure data can be more evolved. At least to our 
knowledge models with interacting intensities were first proposed by Jarrow & Yu (2001) 
and Davis & Lo (2001). Unfortunately, the construction of default processes in Jarrow & 
Yu (2001) works only for a very special type of interaction between defaults, the socalled 
primary secondary framework, which excludes many interesting examples of cyclical de
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fault dependence. This and other mathematical aspects of the JarrowYu model are 
discussed in Kusuoka (1999), Bielecki & Rutkowski (2002), and CollinDufresne, Gold
stein & Hugonnier (2003). Yu (2004) improves upon the original JarrowYu paper and 
provides a rigorous construction of the model using the general hazard construction from 
survival analysis. Moreover, he prices certain simple credit derivatives using simulation. 
Credit risk models with explicitly specified interaction between default intensities are con
ceptually and mathematically close to models for interacting particle systems developed 
in statistical physics. Föllmer (1994) contains an inspiring discussion of the relevance 
of ideas from the interacting particle systems literature for financial modelling; the link 
to credit risk is explored by Giesecke & Weber (2002, 2003) and Horst (2004). Finally, 
Egloff, Leippold & Vanini (2004) study credit contagion in a firmvalue model. 

In the present paper we propose several extensions to the literature on models with 
interacting intensities. To begin with, we model the default indicator process of the 
firms in our portfolio as conditional finitestate Markov chain; the states of this chain are 
given by the default state of all obligors in the portfolio at a given point in time and the 
transition rates correspond to the default intensities. This yields a natural and at the same 
time completely rigorous construction of models with interacting intensities. Moreover, 
computational tools for Markov chains can be employed fruitfully in the analysis of the 
model. These results, which are similar in spirit to in Davis & Lo (2001), are presented 
in Section 2. 

In Section 3 we take a closer look at the modelling of the interaction between the 
default intensities. This is a major challenge, in particular if the portfolio is large: the 
model should capture essential features of counterparty risk, and should at the same time 
be parsimonious to ensure ease of calibration. To achieve these goals we split our port
folio in several homogeneous groups and propose a model where the default intensity of 
a given firm depends only on the distribution of defaulted firms in these groups  in the 
simplest case of a onegroup model just the proportion of companies which have defaulted 
so far. This type of interaction, which is called meanfield interaction in the literature 
on interacting particle systems, makes immediate sense in the context of portfolio credit 
risk. For instance, if a financial institution has incurred unusually many losses in its loan 
portfolio, it is less likely to extend credit lines, if another obligor experiences financial 
distress. Obviously, this raises the default probability of the remaining obligors. More
over, unusually many defaults might have a negative impact on the business climate in 
general. From a mathematical viewpoint we are automatically led to models based on 
meanfield interaction, if we assume that our portfolio consists of several homogeneous 
groups within which default times are exchangeable. We will show that homogeneous
group models with meanfield interaction are relatively easy to treat. Using results on 
the convergence in distribution of Markov processes we study the asymptotic behavior 
of the meanfield model as the portfolio size becomes large. In order to quantify the 
impact of counterparty risk on default correlations and credit loss distribution we carry 
out a simulation study. It will turn out that default correlations and quantiles of the 
loss distributions increase substantially, if the amount of interaction in the portfolio is 
increased. 

In Section 4 we finally study the pricing of portfolio credit derivatives such as basket 
default swaps and CDOs in our Markovian model. This is a prime area of application 
for dynamic portfolio credit risk models. In particular, we show how computational tools 
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for Markov chains can be fruitfully employed to find semianalytical solutions for many 
pricing problems. Again we provide some numerical examples to illustrate our findings. 

Acknowledgements. We are grateful to Stefan Weber for helpful suggestions. Finan
cial support within the German BMBFFörderschwerpunkt “Mathematik für Industrie 
und Dienstleistungen”, Förderkennzeichen 03FRNHVF, is gratefully acknowledged. 

2 A Markovian Model with Interacting Intensities 

Our setup. We consider a portfolio of m firms, indexed by i ∈ {1, . . . ,m}. Its default 
state is described by a default indicator process Y = 

�
Yt(1), . . . , Yt(m)

� 
t≥0 

with values 
in S := {0, 1}m; here Yt(i) = 1 if firm i has defaulted by time t and Yt(i) = 0 else. The 
corresponding default times are denoted by τi = inf{t ≥ 0 : Yt(i) = 1}. Throughout our 
analysis we restrict ourselves to models without simultaneous defaults. We may therefore 
define the ordered default times T0 < T1 < . . . < Tm recursively by 

T0 = 0 and Tn = min{τi : 1 ≤ i ≤ m, τi > Tn−1}, 1 ≤ n ≤ m. (1) 

By ξn ∈ {1, . . . , m} we denote the identity of the firm defaulting at time Tn, i.e. ξn = i 
if τi = Tn. It will be convenient to have a succinct notation for flipping some coordinate 
of states in S. We therefore define for y ∈ S the flipped state yi ∈ S by 

y i(i) := 1− y(i) and y i(j) := y(j), j ∈ {1, . . . , m} − {i} . (2) 

In order to model the dependence of defaults caused by fluctuations in the macro
economic environment we introduce Markovian state variable process Ψ = (Ψt)t≥0 with 
values in Rd, representing the evolution of macroeconomic variables such as interest rates, 
broad share price indices or measures of economic activity. In applications Ψ is typically 
a (jump)diffusion or a finitestate Markov chain. The overall state of our system is 
described by the process Γ with Γt := (Ψt,Yt). The state space of Γ is denoted by 
S = Rd × S; elements of S are denoted by γ = (ψ,y). 

The default intensity of a nondefaulted firm i at time t is modelled as a function 
λi(Ψt,Yt) of economic factors and of the default state of the portfolio. Hence the de
fault intensity of a firm may change if there is a change in the default state of other 
firms in the portfolio, so that counterparty risk can be modelled. In mathematical terms 
we assume that for a given trajectory of Ψ the default indicator process Y follows a 
timeinhomogeneous continuoustime Markov chain on S with transitions to neighbouring 
states 

�
Yt

�i which occur with transition rate 1{Yt(i)=0}λi(Ψt,Yt). An explicit probabilis
tic model is introduced below. 

The mathematical model. It will be convenient for the analysis of the limiting be
haviour of the model as m → ∞ to construct the process Γ on a probability space 
which has a product structure. Denote by D([0,∞), E) the Skorohod space of all RCLL 
functions from [0,∞) into some Polish space E. Put Ω1 := D([0,∞), Rd) and Ω2 := 
D ([0,∞), S) and denote by F i the Borel σfield on Ωi. Our underlying measurable space 
is given by (Ω,F) := (Ω1×Ω2,F1×F2); elements in Ω will be written as ω = (ω1, ω2). The 
coordinate process on Ω1 is denoted by Ψ (i.e. Ψt(ω1) = ω1(t) for t ≥ 0); it represents the 
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economic factor process. The coordinate process on Ω2, denoted by Y, models the default 
1 2indicator process. For t ∈ [0, ∞) we define F := σ(Ψs : s ≤ t) , F := σ(Ys : s ≤ t) and t t 

2 1Ft := F 1 
t ; moreover, we define the filtration {Gt} by Gt := F∞ ∨ F 2. We assume that tt ∨ F 

investors have access to {Ft} (information about the default history and the economic 
factor process up to time t), whereas the larger filtration {Gt} (information about the 
default history up to time t and information about the entire path (Ψs(ω1))s≥0 of the 
economic factor process) serves mainly theoretical purposes. 

We consider a family of probability measures (P�)�∈S on (Ω, F ), where each measure 
is of the form P� = µ × Ky(ω1, dω2). Here µ is a probability measure on Ω1 which 
gives the law of Ψ; Ky is a transition kernel from (Ω1, F 1) to (Ω2, F 2), which models the 
conditional distribution of the default indicator process Y for a given trajectory of Ψ. 

Assumption 2.1. 

(i) Under µ the process Ψ is a nonexploding {Ft}Markov process with generator 
LΨ and initial value ψ. 

(ii) Under Ky(ω1, dω2) the process Y is a timeinhomogeneous Markov chain with state 
space S, initial value y and infinitesimal generator as follows: Define for continuous 
functions λi : S → (0, ∞) and given ψ ∈ Rd the operator G[ ] on the set of all 
functions from S to R by 

m

G[ ]f (x) = 
�

(1 − x(i))λi (ψ, x) 
�
f (xi)− f (x)

� 
, x ∈ S . (3) 

i=1 

Then the infinitesimal generator of Y under Ky(ω1, dω2) at time t is given by 
G[Ψt(ω1)]. 

If there is no ambiguity we simply write P , µ, and K and drop the reference to the initial 
values to ease the notation. Moreover, unless explicitly stated otherwise, we will always 
assume that Y0 = 0 ∈ S. 

Comments. 1) An intuitive picture of the dynamics of the default indicator process Y 
implied by the generator G[ ] in (3) is as follows. Suppose that Γt = (ψ, x). Then Y 
can jump only to the neighbouring states xi, 1 ≤ i ≤ m. As these states differ from x 
in exactly one component, there are no simultaneous defaults. If firm i has survived up 
to time t (i.e. x(i) = 0), the probability of a jump in the small time interval (t, t + h] to 
the neighbouring state xi, where firm i is default, is approximately equal to hλi(ψ, x). 
If firm i has defaulted in [0, t] (i.e. x(i) = 1), the probability of a jump to xi is equal to 
zero, so that default is an absorbing state. 
2) For an explicit construction of a conditional Markov chain or equivalently of a family 
of kernels Ky(ω1, dω2) satisfying Assumption 2.1 (ii) we refer to the literature; see for in
stance Chapter 11.3 of Bielecki & Rutkowski (2002) or Chapter 2 of Davis (1993). There 
are alternative ways to construct a model with interacting intensities. A construction via 
a change of measure using the Girsanov theorem for point processes is given in Kusuoka 
(1999) or Bielecki & Rutkowski (2002). Yu (2004) uses the general hazard rate construc
tion from survival analysis as developed by Norros (1986) and Shaked & Shanthikumar 
(1987). 
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Markov property and default intensities. We now discuss some mathematical im
plications of Assumption 2.1 related to the Markov property. To begin with, note that 
for every bounded random variable F (Ψ, Y) : Ω → R 

2E(F (Ψ, Y) Gt)(ω1, ω2) = EK(ω1,·)(F (Ψ(ω1), Y) | Ft )(ω2) . (4)| 

Relation (4) is easily shown for F = F1(Ψ)F2(Y); the extension to general F is done via 
a monotone class argument. 

Now we turn to the Markov property of Y. Define for t ∈ [0, ∞) and an arbitrary 
Polish space E the shift operator θt : D ([0, ∞), E) → D ([0, ∞), E), θtω (s) := ω(t + s). 
Let F : Ω R be bounded and measurable. Using relation (4) and the fact that Y is a →
timeinhomogenous Markov chain under K(ω1, dω2) we get for t ≥ 0 

2E
�
F (Ψ, Y θt) | Gt

�
(ω1, ω2) = EK(ω1,·) �F (Ψ(ω1), Y θt) t◦ ◦ | F 

� 
(ω2) 

= EKYt(ω2)(θtω1,·) (F (Ψ(ω1), Y)) . (5) 

In the sequel we refer to relation (5) as conditional Markov property of Y. Since Ψ is 
an {Ft}Markov process the conditional Markov property implies that the process Γ is 
Markov wrt {Ft}, as we now show. Define the random variable 

H : Ω1 × S R , H(ω1, x) = EKx(ω1,·) (F (Ψ(ω1), Y)) .→ 

Using the law of iterated expectations, the conditional Markov property of Y, the defi
nition of H and the {Ft}Markov property of Ψ we obtain 

E (F (Ψ θt, Y θt) Ft) (ω1, ω2) = E (E(F (Ψ θt, Y θt) Gt) Ft) (ω1, ω2)◦ ◦ | ◦ ◦ | | 
= E (H(Ψ θt, Yt) Ft) (ω1, ω2) � 

◦ | 
= H(u, Yt(ω2))µΨt(ω1)(du) . 

Ω1 

By definition of H this equals EΓt(ω)

�
F (Ψ, Y)

�
, which yields the Markov property of Γ. 

It is intuitively clear that λi(Ψt, Yt) is the default intensity of company i. Using 
the conditional Markov property we can give a formal proof of this fact. According 
to (5), Y forms an timeinhomogeneous Markov chain wrt {Gt} under P . The process 
Mt(i) := Yt(i)− 

� t∧τi λi(Ψs, Ys) ds is therefore a {Gt}martingale by the Dynkin formula, 0 

and hence an {Ft}martingale, as Mt(i) is {Ft}adapted. 

Remark 2.2 (Computation of expectations). Suppose that we want to compute a 
conditional expectation of the form E

�
h(ΨT , YT ) | Ft

� 
for some h : S R. By the →

Markov property of Γ the conditional expectation is given by H(t, Ψt, Yt) for a suitable 
function H : [0, T ]× S R. Now we have various approaches for computing H(t, ψ, y).→
First we can try to solve directly the backward PDE for the Markov process Γ given by 

∂ 
H(t, ψ, y) + LΨH(t, ψ, y) + G[ ]H(t, ψ, y) = 0, H(T, ψ, y) = h(ψ, y). 

∂t 

In case that Ψ follows a diffusion this leads to a linear reactiondiffusion equation; ex
istence results suitable for financial applications are for instance given in Becherer & 
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Schweizer (2004). Alternatively, we may use a twostep approach, which uses only the 
Kolmogorov equations for the conditional transition probability. Here we get 

H(t, ψ, y) = 
� 

EKy(ω1,·)�h(ΨT −t(ω1), YT −t)
� 
µ (dω1) . 

Ω1 

Now the inner expectation can often be computed using techniques for Markov chains 
such as the Kolmogorov forward and backward equations discussed below; the integral 
over Ω1 can then be computed in a second step, typically via Monte Carlo simulation. 
This approach can be advantageous, if the direct numerical solution of the backward 
equation for Γ is infeasible, because the dimension of the problem is too high. 

Conditional transition functions and the Kolmogorov equations. Next we in
troduce the conditional transition probabilities of the chain Y under K(ω1, dω2). Define 
for 0 ≤ t ≤ s < ∞ and x, y ∈ S 

p(t, s, x, y ω1) := EK(ω1,dω2)(Ys = y Yt = x). (6)| | 

It is wellknown that for ω1 fixed the function p(t, s, x, y ω1) satisfies the Kolmogorov |
forward and backward equations. These equations will be very useful numerical tools in 
our analysis of the model. The backward equation is a system of ODE’s for the function 
(t, x) → p(t, s, x, y ω1), 0 ≤ t ≤ s; s and y are considered as parameters. In its general |
form the equation is 

∂p(t, s, x, y | ω1) + G[Ψt (ω1)]p(t, s, x, y) = 0 , p(s, s, x, y) = 1{y}(x) . (7)
∂t 

In our model this leads to the following system of ODE’s 

∂p(t, s, x, y ω1) 
m

k 

∂t 
| 

+ 
� 

(1 − x(k))λk (Ψt(ω1), x)(p(t, s, x , y | ω1)− p(t, s, x, y | ω1)) = 0. 
k=1 

(8) 

The forwardequation is an ODESystem for the function (s, y) → p(t, s, x, y ω1), s ≥ t.|
Denote by G∗

[ ] the adjoint operator to G[ ], operating again on functions from S to R. 
In its general form the forward equation reads 

∂p(t, s, x, y ω1) 
∂s 

| 
= G∗

[Ψt(ω1)]p(t, s, x, y | ω1), p(t, t, x, y | ω1) = 1{x}(y). (9) 

An explicit form is given in the following lemma. 

Lemma 2.3. Under Assumption 2.1 (ii) the forward equation for the conditional transi
tion rates is 

m
k∂p(t, s, x, y | ω1) = 

� 
y(k)λk (Ψs(ω1), yk )p(t, s, x, y | ω1) (10)

∂s 
k=1 

m

− 
�

(1 − y(k))λk(Ψs(ω1), y)p(t, s, x, y ω1).|
k=1 
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The proof is given in Appendix A.2. 
For small m (8) and (10) are easily solved numerically. Note however, that the cardi

nality of the state space equals S = 2m so that for m large the Kolmogorov equations | |
are no longer useful. In that case one could either reduce the dimension of the state 
space, for instance by considering a model with a homogeneous group structure as in 
Section 3 below, or one has to resort to simulation approaches. Fortunately, the model 
introduced in Assumption 2.1 is quite easy to simulate from using the standard simulation 
approach for continuoustime Markov chains; in particular, simulation is no more costly 
(in terms of computing time) than simulating a standard reduced form model with condi
tionally independent defaults. We give a detailed description of the simulation algorithm 
in Appendix A.1. 

Some models for the default intensity. We begin with the default intensities consid
ered in Jarrow & Yu (2001). These authors study a special form of interacting intensities, 
which they call primarysecondary framework. In this framework firms are divided into 
two classes, primary and secondary firms. The default intensity of primary firms depends 
only on the factor process Ψ; default intensities of secondary firms depend on Ψ and on 
the default state of the primary firms. This simplifying assumption allows Jarrow and 
Yu to use Coxprocess techniques for the analysis of their model. For concreteness we 
now present a specific example from their paper. We let m = 2 and d = 1 and iden
tify the economic factors with the short rate of interest rt, which follows an extended 
Vasicekmodel. The default intensities are then given by 

λ1(rt,Yt) = λ1,0 + λ1,1rt and λ2(rt,Yt) = λ2,0 + λ2,1rt + λ2,21{Yt(1)=1}; 

hence company one is a primary firm and company two is a secondary firm. 
The primarysecondary framework is typical for a model with local interaction, i.e. a 

model, where for all i ∈ {1, . . . , m} the defaultintensity of firm i depends on the de
fault state of some small set N(i) of neighboring firms such as business partners or 
direct competitors. Alternatively, one can introduce some global interaction in the 
sense that individual default intensities depend on the empirical distribution ρ(Yt, ·) = 
1 �m 

i=1 δYt (i)(·) ∈M1(S) of the default indicators at time t. In our simple model, where m 
each firm can be in only two states, ρ(Yt, ·) is obviously characterized by the proportion 
of defaulted firms in the portfolio at time t, and we will work with that description in the 
sequel. 

3 Models with MeanField Interaction 

3.1 A MeanField Model with Homogeneous Groups 

The model. Assume that we can divide our portfolio of m firms into k groups (typically 
k � m), within which risks are exchangeable. These groups might for instance correspond 
to firms with identical credit rating or to firms from the same industries. Let κ(i) ∈ 
{1, . . . , k} give the group membership of firm i, mκ = 

�m the number of i=1 1{κ(i)=κ}
firms in group κ, and denote for a given y ∈ S by ρκ(y, ·) = 1 �m 

i=1 1{κ(i)=κ}δy(i)(·) 
the empirical distribution of firms in group κ. Define for κ ∈ {1, . . . , k} the functions 
Mκ(y) := ρκ(y, {1}), put M(y) = 

�
M1(y), . . . ,Mk (y)

�
, and define the process M by 

mκ 
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Mt = M(Yt); obviously, M t,κ gives the proportion of firms in group κ which have 
defaulted by time t. The state space of Mt is given by 

lkSM := 
�
l = 

� 
l1 , . . . , 

� 
: lκ ∈ {0, . . . ,mκ}, 1 ≤ κ ≤ k

� 
. m1 mk 

Assumption 3.1 (Meanfield model with homogeneous groups). The default in
tensities of firms in our portfolio belonging to the same group are identical and of the 
form λi (ψ,y) = hκ(i)

�
ψ,M(y)

� 
for continuous functions hκ : Rd ×SM → R+, 1 ≤ κ ≤ k. 

Comments. 1) As discussed in the introduction, this type of interaction makes imme
diate sense in the context of portfolio credit risk. 
2) Assumption 3.1 implies that for all κ the default indicator processes {Yt(i) : 1 ≤ i ≤
m, κ(i) = κ} of firms belonging to the same group are exchangeable, a fact which we will 
exploit frequently below. Conversely, consider an arbitrary portfolio of m counterparties 
with default indicators satisfying Assumtion 2.1, and suppose that the portfolio can be 
split in k < m homogeneous groups. Homogeneity implies that a) the default intensi
ties are invariant under permutations π of {1, . . . ,m}, which leave the group structure 
invariant, i.e. λi(ψ,y) = λi(ψ, π(y)) for all i and all permutations π with κ(π(j)) = κ(j) 
for all 1 ≤ j ≤ m, and b) that default intensities of different firms from the same 
group are identical. Condition a) immediately yields that λi(ψ,y) = hi(ψ,y) for some 
hi : Rd ×SM R+ and hence a model of meanfield type; together with condition b) this →
implies that the default intensities satisfy Assumption 3.1. Hence the meanfield model 
is the natural counterpartyrisk model for portfolios consisting of homogeneous groups. 

Example 3.2 (An affine model with counterparty risk). Often we will assume that 
the default intensities depend only on the overall proportion of defaulted companies given 
by

�k mκ M t,κ. A useful example is provided by the following (nearly) affine model with κ=1 m 
counterparty risk. Given for every group κ nonnegative constants λκ,j , j = 0, . . . , d + 1 
and an expected default intensity ¯ λκ we put 

d k k
mj ¯ mj 

�
1− e−λj t

���+ 
hκ(t,ψ, l) = 

�
λκ,0 +	

� 
λκ,j ψj + λκ,d+1

�� 
m lj −

� 
m . (11) 

j=1 j=1 j=1 

¯These default intensities have the following intepretation. The number 1−e−λj t measures 
the expected proportion of defaulted firms in group j at time t. In case that λκ,d+1 > 0 
the default intensity of nondefaulted companies is increased (decreased), if the overall 
proportion of defaulted companies is higher (lower) than the overall expected proportion 

mj
�k �

1 − e−λj t
�
; in particular we have counterparty risk. If λκ,d+1 = 0 for all κ we j=1 m 

are in a standard Coxprocess framework as studied for instance by Duffie & Singleton 
(1999). Following the latter paper we assume that the factor process follows a squareroot 
diffusion model with independent components, i.e. 

dΨt,j = κ̄j (θj −Ψt,j )dt + σj 
�

Ψt,j dWt,j	 (12) 

for a standard Brownian motion Wt = (Wt,1, . . . ,Wt,d) and constants κ̄j , θj , σj > 0. 

Example 3.3. This example is proposed by Yu (2004) as a model for similar firms in a 
concentrated industry. Yu works with defaultintensities of the form 

λi = a0 + a11{T1≤t} = a0 + a11 {M t>0}, i ∈ {1, . . . , m}, a0, a1 > 0 ,t 
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i.e. at the first default time T1 of a firm in the portfolio the default intensities of the 
surviving firms jump from a0 to a0 + a1. Yu suggests that for a portfolio of highquality 
credits a reasonable order of magnitude for the model parameters is a0 ≈ 1% and a1 ≈
0.1%. Simulation studies reported in his paper indicate, that the model might be able to 
explain certain features of credit spreads in the market for European telecom bonds. 

The next lemma shows that the process Mt is itself conditionally Markov and gives 
the form of the generator. 

Lemma 3.4. Assume that the default intensities satisfy Assumption 3.1. Then under 
K(ω1, dω2) the process Mt follows a timeinhomogeneous Markov chain with state space 
SM . The generator of this chain equals GM 

[ ] is given by[Ψt(ω1)], where the operator GM 

k

GM f (l) = 
� 

mκ(1 − lκ)hκ 
�
ψ, l

� �
f
�
l + 1 eκ

� − f
�
l
�� 

. (13)[ ] mκ 
κ=1 

Here l = (l1, . . . , lk ) ∈ SM and eκ ∈ Rk denotes the κth unit vector. � 
l1Proof. Suppose that Mt = m1 

, . . . , lk 

�
. Obviously, the component M t,κ can increase mk 

only in steps of size (mκ)−1 , so that the support of the jumpdistribution equals {Mt + 
mκ

−1eκ : 1 ≤ κ ≤ k, M t,κ < 1}. Now Mt jumps to Mt + mκ
−1eκ if and only if the next 

defaulting firm belongs to group κ. Hence the transition rate from Mt to Mt + mκ
−1eκ 

equals 
m m� 

1{κ(i)=κ} (1 − Yt(i)) λi(Ψt,Yt) = hκ(Ψt,Mt) 
� 

1{κ(i)=κ} (1 − Yt(i)) 
i=1 i=1 

= hκ(Ψt,Mt) mκ 
�
1−M t,κ

� 
. 

The claim follows, as this transitionrate depends on Yt only via Mt, which shows that 
M is Markov with respect to {Gt}. The form of GM is obvious.[Ψt(ω1)] 

In our analysis of the meanfield model introduced in Assumption 3.1 we will fre
quently use the Kolmogorov equations for the conditional Markov chain M. The form 
of the backward equation follows immediately from the definition of the generator GM 

[ ]; 
the ODEsystem for the forward equation can be computed analogously to Lemma 2.3; 
see Lemma A.1 in the appendix for the precise form of the equation. Note that the size 
of the state space of M equals 

��SM 
�� := (m1 + 1) · · · (mk + 1). For k fixed 

��SM 
�� grows at 

most at rate (m/k)k in m, whereas S grows exponentially in m. Hence for k small the| |
conditional distribution of MT can be inferred using the Kolmogorov equations for M 
even for m relatively large. 

Implications of exchangeability. We can infer individual default probabilities as 
well as withingroup and betweengroup default correlations from the distribution of the 
random vector MT using the fact that within a given group κ the random variables 
{YT (i) : κ(i) = κ} are exchangeable under K(ω1, dω2) and therefore also under P . Hence 
we get that P 

�
YT (i) = 1 | MT ,κ(i)

� 
= MT ,κ(i), and for two firms i, j belonging to the 

same group κ 
�
mκ−2

� 
M(M − 1)

�
M 

� 

= M −2P YT (i) = 1, YT (j) = 1 | MT ,κ = 
mκ M 

� = 
mκ(mκ − 1)

, (14)�
mκ 
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provided that mκ and M ≥ 2; otherwise the left hand side of (14) is obviously equal to 
zero. Finally, we have for obligors i, j belonging to different groups κ1 and κ2 

P 
�
YT (i) = 1, YT (j) = 1 | MT ,κ1 , MT,κ2

� 
= MT ,κ1 MT ,κ2 . 

Hence we get for oligors i, j in group κ 

P (YT (i) = 1) = E
�
P (YT (i) = 1 | MT ,κ)

� 
= E(MT ,κ), (15) 

�
mκMT ,κ − 1

�
P (YT (i) = 1, YT (j) = 1) = E MT ,κ 

mκ − 1 
, (16) 

and finally for obligors i, j from different groups κ1 and κ2 

P (YT (i) = 1, YT (j) = 1) = E
�
MT ,κ1 MT ,κ2

� 
. (17) 

Of course, expressions similar to (16) can also be obtained for higher order default prob
abilities. More generally, we can even express the probability P (YT = y) for some y ∈ S 
in terms of the distribution of MT . As the distribution of YT is invariant under per
mutations of {1, . . . , m}, which respect the homogeneous group structure, we have with 
l := M(y) 

k

P (MT = l) = ��{y ∈ S : M(y) = l}�� P (YT = y) = 
� � 

m

m

κ

κ 

lκ 

� 

P (YT = y). (18) 
κ=1 

Of course, since the relations above depend only on the exchangeability of the default 
indicator processes of firms belonging to the same group, they hold also under the kernel 
K(ω1, dω2). 

3.2 Limits for Large Portfolios 

We now consider the limit (in the sense of convergence in distribution) of the model with 
k homogeneous groups as the size m of the portfolio tends to infinity, assuming that k 
remains fixed. It will turn out that in the limit the evolution of M becomes deterministic 
given the evolution of the economic factor process Ψ. 

Our setup is as follows. Denote by Ω(m) = D
�
[0,∞), Rd

� × D([0,∞), S(m)) the 
mprobability space in model m and define the filtrations {F m i,m}, i = 1, 2, and {Gt t t}, {F

in the obvious way. We assume that for each m the probability measure P (m) = µ× K(m

}
) 

satisfies Assumption 2.1; moreover, µ is assumed to be identical for all m. Denote by 
(m)

mκ the number of obligors in group κ of model m, define the process M(m) by M(m) = t 

M(Y(m)�, and assume that for all m the transition rates have the group structure as in t 

Assumption 3.1; in particular the default intensity of company i in model m equals 

λ
(m)�

ψ,y(m)
� 

= h(m)�
ψ,M(y(m))

� 
.i κ(i)

According to Lemma 3.4, for given ω1 the process M(m) is Markov under the measure t 

K(m)(ω1, dω2). Put � K(m)(ω1, d�Ω2 := D([0,∞), [0, 1]k ), and denote by � ω2) the distribution 
of M(m) on �Ω2 under K(m)(ω1, dω2).t 

Next we describe the limiting distribution of M(m). Suppose that for all κ = 1, . . . , k 
the function h(m) converges uniformly on compacts to some locally Lipschitz function κ 
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κ → t t,1 (ω1), . . . ,M
(∞)(ω1)

�� the solutionh
(∞) : Rd ×[0, 1]k R+ . Denote by M(∞)(ω1) = 

�
M

(∞) 
t,k 

of the following system of ODE’s with random coefficients 

d
M

(∞)(ω1) = 
�
1−M

(∞)(ω1)
� 
h(∞) 

�
Ψt(ω1),M

(∞)(ω1)
� 

, (19)
dt t,κ t,κ κ t 

¯with initial value M(∞) = l ∈ [0, 1]k . Note that for fixed ω1 ∈ Ω1 and T > 0 the rhs0 

of (19) is Lipschitz in the second argument, since [0, 1]k is compact and h(∞) is locallyκ 

Lipschitz; hence a solution of (19) exists. For every ω1 the trajectory 
�
t �→ M(∞)(ω1)

�
t 

is an element of � ω2

� 
the Dirac measure on �Ω2. Denote by δ

�
M(∞)(ω1), d� Ω2 in the point 

δ
�
M(∞)(ω1), d�

K(∞) from Ω1 to � K(∞)(ω1, d�(ω1)
�
, and define a transition kernel � Ω2 by � ω2) :=t

�
t �→ M(∞) 

ω2

�
. Now we have 

Proposition 3.5. Given a sequence of models as above, suppose that limm→∞ mκ 
(m) = 

¯ ∞ for all κ = 1, . . . , k and that limm→∞ M
(m) = l. Then for all ω1 the measure0


ω2) converges weakly to � ω2).
K(m)(ω1, d� K
(∞)(ω1, d��
l 

Proof. Denote by GM
(m) 

the generator of M(m) , and define for f ∈ C1 
�
[0, 1]k 

� 
an operator[ ] 

k

¯ GM
(∞) 

f (̄  l) = 
��

1− lκ
� 
h(∞)(ψ, ̄  l) 

∂
f (̄  l). (20)[ ] κ ¯ ∂lκκ=1 

Note that GM
(∞) 

is the generator of the process M(∞) defined in (19). It follows from the[ ] 

Lipschitz continuity of h(∞) and the form of GM
(m) 

(see (13)), that for all f ∈ C1 
�
[0, 1]k 

�
κ [ ] 

and every compact set K ⊂ Rd 

¯lim sup 
�����GM

(m) 

f (̄  l) − GM
(∞) 

f (̄  l)
���� : ψ ∈ K, l ∈ [0, 1]k 

� 

= 0 . 
m→∞ [ ] [ ] 

This implies that µ almost all ω1 the transition semigroup of M(m) converges to the 
semigroup of M(∞) by Ethier & Kurtz (1986), Theorem 1.6.1, so that the claim follows 
from Ethier & Kurtz (1986), Theorem 4.2.5. 

Note that the solution of (19) is deterministic given the trajectory (Ψt(ω1))t≥0. This 
shows that for m →∞ the proportion of defaulted companies is fully determined by the 
evolution of the economic factors. A similar result has been obtained among others by 
Frey & McNeil (2003) in the much simpler context of static Bernoulli mixture models 
for portfolio credit risk. Next we show that the pair of processes (Ψ,M(m)) converges in 
distribution to (Ψ,M(∞)). 

Corollary 3.6. Suppose that the hypothesises of Proposition 3.5 hold. Then the sequence 

(Ψ,M(m)) converges in distribution to (Ψ,M(∞)), i.e. we have for every bounded and 
continuous function F : D

�
[0,∞), Rd

� ×D
�
[0,∞), [0, 1]k 

� 
R→

lim E(m) 
�
F

�
Ψ,M(m)�� 

= 
� 

F
�
Ψ(ω1),M

(∞)(ω1)
�
µ(dω1) . 

Ω1 
m→∞ 
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�

�

Proof. Denote by � Ω2. We have Y the coordinate process on �

F 
�
Ψ(ω1), � ω2)

� � ω2)µ(dω1).E(m) 
�
F 

�
Ψ, M(m)�� 

= 
� � 

Y(� K(m)(ω1, d�

Ω1 Ω2


Now the inner integral on the rhs converges for µ almost all ω1 to 

Y(� K(∞)(ω1, d�
� 

F 
�
Ψ(ω1), � ω2)

�
� ω2) = F 

�
Ψ(ω1), M

(∞)(ω1)
� 

Ω2 

by Proposition 3.5. Hence the claim follows from the dominated convergence theorem. 

Example 3.7. Consider the affine model with counterparty risk introduced in Exam
ple 3.2. In order to apply Proposition 3.5, we assume that for all κ the proportion mκ 

(m)
/m 

of firms in group κ converges to some γκ ∈ [0, 1] as m →∞. This yields 

d k

h(∞)(ψ, l) = 
�
λκ,0 + 

� 
λκ,j ψj + λκ,d+1 

� 
γr 

�¯ lr − (1 − e−λr t)
��+ 

,κ

j=1 r=1


and M(∞) solves the ODEsystem 

d k
d

M
(∞) = 

�
1−M

(∞)� �
λκ,0 +

� 
λκ,j Ψt,j + λκ,d+1 

� 
γr 

�
M

(∞) − (1 − e−λr t)
��+ 

, (21)
dt t,κ t,κ t,r


j=1 r=1


1 ≤ κ ≤ k. Note that counterparty risk (a positive λκ,d+1) implies that deviations of �k γr M
(∞) from the expected level 

�k γr (1 − e−λr t) will have a positive feedback r=1 t,r r=1 

effect on default intensities. Hence the fluctuations in the number of defaults caused by 
the random evolution of the economic factors are intensified by counterparty risk, so that 
we should expect heavier tails of the distribution of M (∞). This is illustrated further in t,κ 

simulations in the next section. 

3.3 Default Correlation and Quantiles 

Here we present a number of simulations, which illustrate the impact of counterparty risk 
on default correlations and quantiles of M in the affine meanfield model with counter
party risk specified in Example 3.2. In all simulations we consider a homogeneous portfolio 
with only one group. The economic factor process is modelled as onedimensional square
root diffusion with parameters κ = 0.03, θ = 0.005, σ = 0.016 and initial value ψ0 = θ; 
these values have been taken from the empirical study by Driessen (2002). The default 
intensity equals 

¯
h(t, ψ, l) = 

�
α(0.004 + 5.707ψ) + λ2(l − (1 − e−λt))

�+ with ¯ λ = 0.03251. 

¯¯The value for λ has been chosen so that 1 − e−λ corresponds to the oneyear default 
probability without interaction, i.e. for λ2 = 0. We take the horizon to be T = 1 
year. In our simulations we increase the parameter λ2, which controls the strength of 
the interaction, from 0 to 3 and adjust α in order to ensure that the oneyear default 
probabilities P (Y1(i) = 1) remain unchanged as we vary λ2. We consider portfolios 
of size m = 100, m = 500 and, using the results from Section 3.2, the case m = .∞
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�

The distribution of M1 is evaluated in two steps: first we simulate 5000 trajectories of 
the economic factor process ψ; second we evaluate for each trajectory the conditional 
distribution of M1 by solving numerically the Kolmogorov forward equation using a 
RungeKutta method. The simulation results are presented in Table 1 below. Inspection 
of the table yields the following observations. 

•	 Quantiles and (except for m = ∞) default correlations ρY = corr(Y1(i), Y1(j)), 
i = j are increasing in λ2. 

•	 The increase is more pronounced for smaller portfolios. For instance, for m = 100 
the 99% quantile of M1 is increased by a factor of almost 4.75 as λ2 increases from 
0 to 3; for m = ∞ the factor is only about 1.64. 

Both findings make perfect economic sense. In our counterparty risk model a higher 
(lower) than usual number of defaults in the portfolio leads to an increase (decrease) of 
the default intensity of the remaining firms in the portfolio and thus to a further increase 
(decrease) in the ratio of realized versus expected defaults, so that the resulting distri
bution of MT will have more mass in the tails. Now in our model there are two reasons 
why the number of defaults should be higher than its theoretical value in the first place: 
a) we might have a high realization of Ψ; b) for a given trajectory of Ψ we might have a 
realization of the Markov chain with unusually many defaults. As the limit results from 
Section 3.2 show, for m →∞ reason b) becomes less and less important, which explains, 
why the effect of meanfield interaction is more pronounced for small portfolios. Note 
finally that for m = ∞ default correlations seem to vary only very little as λ2 increases 
whereas quantiles change a lot, so that default probabilities and default correlations alone 
do not determine high quantiles of the distribution of MT . This is interesting, as it con
trasts results of Frey & McNeil (2003) in the context of standard static credit risk models. 
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100 firms 
λ2 P (Y1(i) = 1) ρY Quantile 

90% 95% 97.5% 99% 
0 0.031987 0.000416 0.06 0.06 0.07 0.08 
1 0.031989 0.020918 0.07 0.09 0.11 0.13 
3 0.031997 0.19118 0.12 0.21 0.29 0.38 

500 firms 
λ2 P (Y1(i) = 1) ρY Quantile 

90% 95% 97.5% 99% 
0 0.03199 0.00041579 0.044 0.046 0.05 0.054 
1 0.03198 0.0050753 0.052 0.058 0.066 0.072 
3 0.03199 0.058283 0.096 0.128 0.156 0.19 

The case m = ∞
λ2 P (Y1(i) = 1) ρY Quantile 

90% 95% 97.5% 99% 
0 0.03199 0.00042 0.0367 0.0380 0.0393 0.0408 
1 0.03199 0.00041 0.0390 0.0409 0.0429 0.0452 
3 0.031982 0.00043 0.0503 0.0554 0.0611 0.0669 

Table 1: Default correlation and quantiles in the meanfield model for varying m. 

4 Pricing of Credit Derivatives 

In this chapter we discuss the pricing of credit risky securities in our model with inter
acting intensities. Our main interest is in portfoliorelated credit derivatives such as kth 
to default swaps and synthetic CDOs, whose payoff distribution is particularly sensitive 
with respect to dependence between defaults. 

4.1 Generalities 

Our setup. We use the martingale modelling approach and specify asset price dynamics 
and default intensities directly under a risk neutral pricing measure, which we denote 
again by P . Since credit derivatives are usually priced relative to traded credit products 
such as corporate bonds or singlename Credit Default Swaps, martingale modelling is 
standard practice in the literature. We assume that under P the default indicators satisfy 
Assumption 2.1 with only timedependent default intensities λi(t, y). Models with factor
independent default intensities are practically relevant as dependence between defaults 
can be introduced via the interaction between default intensities. In fact, the literature 
on pricing credit derivatives in the popular copula models focuses almost exclusively 
on models with factorindependent default intensities. Moreover, our results are easily 
extended to default intensities which depend on some stochastic background process using 
the twostep approach sketched in Remark 2.2. 

We assume that the defaultfree interest rate is deterministic and given by r(t) ≥ 0; 
B(t) = exp(

�
0 
t 
r(s)ds denotes the defaultfree savings account. Assuming deterministic 

interest rates is natural when working with deterministic marginal hazard rates; more
over, given the great sensitivity of most portfoliorelated credit derivatives with respect 
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to fluctuations in risk neutral default correlations and the huge degree of uncertainty 
surrounding every approach to calibrating these numbers, the additional complexity of 
stochastic interest rates is simply not warranted. 

The assumption of deterministic default intensities and interest rates allows us to 
simplify the notation. The distribution of the timeinhomogeneous Markov chain Yt 

starting at time t in state y will be denoted by P(t,y), and the underlying filtration is 
simply given by Ft = σ(Ys : s ≤ t). Since in this section portfolio size and composition 
are considered fixed we work directly with the absolute number of defaults within the 
portfolio or within a particular group. In particular, if the model has the homogeneous 
group structure of Assumption 3.1, the default intensity is denoted by hκ(t, l), where 
lκ gives the absolute number of defaults in group κ. In that case the distribution of 
the Markov chain Mt starting at time t in state l is denoted by P(t,l). The function 
M (y) := 

�m 
i=1 y(i) gives the number of defaults for a given y ∈ S. The following sets of 

states from S 

A0(l, j) := {y : M (y) = l, y(j) = 0} and A1(l, j) := {y : M (y) = l, y(j) = (22)1} 

will appear frequently below. Finally we recall the notation yi for flipping a portfolio 
state introduced in (2). 

Conditional expectations. In the sequel we derive analytical expressions for certain 
conditional expectations with respect to the σfield generated by a particular default time 
τi0 , which will come in handy in the pricing of basket credit derivatives and CDOs. 

Proposition 4.1. For i0 ∈ {1, . . . , m} the density of τi0 equals 

P (τi0 ∈ dt) = 
� 

λi0(t, y)P (Yt = y) . (23) 
y:y(i0)=0 

Moreover, we have for y ∈ S 

P 
�
Yt = y

��τi0 = t
� 

= y(i0)P (τi0 ∈ dt)−1λi0(t, y
i0)P (Yt = yi0) . (24) 

Proof. We first show that for y ∈ S with y(i0) = 1 we have 

lim 
1 

P 
�
Yt = y, τi0 ∈ (t − �, t]

� 
= λi0(t, y

i0)P 
�
Yt = yi0

�
. (25)

� 0+ �→

To verify (25) we argue as follows. The probability to have more than one default in 
(t − �, t] is of order o(�). Thus we have P 

�
Yt = y, τi0 ∈ (t − �, t]

� 
= P 

�
Yt−� = yi0 , τi0 ∈

(t − �, t]
� 

+ o(�). Now we get 

P 
�
Yt−� = yi0 , τi0 ∈ (t − �, t]

� 
= E

�
E

�
1{Yt−� =yi0 1{τi0

∈(t−�,t]}
��} Ft−�

�� 

= E
�
1{Yt−�=yi0 1{τi0

>t−�}P 
�
τi0 ◦ θt−�(ω) ≤ �

���
��

. (26)t−�} F

By the Markov property of Y we have 

P 
�
τi0 ◦ θt−�(ω) ≤ �

��Ft−�

� 
= P(t−�,Yt−�)(τi0 ≤ �). 

Moreover, P(t−�,yi0)(τi0 ≤ �) = �λi0(t − �, yi0) + o(�). Hence and as τi0 > t − � on 

{Yt−� = yi0}, (26) equals E
�
1{Yt−�=yi0 �λi0(t − �, yi0)

� 
+ o(�), and (25) follows.}
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The proof of the proposition is now straightforward. Relation (23) follows from (25) 
and the fact that P

�
τi0 ∈ (t− �, t]) = 

�
y:y(i0)=1 P

�
Yt = y, τi0 ∈ (t− �, t]

�
; relation (24) 

follows from (25), the definition of the elementary conditional expectation and a standard 
limit argument. 

Remark 4.2. In principle, it is possible to write down the density for (τ1, . . . , τm) in 
closed form and to determine the marginal density τi0 by integrating out the other de
fault times. However, as shown in Yu (2004), the resulting expressions become quite 
cumbersome already for m = 3, so that even for mediumsized portfolios this approach 
is infeasible. 

For a homogeneous model the results of Proposition 4.1 simplify further. 

Corollary 4.3. Consider a homogeneous meanfield model with only one group and de
fault intensity h(t, l). We have for l, i0 ∈ {1, . . . , m} 

m−1

P (τi0 ∈ dt) = m−1 
� 

h(t, k)P (Mt = k)(m− k) and (27) 
k=0 

(m− l + 1)h(t, l − 1)P (Mt = l − 1)
P

�
Mt = l

�� τi0 = t
� 

= �m−1 . (28) 
k=0 (m− k)h(t, k)P (Mt = k) 

Proof. We have P
�
Mt = l, τi0 ∈ (t − �, t]

� 
= 

�
y∈A1(l,i0) P

�
Yt = y, τi0 ∈ (t − �, t]

� 
. 

Using (25) we get 

1
lim P

�
Mt = l, τi0 ∈ (t− �, t]

� 
= 

� 
h(t, l − 1)P

�
Yt = yi0

� 

� 0+ �→
y∈A1(l,i0) 

= 
� 

h(t, l − 1)P
�
Yt = y

�
. (29) 

y∈A0(l−1,i0) 

Now note that 
��A0(l − 1, i0)

�� = 
�
m−1

� 
and 

��{y ∈ S : M(y) = l − 1}�� = 
� 

m �. Sincel−1�
m−1

�
/
� 

m � 
= m−(l−1) 

l−1 

l−1 l−1 , expression (29) equalsm 

m− (l − 1) � 
h(t, l − 1)P

�
Yt = y

� 
= 

m− l + 1 
h(t, l − 1)P

�
Mt = l − 1

� 
. 

m m {y:M (y)=l−1} 

1Now (27) follows as P
�
τi0 ∈ dt

� 
= 

�m lim� 0+ � P
�
τi0 ∈ (t−�, t], Mt = l

�
; relation (28)l=1 →

follows as in the proof of Proposition 4.1 from the definition of elementary conditional 
expectation and a standard limit argument. 

Some simple building blocks. As a simple first example we consider the pricing 
of a terminal value claim with payoff H = g(YT ) for some function g : S R. A→
prime example is a defaultable zerocoupon bond issued by firm i with zero recovery or 
more generally with recovery of treasury in the sense of Jarrow & Turnbull (1995) and 
deterministic recovery rate δ, where g(y) = (1−δ)1{y(i)=0}+δ. Using the Markovproperty 
of Y we get for the price of a terminal value claim in t < T 

Ht = exp
� � T −t 

r(s)ds
�
E(t,Yt) (g(YT )) , t ≤ T ,− 

0 
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�

which is easily computed using the Kolmogorov backward equation (8). In the context of 
the meanfield model of Assumption 3.1 further simplifications are possible. For example, 
if the payment is contingent on the survival of a particular firm i0 from group κ0, i.e. if 
g(y) = 1{y(i0)=0}, we obtain by an analogous argument as in (15) 

,P(t,Yt)(YT (i0) = 0) = 1{Yt(i0)=0} 1− E(t,Mt) 

� 
MT ,κ0 − Mt,κ0 

�� 

mκ0 − Mt,κ0 

and the expectation on the right hand side can be computed using the backward equation 
for Mt, which leads to a substantial reduction in the size of the ODEsystem to be solved. 
Of course, there are alternative ways to compute prices of defaultable zerocoupon bonds 
in models with interacting intensities. In particular, as shown by CollinDufresne et al. 
(2003), for m small analytical expressions for prices of zerocoup on bonds can be derived 
using a change of measure. 

Next we turn to the pricing of recovery payments. A recovery payment with deter
ministic payoff δ and maturity T on firm i0 is a claim which pays δ at the default time 
τi0 if τi0 ≤ T ; otherwise there is no payment. The price of this claim at t = 0 equals 

� T 

δE
�
B(τi0)

−1
� 

= δ B(t)−1P (τi0 ∈ dt) dt , (30) 
0 

which can be evaluated numerically using (23) or (27). Using our pricing formulas for 
terminal value claims and recovery payments it is straightforward to compute the price 
of a standard singlename CDS, at least if we neglect the possibility that the protection 
seller may default. This is important for calibrating the model to given CDS spreads. 
The more general case with default of the protection seller can be dealt with using similar 
arguments as in the pricing of kthtodefault swaps in the next subsection. 

4.2 Pricing of kthtodefault swaps 

Payoff description. We consider a portfolio of m names with nominal Ni and de
terministic recovery rate δi, 1 ≤ i ≤ m. If the kth default time Tk is smaller than the 
maturity T of the swap, the protection buyer in a kthtodefault swap on this port
folio receives at time Tk the loss of the portfolio incurred at the kth default given 
by (1 − δξk )Nξk (the default payment leg of the swap). Note that the size of the de
fault premium is random as it depends on the identity ξk of the kth defaulting firm. 
As a compensation the protection buyer pays to the protection seller a fixed premium 
Xkth at fixed dates t1, t2, . . . , tN = T until Tk ; after Tk the regular premium payments 
stop. Moreover, at Tk the protection seller gets an accrued premium payment of size �N Xkth Tk −tn−1 

n=1 1{tn−1<Tk ≤tn} tn−tn−1 
(the premium payment leg). 

The default payment leg. Under the above assumptions the value of the default 
payment leg at t = 0 can be written as 

m

V def := 
�

(LGD)j E
�
B−1(τj )1{τj ≤T }1

�
,{Mτj =k}

j=1 
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where (LGD)j := (1 − δj )Nj . Now we obtain by iterated conditional expectations 

E
�
B−1(τj )1{τj ≤T }1{Mτj =k} 

� 
= E 

� 

E
�
B−1(τj )1{τj ≤T }1

���τj 

�� 

{Mτj =k} 

= 
� T 

B−1(t)P 
�
Mt = k

��τj = t
�
P (τj ∈ dt) dt. (31) 

0 

Using Corollary 4.3 we get in the model with meanfield interaction and one homogeneous 
group 

m � T 

B−1(t)
h(t, k − 1)P (Mt = k − 1)(m − k + 1)

V def := 
�

(LGD)j dt. (32) 
j=1 0 m 

To compute (32) we only need the distribution of Mt, which is easily obtained from 
the Kolmogorov forward equation, and a onedimensional numerical integration. In the 
general model we have P 

�
Mt = k | τj = t

� 
= 

�
y∈A1(k,j) P (Yt = y τj = t); hence we|

get from (24) and (31) 

m

V def = 
�

(LGD)j 

� � T 

B−1(t)λj (t, y(j))P (Yt = y(j)) dt, (33) 
j=1 y∈A1(k,j) 0 

which can be computed analytically for m small. 

The premium payment leg. The premium payment leg consists of the sum of the 
value of the regular premium payments and the accrued premium payment; since {Tk ≤
t} = {Mt ≥ k} its value at t = 0 for an arbitrary spread X can be written as 

N

V prem := X 
� � 

B−1(tn)P 
�
Mtn < k

� 
+ E

�
B−1(Tk )

Tk − tn−1 1{tn−1<Tk ≤tn} 

�� 

. (34)
tn − tn−1 n=1 

Using iterated conditional expectations we get for the second term 

tn1 
�

E
�
B−1(Tk )

Tk − tn−1 1{tn−1<Tk ≤tn} 

� 
= 

tn − tn−1 tn−1 

B−1(t)(t − tn−1)P (Tk ∈ dt)dt. 
tn − tn−1 

Using partial integration we can write this as 

tn 
�

1 
� 

B−1(tn)(tn −tn−1)P (Mtn 

� 
B−1(t)(1−r(t)(t−tn−1))P (Mt ≥ k)dt . 

tn − tn−1 
≥ k)− 

tn−1 

Hence we get from (34) 

N
� 

1 
� tn 

V prem = X 
� 

B−1(tn)− 
tn − tn−1 tn−1 

B−1(t)(1 − r(t)(t − tn−1))P (Mt ≥ k)dt
�� 

, 
n=1 

(35) 
which is easy to compute given the distribution of Mt. By equating the value premium 
payment leg and the default payment leg we finally obtain the fair spread Xkth of the 
kthtodefault swap. 
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A simple numerical example. In the following example we want to illustrate the 
effect of increasing interaction for the fair spread of kthtodefault swaps. We have 
considered a portfolio of 5 names each with a recovery rate of δ = 40%. We calibrated 
the model to singlename CDS spreads. For simplicity we have assumed that for all 5 
names the CDSspreads are independent of the maturity and equal to 0.8%, 0.9%, 1.0%, 
1.1% and 1.2%, leading 5year riskneutral default probabilities of 6.25%, 7.00%, 7.74%, 
8.45% and 9.21%. The riskless interest rate was taken constant and equal to r = 5%. We 
considered a general Markovian model with default intensities 

5
λi,1

λi(t,y) = max 
�

λi,0 

�
1 + 

��
y(j)− (1 − e−λi,0t)

��
,
λi,0 

� 
, i = 1, . . . , 5.· 

5 2 
j=1 

We computed the fair spread of a kthtodefault swap (k = 1, . . . , 5) with nominal 
Ni = 1 for all firms. We considered three cases with increasing interaction parameter 
λi,1 = 3, 6, 10 (identical for all firms). The parameters λi,0 were calibrated to the given 
5year default probabilities. The parameters and the default correlations are given in 
Table 4 in the Appendix. The fair swap spreads were computed from (33) and (35) using 
the Kolmogorov forward equation (10) for the general model. 

We have compared the results of the Markov model with a one factor Gaussian copula 
model (see for instance Laurent & Gregory (2003)), which is the industry standard for 
pricing such claims. The copula model was calibrated to the same riskneutral 5year 
default probabilities and default correlations as the Markov model. Fair swap spreads 
were computed using Monte Carlo simulation. 

The fair spreads Xkth for kthtodefault swaps we obtained in both models are doc
umented in Table 2. As expected, in both models the spread of the first to default swap 
decreases with increasing interaction parameter λi,1 and hence increasing default correla
tion, whereas the spreads of the higher order swaps increase with increasing interaction. 
Moreover, the Markov model and the copula model generate nearly identical results ex
cept for the extreme case k = 5, where the copula model leads to higher spreads. This 
seems to indicate that for given marginal default probabilities and given pairwise default 
correlation the distribution of the default times is to a large extent determined, indepen
dently of the particular model used. While this observation is in line with findings for 
static credit portfolio models (see for instance Frey & McNeil (2003)), further research is 
needed before such a statement can reliably be made. 

k 
without 

interaction 
Case 1 (λi,1 = 3) 

Markov Copula 
Case 2 (λi,1 = 6) 

Markov Copula 
Case 3 (λi,1 = 10) 

Markov Copula 
1 4.96% 4.55% 4.54% 4.13% 4.12% 3.65% 3.64% 
2 0.61% 0.84% 0.83% 1.04% 1.01% 1.18% 1.14% 
3 0.05% 0.13% 0.14% 0.25% 0.26% 0.40% 0.40% 
4 0.002% 0.014% 0.016% 0.044% 0.054% 0.11% 0.12% 
5 0.00003% 0.00077% 0.00105% 0.00431% 0.00714% 0.01610% 0.02566% 

Table 2: Fair spreads of kthtodefault swaps 
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4.3 Pricing of synthetic CDOs 

Payoff description. A synthetic CDO is based on a portfolio of m singlename CDSs 
with nominal Ni and (possibly random) recovery rate δi, 1 ≤ i ≤ m. The default losses 
of the portfolio are allocated to K tranches. Each of this tranches is determined by a 
fixed lower boundary lk and upper boundary uk , k = 1, . . . , K, where 0 = uK < lK = 
uK−1 < = u1 < l1 = 

�m Ni. The maximum loss of tranche k is lk − uk . If firm i· · · i=1 

defaults before the maturity T of the contract, the holder of the lowest tranche K pays 
at time τi the loss of this default given by LGDi := Ni(1 − δi) until he has reached his 
maximum loss; after that the holder of tranche K − 1 pays the loss and so on. Denote 
by Lt = 

�m 
i=1(LGD)i1{τi≤t} the total loss of the portfolio at time t. For tranche k with 

boundaries lk and uk we define the function vk by 

vk (x) = (x− lk )1{x∈[lk ,uk ]} + (lk − uk )1{x>uk } , 

so that the accumulated loss of tranche k up to time t equals vk (Lt). As a compensation 
for making the default payments the holder of a tranche gets a premium at fixed dates 
t1 < t2 < . . . < tN = T , whose size is based on the nominal of the tranche in the last 
period. If a default occurs the holder of a tranche moreover receives an accrued margin 
payment on the change in the value of his nominal between last regular payment time 
and default time. We denote by sk the spread of tranche k. Then the regular payment on 
tranche k at time tn equals sk (tn − tn−1)((uk − lk )− v(Ltn )); in case name j defaults at 
time τj ∈ (tn−1, tn] the accrued margin payment equals sk (τj − tn−1)(v(Lτj )− v(Lτj −)), 
where Lt− is the lefthand limit of Lt in t, so that v(Lτj )− v(Lτj −) gives the the loss of 
the tranche due to the default of name j. 

General pricing results. Using partial integration we obtain for the value of the 
default payments of tranche k 

V def := E
�� T 

B−1(t) dvk(Lt)
� 

= B−1(T )E
�
vk (LT )

� 
+ 

� T 

r(t)B−1(t)E
�
vk (Lt)

�
dt ; 

0 0 

see Laurent & Gregory (2003) for details. This is easily computed once we know the dis
tribution of the total loss. The premium payment leg consists of the regular payment and 
of the accrued margin payments. With deterministic interest rates the value of the regular 
payments at t = 0 can be written as sk �N B−1(tn)

��
uk − lk − E (vk (Ltn ))

�
(tn − tn−1)

� 
.· n=1 

For the value of the accrued margin payments in t = 0 we obtain 

N m
k 

� � 
E

�
B−1(τj )

�
vk (Lτj )− vk (L(τj )−)

� 
(τj − tn−1)1{tn−1<τj ≤tn} 

�
s .· 

n=1 j=1 

If we condition on τj and use iterated conditional expectation we can write a single term 
of this sum as 

tn
� 

B−1(s)(s− tn−1)E
�
vk (Ls)− vk (Ls−)

��τj = s
�
P (τj ∈ ds) ds. 

tn−1 

Thus in order to compute the premium payment leg we need the distribution of the loss 
of the tranche, the conditional distribution of the loss of the tranche given the default 
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times and the density of the default times. For deterministic recovery rates all these 
quantities can in principle be determined using Proposition 4.1 and the Kolmogorov 
equations; without further homogeneity assumptions this may however become infeasible 
for m moderately large, so that one has to resort to simulations. Next we consider the 
extreme case of a completely homogeneous portfolio. 

Results in the homogeneous meanfield model. Consider the meanfield model 
with one homogeneous group and identical nominals N1 = = Nm = N and identical· · · 
deterministic recovery rates δ1 = = δm = δ. Then we get for the distribution of the· · · 
total loss P (Lt = x) = P (Mt = x/(N (1 − δ))) and for the expected loss of tranche k 
E(vk (Lt)) = 

�m 
i=0 vk (iN (1 − δ))P (Mt = i). For the conditional expectations we get 

m

E
�
vk (Lt)

���τj = t
� 

= 
� 

vk 
�
iN (1 − δ)

�
P (Mt = i τj = t) (36)|

i=1 

m−1

E
�
vk (Lt− )

���τj = t
� 

= 
� 

vk 
�
iN (1 − δ)

�
P (Mt = i + 1 τj = t) . (37)|

i=1 

Defining Et,k (j) := mP (τj ∈ dt)E
�
vk (Lt) − vk (Lt− )

��τj = t
� 

we get using (36), (37) and 
Corollary 4.3 

� m−1

Et,k (j) = mP (τj ∈ dt)
� 

vk 

�
iN (1 − δ)

��
P (Mt = i τj = t)− P (Mt = i + 1 τj = t)

�
| |

i=1 

+ vk 

�
mN (1 − δ)

�
P (Mt = m τj = t)

� 

|
m−1

= 
� 

vk 

�
iN (1 − δ)

�
h(t, i − 1)P (Mt = i − 1)(m − i + 1) − h(t, i)P (Mt = i)(m − i) 

i=1 

+ vk 

�
mN (1 − δ)

�
h(t, m − 1)P (Mt = m − 1). 

Since Et,k(j) is independent of j, the overall value of the premium payments in t = 0 is 
given by 

N tn

k
s 

� 
B−1(tn)

�
uk − lk − E

�
vk (Ltn )

��
(tn − tn−1) + 

� 
B−1(t)(t − tn−1)Et,k (1) dt .· 

n=1 tn−1 

The case of stochastic recovery rates can be dealt with using Fourier inversion techniques; 
see for instance Laurent & Gregory (2003) for a discussion in the context of copula models. 

A numerical example. Consider the simple example of pricing a synthetic CDO in 
the homogeneous meanfield model. The portfolio consists of 100 names with identical 
nominal Ni = 1 and deterministic recovery rate δi = 50%. The maturity of the CDO 
is taken to be T = 5 years and the premium payments are due at tn = 1, . . . , 5 years. 
The CDO has 3 tranches, equity 3%, mezzanine 7% and senior 90%, i.e. we have the 
boundaries 0 = u3 < l3 = 3 = u2 < l2 = 10 = u1 < l1 = 100. We assume a risk free short 
rate of r= 3%. We model the default intensity as 

� � � 
l ¯

�
h(t, l) = max λ0 1 + λ1 

m 
− (1 − e−λt)

�� 

, λ0/2 ,· 
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¯where we set ¯ λ so, that we have P (Y1(i) = 1) = 1−e−λ in the case without interaction. We 
assume that the oneyear risk neutral default probability for each firm equals P (Y1(i) = 
1) = 3.246%. We increase the interaction parameter λ1 and calibrate the other parameter 
λ0 such that the 5year default probability is unchanged. 

In Table 3 we show the behaviour of the annual default probability (for a constant 
5year default probability), the one and 5year default correlation and the fair spreads 
of the three tranches. As expected the spread of the first tranche decreases whereas the 
spreads of the other tranches increase as we increase λ1 and thus the dependence between 
defaults. This behaviour of CDOspreads is wellknown from other studies such as Duffie 
& Garleanu (2001). 

annual annual 5year fair spread of tranche 
default default default [0,3] [3,10] [10,100] 

λ1 λ0 probability correlation correlation 
% % % % % % 

0 0.03300 3.246 0.0000 0.0000 93.16 16.23 0.02 
10 0.03304 3.244 0.4005 3.8474 78.11 14.03 0.17 
20 0.03072 2.934 0.9130 11.948 60.62 10.13 0.39 
30 0.02811 2.577 1.3724 22.233 49.60 7.41 0.57 

Table 3: Fair spreads of different tranches of a synthetic CDO for different interaction 
levels and a constant 5year default probability P (Y5(i) = 1) = 15.21%. 
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A Appendix 

A.1 Simulation 

We now describe an approach for simulating a trajectory of the process Γ with dynam
ics as in Assumption 2.1 and initial values Γ0 = (ψ,y) up to some finite horizon T . 
The approach follows the standard construction of conditional continuous time Markov 
chains. First we simulate a trajectory of Ψ. Depending on the specific model for Ψ 
various approaches can be used; see for instance Glasserman (2003). Next we have to 
simulate the first default time T1. It is wellknown that T1 has hazardrate process 
λ

(1) = 
�m �

1 − y(i)
�
λi(Ψt,y). Hence we simply simulate a unit exponential random t i=1


λ
(1)
variable θ1 independent of Ψ and put T1 = inf

�
t ≥ 0 : 

� t
s ds ≥ θ1

� 
. Next we deter0 

mine the identity ξ1 of the first defaulting firm. It is shown for instance in Bielecki & 
Rutkowski (2002) that 

�
1− y(i)

�
λi(Ψt,y) (1)

P( ,y)(ξ
1 = i | T1 = t) = �m �

1− y(j)
� 

λj (Ψt,y) 
=: p ;i 

j=1

Hence ξ1 can be simulated as realisation of a random variable ξ with P (ξ = i) = p(1) fori 
1 ≤ i ≤ m. 

In case that T1 ≥ T we have accomplished our task and stop. Else we define the 
vector y(1) := yξ1 

(recall the notational convention (2)), and for t ≥ T1 the process 
λ

(2) = 
�

j
m 
=1(1 − y(1)(j))λj (Ψt,y(1)). In analogy to the previous step we put T2 = t 

λ
(2)inf 

�
t ≥ T1 : 

� t
s ds ≥ θ2

�
, where θ2 is again a unit exponential rv independent of all T1 

other variables. ξ2 is determined as before, using the identity 

P (ξ(2) | 
�
λ

(2)
�−1 �

1− y(1)(i)
� 

λi(Ψt,y(1)).= i T2 = t, ξ1) = t 

The algorithm proceeds this way until we have reached some j with Tj ≥ T or until all 
companies are default. 

A.2 Forward equations 

Proof of Lemma 2.3. We identify G[ ] with an |S| × |S| matrix (Λij (t ω1)); G∗ corre[ ] 

sponds then to the transpose matrix. For this we choose a bijection I :
|
{1, . . . , |S|} → S, 

i �→ yi. By definition of the generator of Y we have for i = j 

Λij (t | ω1) = 

�
(1 − yi(k))λk (Ψt(ω1),yi), if yj = yi

k for some k ∈ {1, . . . ,m}, 
(38)

0 else . 
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�

�

�

For i = j we put Λii(t ω1) = −�
j=i Λij (t ω1), yielding Λii(t ω1) = −�m 

k=1(1 −| |
yi(k))λk (Ψt(ω1),yi) . Now fix y = I(j

�
0) ∈ S. 

|
Since G[

∗
Ψt(ω1)] corresponds to multiplica

tion with the transpose matrix (Λ∗ij (t | ω1)), the forward equation becomes 

∂p(t, s,x,y ω1) 
|S|

∂s 
| 

= 
� 

Λij0(s | ω1)p(t, s,x,yi | ω1) . 
i=1 

Using the definition of Λij (s ω1) and the relation (1 − yk (k)) = y(k) we obtain the final|
version (10) of the forward equation. 

Next we consider forward equations for Mt. We have 

Lemma A.1. Assume that the default intensities satisfy Assumption 3.1. Then the 
adjoint operator G∗ M 

[Ψt(ω1)] of Mt is given by[Ψt(ω1)] to the generator GM 

k 1 
eκ

�
f
�
l − 

1 
G∗ Mf (l) = 

� 
1 {lκ>0}

�
1 + mκ(1 − lκ)

�
hκ

�
ψ, l − eκ

� 
(39)[ ] mκ mκκ=1


k


−
� 

mκ(1 − lκ)hκ 
�
ψ, l

� 
f
�
l
� 
. 

κ=1 

Sketch of proof. As in the proof of Lemma 2.3 we define a 
��SM 

�� ��SM 
�� matrix (Λij (t|ω1))×

and identify the generator GM 
[ ] with the matrix through a bijection I : {1, 2, . . . ,

��SM 
��} → 

SM , I(i) = l(i) . According to Lemma 3.4 we have for i = j 

Λij (t ω1) = mκ(1 − l
(i))hκ(Ψt, l

(i)), (40)κ| 
(i)if there is a κ ∈ {1, · · · , k} with l(j) = l(κ

i)+ 1 and lγ 
(j) = lγ for γ = κ, and Λij (t | ω1) = 0κ mκ 

else; for i = j we obtain 
��SM 

��
k

ω1) = 
� 

Λij (t | ω1) = −
� 

mκ(1 − l )hκ(Ψt, l
(i)) .κ
Λii(t | −

j=1,j=i κ=1 

(i)


The result follows as the adjoint operator G∗ M 
[Ψ] corresponds to multiplication with the 

transpose matrix (Λ∗ij (t|ω1)). 
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A.3 Complementary numerical results


Case 1: Lower Interaction, λi,1 = 3, i = 1, . . . , 5 

0.013235 100% 4.32% 4.52% 4.72% 4.89% 
0.014919 100% 4.77% 4.97% 5.16% 
0.016605 100% 5.21% 5.41% 
0.018300 100% 5.64% 
0.019999 100% 

λ1,0 

λ2,0 

λ3,0 

λ4,0 

λ5,0 

= 
= 
= 
= 
= 

Case 2: Medium Interaction, λi,1 = 6, i = 1, . . . , 5 

0.013773 100% 9.81% 10.25% 10.66% 11.04% 
0.015584 100% 10.78% 11.21% 11.61% 
0.017410 100% 11.72% 12.14% 
0.019256 100% 12.62% 
0.021119 100% 

Case 3: Higher Interaction, λi,1 = 10, i = 1, . . . , 5 

λ1,0 

λ2,0 

λ3,0 

λ4,0 

λ5,0 

= 
= 
= 
= 
= 

λ1,0 = 0.013876 100% 16.76% 17.44% 18.07% 18.65% 
λ2,0 = 0.015783 100% 18.28% 19.45% 19.55% 
λ3,0 = 0.017727 100% 19.74% 20.38% 
λ4,0 = 0.019711 100% 21.13% 
λ5,0 = 0.021733 100% 

Table 4: Parameter λi,0 of the Markov model and the resulting 5year default correlation 
in 3 cases with increasing interaction. The parameters λi,0 are calibrated to the following 
5year default probabilities P (Y5(1) = 1) = 6.25%, P (Y5(2) = 1) = 7.00%, P (Y5(3) = 
1) = 7.74%, P (Y5(4) = 1) = 8.45% and P (Y5(5) = 1) = 9.21%. 
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