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Abstract. The proposed New Accord (Basel II) established by
the Basel Committee on Banking Supervision calls for an explicit
treatment of operational risk. Banks are required to demonstrate
their ability to capture severe tail loss events. Value at risk is a
risk measure that could be used to derive the necessary regulatory
capital. Yet operational loss data typically exhibit irregularities
which complicate the mathematical modeling. It is shown that
traditional modeling approaches, including extreme value theory,
reach their limits as the structure of operational loss data is barely
in line with the modeling assumptions.

1. Introduction

The Basel Committee on Banking Supervision (the Committee) es-
tablished in its New Accord [3] (Basel II for short) a three pillar
framework for risk management practices of financial institutions. Pil-
lar 1 –minimum capital requirements– is devoted to risk measurement
and the concomitant capital requirements serving as a cushion against
unexpected losses. The second pillar –supervisory review of capital
adequacy– calls for an effective framework to identify, assess, monitor,
and control risks. Pillar 3 –public disclosure– finally requires public
disclosure of loss data and management methods.

In the current accord as well as in the proposed New Accord the min-
imum capital requirements are based on a capital ratio where the nu-
merator represents the total amount of capital a bank has available
whereas the denominator consists of the risk-weighted assets. The re-
sulting capital ratio shall not be less than 8%. Under the proposed
New Accord, the definition of the numerator (i.e. regulatory capital)
and the minimum ratio of 8% remain unchanged. The modifications
apply to the risk-weighted assets, that is to the methods in place to
measure the risks faced by a bank. One of these modifications concerns
the explicit treatment of operational risk. Following the Committee’s
wording, we understand by operational risk “the risk of losses resulting
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from inadequate or failed internal processes, people and systems, or
external events.”

In this document we shed some light on the implementation of Pillar 1
in the context of operational risk losses. A major innovation of the
proposed New Accord is the introduction of three different approaches
for the calculation of operational risk. In this note, the emphasis will
be on the implementation of the advanced measurement approach, see
Section 2. The actuarial world provides a myriad of techniques how to
analyze historical data. In Section 3.1 we briefly review some actuarial
techniques designed to finding an overall model for loss severities. Yet
we are more concerned with modeling the largest losses. Extreme value
theory provides a number of sensible approaches to this problem, see
Section 3.2. However, this presupposes that sufficient data are available
above a certain high threshold value. We understand that the actu-
arial methods are eligible for operational risk data too provided those
data are in line with the modeling assumptions. Section 3.3 is devoted
to the applicability of actuarial models in general. In Section 3.3.3,
we present a numerical example giving some insight into the number
of observations needed to arrive at accurate quantile estimates. This
example is of pedagogical nature only as it is based on independence
and stationarity assumptions of the underlying data. Operational risk
losses, however, reveal some facts which are barely in accordance with
the modeling assumptions made in that example. Some concluding
remarks can be found in Section 4.

2. Measuring operational risk

The launch of the New Accord has attracted great interest, not least
because of the emphasis that is given to operational risk. In the wake
of the New Accord, we have observed a number of articles, research
papers and books addressing the issue on how to quantify operational
risks. The proposed New Accord intends to introduce three distinct
options for the calculation of operational risk. These approaches reflect
different levels of risk sensitivity allowing banks to elect the approach
that fits best to their operations. The three approaches for measuring
operational risk are as follows:

(1) Basic Indicator Approach

(2) Standardised Approach

(3) Advanced Measurement Approach (AMA).

Roughly speaking, the basic indicator and the standardised approach
require banks to hold a capital for operational risk losses equal to a
fixed percentage of gross income. These two approaches are targeted
to banks with moderate exposure to operational risk losses. Interna-
tionally active banks facing a substantial exposure to operational risk
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losses are expected to implement over time the more involved AMA.
In developing concepts for the AMA, banks are given a great deal of
flexibility as long as these approaches are consistent with the banks’
activities. The Committee is not specifying distributional assumptions
from which risk measures for regulatory capital purposes can be de-
rived. However, a bank must be able do demonstrate that its approach
captures potentially severe tail loss events, see Basel II [3] p. 126. To
be more precise, banks should put an operational risk capital aside
in line with the 99.9% or even higher confidence level over a one-year
holding period. In general terms, the capital charge C can be derived
as follows:

C =
s∑

i=1

VaRi
α ,

where VaR`
α denotes the Value at Risk (VaR) at confidence level α

of business line `. Summation in the above definition is used as the
Committee requires risk measures for different business lines and/or
operational risk types to be added up. VaR can be defined as a sta-
tistical estimation of a portfolio loss with the property that, with a
given (small) probability, we stand to incur that loss or more over a
given (typically short) holding period. The holding period should be
related to the liquidity of the assets: if a financial institution runs into
difficulties, the holding period should cover the time necessary to raise
additional funds for corrective actions. Formally, VaR is defined as
follows. Note our convention to consider losses as positive and gains as
negative.

Definition 1. Given some confidence level α ∈ (0, 1), the VaR of a
portfolio at the confidence level α is given by the smallest number `
such that the probability that the loss L exceeds ` is no greater than
(1− α):

VaRα(L) = inf{` ∈ R | P[L > ` ] ≤ 1− α} . �

Formulated differently, VaRα(L) corresponds to the α-quantile qα of
the distribution function of L. If L has cumulative distribution func-
tion (cdf) F , this is also denoted as qα = F←(α). Typical values for α in
the context of market risk management are α = 0.95 or α = 0.99. VaR
techniques with confidence levels in the area of 99.9% and beyond at
least become delicate for the simple reason that there is hardly enough
repetitive data at hand to “predict” losses of such magnitude. Recall
that α = 99.9% corresponds to a one-in-thousand event. However, it
is precisely the area of operational (and credit-) risk where such levels
of α are ubiquitous.
We shall not address here the question whether or not VaR is actually
a “good” risk measure. For example, it is known that VaR in general
is not a coherent risk measure in the sense of Artzner et al. [1]. It lacks



4 PAUL EMBRECHTS, HANSJÖRG FURRER, AND ROGER KAUFMANN

the property of subadditivity. Intuitively, subadditivity reflects the
idea of diversification. Moreover, VaR does not tell anything about the
potential size of the loss that exceeds it. To circumvent this problem,
Artzner et al. [1] introduce the concept of expected shortfall instead. In
mathematical terms, expected shortfall is the conditional expectation
of L, given that L ≥ VaR. The amenities of expected shortfall as an
alternative risk measure are twofold. Not only does expected shortfall
provide information about the size of a loss, but it also falls into the
class of coherent risk measures. (Strictly speaking, the latter property
only holds for absolutely continuous loss distributions.)

3. Preconditions for fitting operational risk data

The AMA aims at being the most sophisticated approach for quanti-
fying operational risk. However, the increased level of sophistication
comes at the cost of a number of modeling assumptions which have
to be fulfilled. Obviously, the accuracy in predicting future loss val-
ues depends on the volume and quality of the observed historical data.
The Committee requires that operational risk measures are based on
a minimum five-year observation period of internal loss data. When a
bank first moves to the AMA, a three-year horizon will be accepted.
Actuarial science essentially provides the techniques to analyze the
given data and to make inference about future losses. Applying those
methods only makes sense if the assumptions underlying the actuarial
models are fulfilled. Otherwise, erroneous conclusions may be drawn.
The purpose of this section is to briefly review those actuarial tech-
niques which are also relevant for the banking industry when faced
with capital adequacy requirement issues. To begin with, we recall
some loss distribution fitting techniques which are widely used in the
actuarial world. In essence, those methods are needed for VaR pur-
poses too. There, the emphasis is on the inverse of the cdf, especially
in the far end tail provided the VaR-confidence level α is high. Extreme
value theory (EVT) can offer a solution in this context. In particular,
we discuss the preconditions under which standard actuarial methods
complemented with EVT provide meaningful estimates of high quan-
tiles. There is a vast amount of actuarial literature dealing with the
analysis of aggregate loss distributions, see for instance Klugman et
al. [13] or Panjer and Willmot [18] to mention just two of them. The
standard reference book for EVT is Embrechts et al. [10].

3.1. Standard actuarial methods. In non-life insurance, the anal-
ysis of the total claim amount S of an insurer’s portfolio has always
been a key issue. Not only are most premium principles derived from S
but also more modern concepts in financial risk management such as
VaR for instance basically depend on aggregate loss distributions. In
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the framework of the individual risk model one assumes that the num-
ber of claims over a given time period is deterministic. Furthermore,
it is assumed that the individual risks Xi, i = 1, . . . , n, constituting a
portfolio are independent random variables. It is not assumed, how-
ever, that the Xi’s have identical distribution. Note that the Xi’s
are allowed to have positive mass at zero meaning that, with positive
probability, policy i produces no claim . The independence assumption
entails that the sum S =

∑n
k=1 Xk can be calculated by means of con-

volution techniques. Yet this technique is quite laborious and explicit
solutions for the cumulative distribution function of S can seldom be
obtained. So there is a need for alternative methods. As S is the sum
of independent random variables, it is tempting to approximate S by
a normal law with the same mean and variance as S. Insurance as
well as operational loss data, however, are often heavier tailed so this
approximation in general does not work well. To compensate for the
skewness, one can use an approximating distribution. The idea is to
use the method of moments to estimate the parameters of the approx-
imating distribution. The advantage of this method is that it is simple
and easy to apply. Candidates for approximating distributions are:

• Translated gamma distribution

• Translated lognormal distribution.

Hence, the cdf of S is approximated by the cdf of x0 +Y , say, where Y
has a gamma or lognormal distribution with parameters α, β. Equating
mean value, variance and skewness of x0 + Y with the corresponding
moment estimates of S yields the unknown parameters α, β and x0. Al-
though this approach does a better job than the normal approximation
the tail severity may still be underestimated.

In the collective risk model the portfolio is regarded as a collective
that produces claims at random points in time. The number of claims
is a random variable modeled by a counting process N = (Nt)t≥0,
where Nt denotes the number of claims in the time interval [0, t]. It
is assumed that the claim sizes (Xi)i∈N are independent and identi-
cally distributed (iid) with common distribution function FX and that
N is independent of the sequence (Xi)i∈N. The most prominent ex-
ample of a counting process is the homogeneous Poisson process with
intensity λ. It is well-known that the mean value and the variance of
a Poisson(λ)-distributed random variable are both equal to λ. If the
number of claims exhibits a larger spread around the mean, one may
use the negative binomial distribution instead. The negative binomial
distribution arises naturally by assuming that the intensity λ of a Pois-
son process follows a gamma distribution; moving from a deterministic
λ to a random intensity is referred to as mixing.
The compound distribution function FS(x) = P[S ≤ x] can be ex-
pressed in terms of convolutions of FX . The computation of FS is
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generally not an easy task, even in the simplest cases. Among the
algorithms to calculate FS we mention the following:

(A1) Approximation

(A2) Inversion methods

(A3) Recursive methods (Panjer recursion)

(A4) Simulation.

Approximation. Various approximation methods can be used to cir-
cumvent the difficulties in calculating FS. The normal approximation
based on the central limit theorem and the approximations by skewed
random variables are also applicable in the collective model. Other
methods of computing (tail-) probabilities for sums of random vari-
ables include the Edgeworth expansion or the saddlepoint approxima-
tion. These methods provide good approximations in various settings.
For a thorough discussion of these techniques we refer to the actuarial
literature given above; see also Jensen [11].

Inversion methods. Inversion methods are used to obtain numerically
the probability function (density or mass function) from a known ex-
pression for a transform such as the characteristic function of the de-
sired random variable. The fast Fourier transform (FFT) is an algo-
rithm to invert the characteristic function ϕS(z) = E[eiSz] to obtain
densities of discrete random variables. Note that the FFT procedure
requires a discretization of the severity distribution.

Recursive methods. The Panjer recursion calculates the probability of
the event {S = k} recursively in terms of the probabilities of {S = `},
` = 0, 1, 2, . . . , k − 1, see (2) below. The probabilities pn of having n
claims have to satisfy the following recursion relation for some real a
and b:

(1) pn =
(
a +

b

n

)
pn−1 , n ≥ 1 .

One can show that only the Poisson, negative binomial and the bino-
mial distribution satisfy (1). For those claims frequency distributions
with claim sizes defined on the positive integers, the following recur-
sive formula for the distribution of total claims holds, see for instance
Panjer and Willmot [18], Corollary 6.6.1.

(2) P[S = k] =
k∑

m=1

(
a +

bm

k

)
fX(m)P[S = k −m] , k = 1, 2, 3 . . . ,

where fX denotes the probability mass function of the claim severity,
i.e. fX(m) = P[X = m]. In case the claim severity distribution is not
discrete, one first has to discretize it. Commonly used discretization
techniques are either the method of rounding (which is simplest to
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apply) or the method of moments matching which yields highly accu-
rate results. Details of these discretization techniques can be found in
Panjer and Willmot [18], Section 6.15.

Simulation. The recursion and inversion methods presented above as-
sume that the claim sizes (Xi)i∈N are iid and that N and (Xi)i∈N are
independent. Moreover, the true severity distribution has to be re-
placed with a discretized approximation. When the Xi’s are iid it
does not matter which loss is denoted by X1, which one by X2 and
so on. However, because S is the aggregate loss over a time period,
one should account for the time value of money. Simulation techniques
such as bootstrapping for example can be useful in this context.

3.2. Extreme value theory for risk management. The techniques
described in Section 3.1 are widely used in the actuarial world. How-
ever, they are not necessarily designed to make inference about the tail
area of the distribution. Yet from a risk measurement viewpoint it is
exactly the tail of the loss distribution which is of particular interest.
Here, EVT can offer a solution. In a nutshell, EVT can help to fit a
model to the tail distribution of a set of data using only the extreme
event data. The peaks-over-threshold (POT) method thereby consid-
ers exceedances over high thresholds. Simple parametric formulae for
measures of extreme risk such as VaR for high confidence levels α for
example can be derived based on the so-called generalized Pareto dis-
tribution (GPD). As mentioned earlier, the standard reference book
for EVT is Embrechts et al. [10]. In what follows, we also refer to
McNeil [14] and McNeil and Saladin [16]. The aim of the latter is to
investigate under what circumstances EVT yields accurate estimates
of high quantiles. A collection of papers relevant for EVT applications
to integrated risk management is Embrechts [8].
Originally, EVT evolves from the analysis of (standardised) maxima
of a sequence of iid random variables (Xi)i∈N. An important theorem
in the realm of extremes says that, for a certain class of distributions,
the GPD appears as limiting distribution for the distribution of the
excesses Xi − u, as the threshold u becomes large. More formally, one
can find a positive function β(u) such that Gξ,β(u)(x) approximates the
unknown excess distribution Fu(x) = P[ X − u ≤ x |X > u ], where
Gξ,β(x) is given by

Gξ,β(x) =


1−

( 1

1 + ξx/β

)1/ξ

if ξ 6= 0 ,

1− e−x/β if ξ = 0 .

Here β > 0, and the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ
when ξ < 0. The EVT parameter ξ categorises the various regimes:
ξ > 0 (the heavy-tailed case), ξ = 0 (the medium-tailed case), ξ < 0
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(the light-tailed case). It is important to stress that, though the ξ > 0
case is the most relevant one, EVT yields a methodology for estimating
tails of distribution functions in all three cases. To proceed, it is then
assumed that for risks Xi with common cdf F the excess distribution
Fu follows exactly a GPD for some ξ and β, i.e.

(3) Fu(x) = Gξ,β(u)(x)

for a certain high threshold value u. Combining the historical simu-
lation estimate (n − Nu)/n and the tail estimate derived from equa-
tion (3), one arrives at the following estimator of F :

(4) F̂ (x) = 1− Nu

n

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

, x > u .

Note that Nu denotes the number of exceedances over the threshold
value u and n the total sample size. It is important to realise that we
only fit F beyond the (typically high) level u and that all estimates
are a function of this chosen level. The fact that EVT does not fit a
model below u is not a weakness, typically sufficient data are available
in that range so that standard statistical models can be used. In risk
management applications, it is the tail area x > u (for large u) that
matters and that is the region where EVT enters. By solving the
equation F̂ (qα) = α for qα and noticing that qα = VaRα we find the
following estimate for the VaR at the confidence level α:

(5) V̂aRα = u− β̂

ξ̂

(
1−

( Nu

n(1− α)

)ξ̂ )
.

In statistical language, (5) is a quantile estimate, where the quantile
is an unknown parameter of an unknown distribution. By means of a
method known as profile likelihood it is possible to construct a confi-

dence interval around V̂aRα. The interval is asymmetric reflecting the
asymmetry in the problem of estimating high quantiles for heavy-tailed
data: it is easier to bound the interval from below than to bound it from
above. The quantile estimate (5) together with its confidence interval
is implemented in EVIS. The corresponding function is called gpd.q.
Note that EVIS is a suite of S-Plus functions for EVT developed at
ETH Zurich by Alexander McNeil; see www.math.ethz.ch/∼mcneil.
Several authors have applied EVT to operational risk data, see for
instance Cruz [7], King [12] and Medova [17].

3.3. Applicability of standard actuarial and EVT methods.
Sections 3.1 and 3.2 provide the conceptual framework for fitting (ag-
gregate) loss distributions to historical data. It is shown how VaR
estimates can be derived by combining historical simulation and EVT
techniques. Yet we know that statistical modeling faces a number of
potential problems. First, there is the model risk which may lead to
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wrong results and conclusions when the model is calibrated on unre-
liable or sparse data. In this section we discuss the feasibility of the
methods described above. In particular, we would like to describe the
situations in which these techniques are (in-) appropriate. Our empha-
sis will mainly be on the assumptions underlying EVT since operational
risk measurement is tantamount to dealing with extreme loss events.
At first, we shall however make some comments on the stationarity
or (time-) independence assumptions. Note that our reasoning will be
more of a qualitative than a quantitative nature.

3.3.1. Stationarity. Many actuarial models, at least in their original
form, are based on iid assumptions. In particular, this implies that
the time aspect beyond correction for inflation is negligible and that
there are no significant structural changes in the observed data as time
evolves.
So far it has been hard to come by operational risk losses. One reason
is no doubt the confidentiality, another the relatively short historical
period over which historical data have been consistently gathered. Yet
in the data which are available, we observe the following stylized facts
(which seem to be accepted throughout the industry for several oper-
ational risk categories):

(a) Loss occurrence times are irregularly spaced in time

(b) Loss amounts very clearly show extremes.

The irregularity seems to go beyond randomness as for instance ob-
served in a homogeneous Poisson process or even renewal process. The
observed non-stationarity may in part be due to survival bias: opera-
tional losses more than some years ago have not “survived” in banks’
databases. On the other hand, non-stationarity can be caused by busi-
ness cycles, economic cycles, management interactions, regulation, etc.
As a result of this serial dependence, volatility changes over time and
large losses may tend to occur in clusters. We mentioned at the begin-
ning of Section 3 that the Committee asks for a five-year horizon on
which AMA models have to be calibrated on. Given the obvious struc-
tural changes of operational risk losses it is clear that sound analytical
modeling is a major challenge and definitely can not get away without
considering time aspects.

Concerning the (serial) dependence, we notice that the POT method
has been generalized in various ways. Typically, excesses over high
thresholds u are no longer assumed to occur on inter-arrival times of
a homogeneous Poisson process. Moving away from the constant in-
tensity assumption allows to bring in the desired time dependence of
excesses over high thresholds. These so-called smoothing effects are
discussed in Chavez-Demoulin and Embrechts [5] where further refer-
ences on (weak-) dependence modeling are to be found. In a recent
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paper by McNeil and Frey [15], time-dependent VaR models are stud-
ied. Taking present and past information into account they consider
conditional return distributions for financial return series, thereby in-
corporating the current volatility structure. Their method allows for
determining conditional, i.e. time dependent VaR (and expected short-
fall) figures. We stress however that first these non-stationarities have
to be modeled before an appropriate EVT analysis can be made.

3.3.2. (Non-) repetitiveness. Banks may have a minimal gross thresh-
old for internal loss data collection in place, say e 10,000. Nevertheless
a bank will track a lot of small to moderate operational risk losses which
occur with a certain regularity, say on a monthly, weekly or even daily
basis. Hence, the standard actuarial methods as described in Section
3.1 will prove sufficient to analyze them, see for instance Embrechts et
al. [9]. As mentioned in Section 3.2, EVT can also be used at this level
when the estimator of high quantiles is called for. The abundance of
data will make such an analysis fairly standard.

The situation changes drastically if we consider non-repetitive losses.
Here – nomen est omen – there is not sufficient data available on which
any statistical model could be based on. We are thus in the outer-
most corner of low frequency-high severity claims. In extreme cases,
a single non-repetitive loss alone may drive a financial institution into
bankruptcy. The most conspicuous example is provided by the Barings
Bank failure in 1995. Clearly, no economic capital charge would have
been sufficient to prevent Barings from bankruptcy. The lack of non-
repetitive historical data implies that sound high quantile estimates
can not be obtained. Statistical modeling, including EVT, reaches its
limits here, see Section 3.3.3 for more details on this.

In Table 1, taken from Crouhy et al. [6], we have listed some typical
types of operational risks. It is clear from this table that some risks
are difficult to quantify (like incompetence under people risk) whereas
others lend themselves much easier to quantification (as for instance
execution error under transaction risk). We added a column to this
table indicating whether a certain risk typically creates repetitive or
non-repetitive losses. Sometimes the distinction between “repetitive”
and “non-repetitive” is not quite clear. If there is ambiguity (according
to our judgment), we use the notion “yes (no)” for example to indicate
that this type of risk is mostly repetitive. Yet we can think of situations
where such losses do not obey a repetitive pattern.

3.3.3. Number of exceedances. The choice of a suitable threshold value
u above which an EVT analysis can be calibrated is crucial, even for
standard, repetitive iid data. A question we are often asked by prac-
titioners is “how many observations in the tail are needed”. This is
tantamount to asking “at what level do we have to set u”. There is no
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Repetitive?

1. People risk • Incompetency no
• Fraud no

2. Process risk
(a) Model risk • Model/methodology error (yes) no

• Mark–to–model error (yes) no

(b) Transaction risk • Execution error yes
• Product complexity (yes) no
• Booking error yes
• Settlement error yes
• Documentation/contract risk yes (no)

(c) Operational control
risk

• Exceeding limits yes (no)

• Security risks yes (no)
• Volume risk yes (no)

3. Technology risk • System failure yes
• Programming error yes
• Information risk yes (no)
• Telecommunications failure yes (no)

Table 1. Types of operational risks (Crouhy et al. [6],
the last column is added).

easy answer to these questions beyond “it all depends”. For a relevant
paper on the choice of the threshold value u, see Victoria-Feser and
Dupuis [21] and references therein. Users of EVT, especially in opera-
tional risk, should be aware of the various caveats surrounding an EVT
analysis; a first glimpse of these caveats can be found in Embrechts et
al. [10] under the title “Hill horror plot”. Our comments below should
be seen as constructive warnings.

The material presented below mainly summarizes the findings of a sim-
ulation study worked out by McNeil and Saladin [16]. They compare
the estimated quantiles (5) with the corresponding theoretical ones for
known distributions for which (high) quantiles can be calculated explic-
itly. By the rejection method, independent random numbers with cdf
F are generated until Nu excesses over u have been detected. They con-
sider data sets of Nu ∈ {25, 50, 100, 200} exceedances. 25 exceedances
over thresholds are considered as the minimum number one would work
with; estimates from less data would be too unreliable. 200 exceedances
would be ideal and 50 to 100 realistic situations. For comparison pur-
poses, McNeil and Saladin introduce a somewhat arbitrary, albeit nat-
ural definition of a “good” estimate. Their criteria in assessing the
estimate (5) is based on the empirical bias and standard error.
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The simulation study was performed for three types of loss distribu-
tions, all of which occur within operational (and also credit) risk liter-
ature.

(i) Medium-tailed (e.g. Lognormal, gamma).

(ii) Heavy-tailed with infinite moments of order greater than or
equal to two.

(iii) Heavy-tailed with infinite moments of order greater than or
equal to one.

Tables 2 to 4 below give a qualitative summary of the simulation re-
sults to be found in McNeil and Saladin [16]. For illustrative purposes,
we present here the case of lognormally distributed claims represent-
ing class (i) (ξ = 0 in the EVT notation) and claim sizes following a
Pareto distribution with shape parameters θ = 2, θ = 1, respectively
as characteristic examples of classes (ii) and (iii). The Pareto is a com-
monly used heavy-tailed loss distribution with cdf F (x) = 1− (a/x)θ,
x ≥ a (ξ = 1/θ > 0). Our choice is motivated by the relevance of
these distributions in actuarial and financial modeling. The results in
McNeil and Saladin [16] extend to other types of distributions such as
the t-distribution for example. Note that the tail severity increases as
we move from class (i) to class (iii). Again, we would like to stress
the fact that the figures given below represent an ideal situation where
losses are assumed to be iid, hence highly repetitive. As such, these
values could be regarded as a bottom line (a best case analysis) when
it comes to modeling operational loss data. Recall that the stylized
facts of several, important operational risk classes are not consistent
with the modeling assumptions made in this example.



REGULATORY CAPITAL FOR OPERATIONAL RISK 13

Lognormal distribution:

u = F←(q) α Goodness of V̂aRα

0.99 A minimum number of 50 exceedances (corre-
sponding to 167 observations) is required to en-
sure accuracy wrt bias and standard error.

q = 0.7
0.999 A minimum number of 100 exceedances (corre-

sponding to 333 observations) is required to en-
sure accuracy wrt bias and standard error.

0.99 Full accuracy can be achieved with the minimum
number 25 of exceedances (corresponding to 250
observations).

q = 0.9
0.999 Full accuracy can be achieved with the minimum

number 25 of exceedances (corresponding to 250
observations).

Table 2. Accuracy of estimating high quantiles by
means of the POT method. Lognormally distributed
claims.

Pareto distribution with θ = 2:

u = F←(q) α Goodness of V̂aRα

0.99 A minimum number of 100 exceedances (corre-
sponding to 333 observations) is required to en-
sure accuracy wrt bias and standard error.

q = 0.7
0.999 A minimum number of 200 exceedances (corre-

sponding to 667 observations) is required to en-
sure accuracy wrt bias and standard error.

0.99 Full accuracy can be achieved with the minimum
number 25 of exceedances (corresponding to 250
observations).

q = 0.9
0.999 A minimum number of 100 exceedances (corre-

sponding to 1000 observations) is required to en-
sure accuracy wrt bias and standard error.

Table 3. Accuracy of estimating high quantiles by
means of the POT method. Pareto distributed claims
with shape parameter θ = 2.
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Pareto distribution with θ = 1:

u = F←(q) α Goodness of V̂aRα

0.99 For all number of exceedances up to 200 (corre-
sponding to a minimum of 667 observations) the
VaR estimates fail to meet the accuracy criteria.

q = 0.7
0.999 For all number of exceedances up to 200 (corre-

sponding to a minimum of 667 observations) the
VaR estimates fail to meet the accuracy criteria.

0.99 A minimum number of 100 exceedances (corre-
sponding to 1000 observations) is required to en-
sure accuracy wrt bias and standard error.

q = 0.9
0.999 A minimum number of 200 exceedances (corre-

sponding to 2000 observations) is required to en-
sure accuracy wrt bias and standard error.

Table 4. Accuracy of estimating high quantiles by
means of the POT method. Pareto distributed claims
with shape parameter θ = 1.

It readily follows from Tables 2 to 4 that the heavier the tails the
larger the sample sizes should be to obtain the desired accuracy. Also
it pays to have sufficient data far in the tail, i.e. q close to 1. To
further clarify matters, we illustrate how the above results could be
used in practice provided there is strong evidence that the data fulfil
the modeling assumptions. To begin with, note that the simulation
study starts with a fixed number Nu of exceedances. Random losses are
then generated until Nu exceedances are detected. In reality though,
this approach has to be “inverted” meaning that one has to work with
a sample of n losses occurred in a pre-specified time interval from which
the number of exceedances Nu can then be determined.

For illustrative purposes, we consider the following example. Let us
assume that a total number of n = 287 losses were observed over a
time period of one year, say. Moreover, suppose that there is strong
evidence that the loss data are of class (ii)-type, e.g. Pareto distributed
with shape parameter θ = 2 (to justify the latter assumption one can
plot the empirical tail distribution on a log-log scale and observe that
the data points follow a straight line with slope −2). Also note that
this assumption is realistic for several operational risk classes. It then
follows from Table 3 that the VaR at confidence level α = 0.99 can
be estimated with the targeted accuracy. Note that it does not really
matter whether we place the threshold value u at the 90%-level or at
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the 70% level as the corresponding minimal numbers are about of the
same order. It is also evident that one should abstain from estimating
the VaR at the 99.9%-level. The figures in Table 3 show that n = 287
observations are far too less: For a sound 99.9%-VaR estimate under
these idealistic assumptions notably, one should have at least some
670 or more losses at one’s disposal. If, however, the data were of
class (i)-type, then estimating the VaR at the 99.9% level with n = 287
observed data points could be justified, see Table 2. Moving in the other
direction towards class (iii)-type loss distributions, we notice that 287
observations, assumed to be iid and repetitive, are even not enough to
estimate the VaR at the 99% level.

4. Conclusion

Under the proposed New Accord (Basel II), operational risk has to
be treated explicitly. It is envisaged that internationally active banks
with a substantial exposure to operational risk losses adopt the ad-
vanced measurement approach (AMA). Banks are given a great deal
of flexibility in how to implement the AMA. However, the Commit-
tee requires banks to demonstrate their ability in capturing potentially
severe tail loss events. To be more precise, banks should put an oper-
ational risk capital aside in line with the 99.9% confidence level over
a one-year holding period. We have shown how actuarial techniques
in principle could be used for estimating (high) quantiles of unknown
loss distributions. Special emphasis was given to extreme value the-
ory (EVT). EVT can help to fit a model to the tail distribution of a
set of data using only the extreme event data. Still, estimation of high
quantiles is an inherently difficult problem. As we have seen, 200 or
more excesses over the 90%-quantile would often be necessary to obtain
VaR estimates with the targeted accuracy. Note that these figures re-
main of indicative nature though. We have seen that the stylized facts
of historical operational risk losses in general are not in accordance
with iid modeling assumptions. Yet we do not want to insist that this
inconsistency applies to every loss type category. Only preliminary
explanatory analysis will show for which business line and event type
actuarial techniques can readily be applied. In most cases, however,
one will observe structural changes in operational risk data as time
evolves. To take this serial dependence of the data into account, one
could refine the POT method towards smoothing techniques.

For these reasons, we argue that Pillar 1 in the operational risk man-
agement framework should not be overemphasized. For repetitive and
stationary losses the standard actuarial methods and their refinements
can be employed to derive capital charges. The crux, however, per-
tains the non-repetitive and non-stationary case. And it is exactly the
losses of the latter category which jeopardize the existence of financial
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institutions. VaR estimates, even though complemented by stress test-
ing and scenario analysis, can never be viewed as a “stand-alone” risk
management tool. Keeping in mind that most serious operational risk
losses can not be judged as mere accidents, it becomes obvious that
the only way to gain control over operational risk is to improve the
quality of control over the possible sources of huge operational losses.
It is exactly here that Pillar 2, and to a less extent Pillar 3, becomes
extremely important.
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