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Abstract

We put forward a framework for measuring systemic risk and attributing it to individual
banks. Systemic risk is coherently measured as the expected loss to depositors and investors
when a systemic event occurs. The risk contributions are calculated based on derivatives of
the systemic risk measure, thus, ensuring a full risk allocation among institutions. Applying
our methodology to a panel of 54 to 86 of the world’s major commercial banks for a 13-year
time span with monthly frequency, we are not only able to closely match the list of G-SIBs.
We also can use individual risk contributions to compute bank-specific capital surcharges:
systemic capital charges as well as countercyclical buffers. We therefore address both dimen-
sions of systemic risk – cross-sectional and time-series – in a single, integrated approach. As
the analysis of risk drivers confirms, the main focus of macroprudential supervision should
be on a solid capital base throughout the cycle and de-correlation of banks’ asset values.
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1. Introduction

This paper aims to contribute to the ongoing regulatory and academic debate on systemic

risk and risk contributions of systemically important banks. It puts forward a macroprudential

approach that internalises negative external effects by building up a sufficient capital buffer

in the financial system to bear (most of) those costs. For this purpose it relies on measures

of potential costs to society associated with rare but severe systemic events. Furthermore, it

is designed to mitigate cyclical effects which are typical for a risk-sensitive capital buffer.

In this paper we define systemic risk by large-scale losses, incurred by the system as a

whole when low-probability systemic events occur. The notion of systemic importance is

therefore directly linked to the systemic risk contribution of an individual bank given as the

bank’s share in the system-wide losses. Taking this definition as a basis, we put forward an

approach for measuring systemic risk and decomposing it into the contributions of individual

institutions. Making use of the risk contributions, bank-specific systemic capital surcharges

on top of the microprudential capital requirements can be computed, as we describe in this

paper. To mitigate a potentially procyclical effect of regulation, we also suggest how a

countercyclical capital add-on may be calculated to be maintained during the periods of

overoptimistic markets and extensive risk taking.

To assess the system-wide loss we, first, model a banking sector as a portfolio comprising

banks’ liabilities net of capital. Then we utilise a widely used credit risk model to assess the

tail risk of that portfolio. The model inputs are the banks’ individual probabilities of default,

size of their liabilities net of capital and banks’ sensitivity to systematic factors, which capture

correlations between banks’ asset returns.

We make the notion of systemic risk operational by defining it as the expected shortfall

(ES) of the portfolio of the banks’ liabilities computed at a probability level q. That is,

systemic risk is measured as the expected loss to the depositors and other banks’ creditors in

the worst 100·(1−q) per cent of cases. Depending on his/her tolerance towards the probability

of a systemic event (given as 1− q), the regulator can either fix q at a given level or vary q(t)

over time depending on the average default conditions in the banking sector. Thereby, using

time-varying q(t) would help to mitigate possible procyclical effects of the regulation because

the regulator would then automatically take into account that the estimates of default risk

based on market information may be inappropriately low (high) during a boom (bust).

In order to break down extreme portfolio losses into the contributions of individual banks,

we draw on a rich literature on coherent, additive risk contributions for credit portfolios.

Employing marginal risk contributions based on the partial derivatives of the portfolio ES

with respect to the institutions’ relative portfolio weight allows for a complete allocation of

the system-wide risk to the individual banks.
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In summary, we see the following aspects as the main contribution of this paper:

1. We suggest a method for measuring systemic risk as the expected extreme loss of the

portfolio containing banks’ liabilities. That measure of systemic risk reflects the po-

tential losses to the economic agents (depositors and investors) and not merely banks’

equity capital impairment.

2. We provide a full allocation of the systemic risk across institutions based on the Euler

allocation principle for the assessment of banks’ systemic importance. This method

for assessing systemic risk contributions remains feasible irrespective of the size and

composition of the banking system under consideration.

3. We provide an empirical example in order to investigate the main drivers of systemic

risk and systemic importance.

4. Regarding possible policy implications, we address both dimensions of systemic risk

in one integrated approach: the cross-sectional dimension by designing a bank-specific

systemic risk surcharge above the minimum required capital as a continuous function

of a bank’s systemic importance. And the time dimension by imposing a capital buffer

in times of overoptimistic markets in order to mitigate possible procyclical effects.

The approach suggested for measuring and attributing systemic risk has several merits. It

is based on a credit portfolio model that is well understood and widely applied in the praxis

of risk management. Its application is, in principle, not limited to listed financial institutions

since it can also be adapted to non-listed companies as long as reliable estimates of their

probability of default and of their sensitivity with regard to systematic risk factors can be

obtained. Furthermore, our method can be used for projections of systemic risk or for stress

testing based on predictions or on stressed values of input parameters. The model can be

utilised either via simulation as in this paper or by using a fast analytical approximation as

reported in Düllmann and Puzanova (2011).

Apart from its technical merits, our method has further advantages: It takes direct ac-

count of main risk drivers such as the size and individual default risk of financial institutions

and correlation among interconnected entities. Because the probability of default is a func-

tion of the financial leverage, which is in turn a ratio of total assets to the weighted average of

long-term and short-term liabilities, the model also takes the leverage into account. However,

on the issue of interconnectedness, we have to point out that the model does not go beyond

the notion of linear correlation (it does not incorporate contagion effects or tail dependence).

Nonetheless, the multi-factor correlation structure suggested is rich and allows for a differen-

tiated treatment of different groups of banks. This reflects the fact that episodes of financial

distress often arise from the exposure of groups of institutions to common risk factors and

that intragroup dependence is higher than intergroup dependence.
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The remainder of the paper is structured as follows: Section 2 provides a brief review of

selected literature. Section 3 outlines the modelling approach and the calculation method

for the risk contributions of individual banks. Section 4 presents an empirical example of a

system comprising world’s major commercial banks and analyses the impact of different risk

drivers. In section 5 we address the possible policy implications of the proposed methodology.

Finally, we summarise the main results in section 6.

2. Related literature

In this section we briefly review the literature on systemic risk (contributions), which our

paper is most closely related to, and point out the aspects that distinguish our approach from

the others. A more comprehensive review of recent approaches for detecting the tail risk of a

financial system by examining direct and indirect financial sector interlinkages can be found,

for instance, in the IMF’s Global Financial Stability Report (IMF, 2009, pp 73-149) and in

Galati and Moessner (2011).

The approach presented in this paper relies on market information about interlinkages

among banks. The study of financial sector interlinkages using market prices of financial

instruments has a long tradition and a rational explanation. For instance, De Nicolo and

Kwast (2002) argue that the information contained in banks’ equity returns can be used to

measure total (direct and indirect) dependence since stock prices reflect market participants’

collective evaluation of the future prospects of the firm, including the total impact of its

interactions with other institutions. The dependence structure of the banking system as

given in our paper can be inferred from the empirical correlation of banks’ equity returns.

Equity returns and other market data are widely used to measure the fragility of financial

institutions at individual and aggregate levels. For example, Bartram et al. (2007) estimate

the default probabilities for a large sample of international banks from time series of equity

prices and also from equity option prices, based on the assumptions of Merton’s structural

model (Merton, 1974). They use this information to construct indicators for a systemic event.

In our paper we use the estimates of banks’ default probabilities obtained from Moody’s KMV,

whose model is also based on Merton’s fundamental idea.

Huang et al. (2009) deduce risk-neutral default probabilities for major banks from their

CDS spreads and asset return correlation from the co-movement of equity returns. Using

these key parameters as input in a portfolio credit risk model, the authors suggest computing

an indicator of systemic risk, namely the price of insurance against large default losses in the

banking sector. As in our paper, the banking sector is represented by a hypothetical portfolio

that consists of debt instruments issued by a pre-selected group of banks. The theoretical

insurance premium equals the risk-neutral expectation of portfolio credit losses given that the
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losses exceed some minimum share of the sector’s total liabilities. Our approach is different

from the approach described as we use objective probabilities of default and, thus, can deduce

the actual losses to depositors and investors in case of a systemic event. Furthermore, we

define the systemic event not by means of a given system-wide loss threshold, but rather by

setting the probability threshold for the occurrence of a systemic event.

Another application of the portfolio approach based on market data can be found in Sego-

viano and Goodhart (2009). The authors utilise the “nonparametric consistent information

multivariate density optimising methodology” in order to obtain the joint multivariate den-

sity of the banks’ asset value movements. Based on this information, several indicators of

banking stability can be constructed: (i) the joint probability of distress of all banks in the

portfolio; (ii) a banking stability index that reflects the number of banks expected to become

distressed once at least one bank has become distressed; (iii) the conditional probabilities

of distress for individual banks or specific groups of banks. The authors, however, do not

consider the issue of individual risk contributions.

Also by virtue of the joint probability distribution of banks’ assets Lehar (2005) specifies

the following indicators of systemic risk: (i) an asset-value-related systemic risk index derived

by computing the probability that a group of banks with a total amount of assets greater

than a certain fraction of all banks’ assets goes bankrupt within a short period of time; (ii)

a number-of-defaults-related systemic risk index derived by computing the probability that

a certain number of banks go bankrupt within a short period of time; (iii) the value of a

hypothetical deposit insurance, its volatility as well as the individual volatility contributions.

While the methods described above mostly focus on monitoring systemic risk, Adrian and

Brunnermeier (2011) suggest an approach for measuring the contributions that individual

banks make to systemic risk. For this purpose the authors make use of the quantile regression

technique and construct the so called ∆CoVaR measure of banks’ risk contributions. A bank’s

∆CoVaR can be described as the difference between the VaR of the system conditional on

the bank being in distress and the VaR of the system conditional on the bank being in the

median state. This measure of systemic risk contributions relies heavily on the observations

of extremely negative stock returns of banks and is only applicable in the Gaussian setting, in

which it is also additive, as shown by Jäger-Ambrozewicz (2011). Otherwise, the individual

risk contributions cannot be aggregated to calculate the system-wide risk. They could even

be misleading. For instance, an application of the CoVaR methodology to a non-Gaussian

setting with tail dependence would result in a paradoxical outcome whereby the system with

tail dependence is less risky than the Gaussian system. By contrast, we suggest a methodology

that ensures additivity of the risk contributions by construction and can be extended to a

non-Gaussian setting as long as feasible sampling algorithms exist for the corresponding non-
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Gaussian random variables.

Acharya et al. (2010) define systemic risk contributions as institutions’ marginal expected

shortfall which, at first glance, appears to be very similar to our approach. They define their

measure by the worst 5% of equity returns measured from a historical time series at daily

frequency. By contrast, we define the marginal expected shortfall following the Euler principle

and incorporate all current information on portfolio risk, including, for instance, the current

probabilities of default. Therefore, both implementations of the marginal expected shortfall

measure differ substantially. Furthermore, the authors implicitly assume that the capital

shortfall captured in their paper by decreasing market capitalisation is a reliable measure

of a bank’s systemic importance and a proxy for its negative externality. This definition

implies that the externality of the bank’s failure consists in the cost of its re-capitalisation,

ie bail-out, meaning that the implicit government guarantee, taken as granted until credible

resolution plans are implemented, will continue to be an acceptable option for tax payers.

As opposed to than, we consider potential losses to the depositors (or the deposit guarantee

schemes) and other creditors due to a bank’s failure/restructuring as proxy for the effect

of negative externalities imposed on society by systemically important banks. Finally, the

authors embed their risk measure into an economic model to determine an optimal taxation

policy for systemic risk, which is a valuable extension not addressed in our paper.

Finally, we refer to the paper by Tarashev et al. (2010). Having computed the systemic risk

as the tail risk of a portfolio comprised of banks’ debts, the authors use a game theoretical

Shapley value concept in order to attribute the system-wide risk to the individual banks.

Thereby, for each individual institution, its contribution to the risk of all possible subportfolios

in which this institution is present has to be computed. Unfortunately, due to the rapidly

increasing computational complexity,1 the Shapley value methodology can only be applied

to either small or homogeneous portfolios. Compared to that, the Euler allocation approach

put forward in our paper remains feasible for large and heterogenous portfolios (or financial

systems). Moreover, according to Denault (2001), the Euler allocation can also be motivated

by game theory as the marginal contributions correspond to the Aumann-Shapley value that

lies at the core of a coalitional game. Furthermore, compared to the one-factor asset return

decomposition adopted by Tarashev et al. (2010), utilisation of a multi-factor model in our

paper allows for a more flexible and realistic modelling of financial interlinkages.

Since the focus of this paper is on the application of the credit portfolio methodology

using market and balance sheet data, we refer to the IMF’s GFSR (IMF, 2009) as well as the

references therein for more information on network analysis and domino effects. Moreover,

1There are 2n possible subportfolios for n banks in the system
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De Bandt and Hartmann (2000) provide a comprehensive survey on the theoretical and em-

pirical literature on contagion in banking and financial markets as well as in payment and

settlement systems. See also Nier et al. (2007) for further useful references. An example of

an integrated systemic risk framework which combines standard techniques from market and

credit risk management with a network model of a banking system is the OeNB’s Systemic

Risk Monitor, see Boss et al. (2006).

3. The modelling approach

In this section we describe our modelling approach for systemic risk measurement and

allocation. In subsection 3.1 we make the notions of systemic risk and systemic importance

operational by laying down a structural model for banks’ asset returns and a credit portfolio

model for the losses in a banking system. Subsection 3.2 presents a simulation solution for

the risk measures proposed.

3.1. Model set-up

We model a banking system as a portfolio of n assets, the assets representing individual

banks. The portfolio’s loss distribution describes the risk of the entire banking system.

The portfolio incurs losses only if one or more banks are in default. For the ith bank, the

exposure at default, EADi, is defined as the book value of its liabilities after deducting

capital. We normalise portfolio losses by using the institutions’ relative portfolio weights

given as wi = EADi/
∑n

i=1EADi. The loss given default, LGDi, represents a fraction of

the total liabilities which specifies the potential costs to the bank’s creditors induced in the

course of recovery/restructuring/resolution. An event of default occurs at a predefined time

horizon (set to one year in this paper) with the unconditional default probability pi. The

default event is captured by the Bernoulli random variable Di ∼ Be(pi).

In the spirit of the structural credit risk framework, a bank is in default when its asset

return hits or falls below its default threshold at the pre-specified time horizon. The default

threshold is given as the quantile of the bank’s asset return distribution at the point pi. We

assume that the standardised asset returns {Xi}i=1,...,n are multivariate normally distributed

with a full-rank correlation matrix. To explain the origin of the linear dependence, we de-

compose {Xi} into a systematic and an idiosyncratic component by means of a multi-factor

model. Following Pykhtin (2004) we assume that the asset return of an institution i de-

pends on a composite systematic risk factor Yi, which is a convex combination of a set of

independent standard normally distributed systematic risk factors {Zk}k=1,...,m with m� n.

The idiosyncratic part of the asset return variation is captured by an independent standard

normally distributed shock εi.
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The modelling framework for the risk drivers {Xi}i=1,...,n, the default indicators {Di}i=1,...,n

and our target variable – the portfolio loss rate PL – can now be formally summarised as

follows:

Xi = aiYi +
√

1− a2i εi, ai ∈ (0, 1) (3.1)

Yi =
m∑
k=1

αikZk,
m∑
k=1

α2
ik = 1 (3.2)

Zk, εi
iid∼ N(0, 1) for all k = 1, . . . ,m and i = 1, . . . , n

Di = 1⇔ Xi ∈
(
−∞,Φ−1(pi)

]
(3.3)

PL =
n∑
i=1

wi · LGDi ·Di. (3.4)

In the expressions above, the factor loading ai specifies the sensitivity of the particular

institution to the systematic risk factor, and the asset correlation between distinct institutions

i and j is given by ρi,j = aiajρYi,Yj , where ρYi,Yj =
∑m

k=1 αikαjk denotes the correlation between

the two composite factors.

As already mentioned in section 1, we are primarily interested in the ES at the level q

as a coherent measure of portfolio tail risk. But for the sake of completeness, we also report

the formulae for VaR, which defines the threshold for the ES measure. Let us denote the

(discrete) cumulative distribution function of the portfolio loss rate by FPL(·) and its quantile

function by F−1PL(·). Then, VaR and ES can be defined as follows:

V aRq(PL) = F−1PL(q) = inf
{
x ∈ [0, 1] : FPL(x) > q

}
(3.5)

ESq(PL) =
1

1− q

∫ 1

q

V aRt(PL)d t. (3.6)

As shown in Acerbi and Tasche (2002), if the distribution of portfolio loss were continuous,

(3.6) would coincide with the tail conditional expectation (TCE) defined as

TCEq(PL) = E
[
PL | PL > V aRq(PL)

]
. (3.7)

For a discrete loss distribution, however, the expression above has to be augmented with a

correction term which adjusts the TCE measure upwards if the probability of the portfolio

losses at the point V aRq(PL) does not coincide with q. The TCE of a discrete distribution
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adjusted in this way, becomes the coherent ES measure:

ESq(PL) = E
[
PL | PL > V aRq(PL)

]
+

1

1− q
V aRq(PL)

[
FPL

(
V aRq(PL)

)
− q
]
. (3.8)

After computing the overall tail risk, we turn to the calculation of the individual risk

contributions that satisfy the full allocation property, ie their sum equals the total system-

wide risk. For this purpose we use the Euler allocation or the marginal risk contributions

based on the derivatives of the tail risk measure with respect to the portfolio weights of

individual positions. A marginal contribution measures the impact of a small change in the

portfolio weight of a bank on the total tail risk of the whole portfolio. Multiplied by the

exposure weight of the bank, it results in the bank’s (additive) contribution to portfolio tail

risk given as follows:

V aRq(wi | PL) = wi
∂

∂wi
V aRq(PL), (3.9)

ESq(wi | PL) = wi
∂

∂wi
ESq(PL). (3.10)

The Euler allocation principle has proved useful in portfolio-oriented risk management,

particularly for the purpose of economic capital allocation, performance measurement, port-

folio optimisation and risk-sensitive pricing. For more information on the concept of Euler

contributions as well as related literature and economic motivation see Tasche (2008). For an

axiomatic approach to coherent risk measures and capital allocation see Kalkbrener (2005).

In the next subsection we provide an estimation algorithm for portfolio tail risk and risk

contributions based on importance sampling.

3.2. Estimation via importance sampling

In order to compute ES, VaR and the marginal risk contributions we employ the impor-

tance sampling (IS) methodology developed by Glasserman and Li (2005) for the Gaussian

framework. Their two-stage IS algorithm provides an asymptotically efficient estimator for

the low-probability 1 − q of systemic events (which is equivalent to the estimation of V aRq

in terms of simulation efficiency). Moreover, Glasserman (2006) provides further results on

the IS estimation of VaR, ES and corresponding tail risk contributions. For the sake of com-

pleteness we provide details on the IS algorithm adopted in this paper in the Appendix. We

use that IS algorithm for simulation of the portfolio loss distribution FPL(·).
On the basis of the simulated distribution F̂PL(·), we estimate the tail risk measures
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according to the following equations, where k denotes one of s simulation runs:

V̂ aRq(PL) = inf
{
x ∈ [0, 1] : F̂PL(x) > q

}
, (3.11)

ÊSq(PL) =

∑s
k=1 PL

k 11
[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)∑s
k=1 11

[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

) (3.12)

+
1

1− q
V̂ aRq(PL)

[
F̂PL

(
V̂ aRq(PL)

)
− q
]
.

As for a suitable IS estimator for the tail risk contributions, we refer to Tasche (2000)

for the results on the additive contributions associated with quantile-based risk measures.

The author proves that under certain continuity conditions imposed on the joint probability

distribution of the individual loss variables Li = wi · LGDi ·Di, the marginal contributions

derived via differentiation of VaR and TCE can be represented in terms of the conditional

expectation:

wi
∂

∂wi
V aRq(PL) = E

[
Li | PL = V aRq(PL)

]
, (3.13)

wi
∂

∂wi
TCEq(PL) = E

[
Li | PL > V aRq(PL)

]
. (3.14)

Obviously, the risk contributions given above fulfil the full allocation condition. Additionally

taking the correction of the risk measure for a discrete loss distribution into account, we

obtain the following IS estimators for the additive tail risk contributions:

V̂ aRq(Li | PL) =

∑s
k=1wi · LGDi ·Dk

i 11{V̂ aRq(PL)}

(
PLk

)
l
(
PLk

)∑s
k=1 11{V̂ aRq(PL)}

(
PLk

)
l
(
PLk

) , (3.15)

ÊSq(Li | PL) =

∑s
k=1wi · LGDi ·Dk

i 11
[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

)∑s
k=1 11

[V̂ aRq(PL),1]

(
PLk

)
l
(
PLk

) (3.16)

+
1

1− q
V̂ aRq(Li | PL)

[
F̂PL

(
V̂ aRq(PL)

)
− q
]
.

Applying the IS technique outlined in the Appendix instead of a plain Monte Carlo sim-

ulation, substantially reduces variance when estimating portfolio tail risk and individual risk

contributions, as shown in Düllmann and Puzanova (2011).
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4. Empirical results

In this section we carry out an empirical study of systemic risk and individual risk con-

tributions for a system containing large, internationally active commercial banks. We first

describe our dataset in subsection 4.1. We then report results and investigate the impact of

the main risk drivers in the two subsequent subsections: results on systemic risk in subsec-

tion 4.2 and results on the banks’ risk contributions in subsection 4.3.

4.1. Dataset

The dataset used for the empirical analysis comprises a sample of the world’s largest

commercial banks over a time span from January 1997 to January 2010. The number of

banks varies between 54 and 86 depending on IPOs, mergers and data availability. The one-

year probability of default is estimated on a monthly basis by the expected default frequency

(EDF) obtained from Moody’s KMV CreditEdge. The EDFs range from 0.01% to 19%, with

the median value 0.07% before September 2008 and 0.32% thereafter. We set the EAD equal

to the book value of the bank’s liabilities net of capital, also obtained from CreditEdge on a

yearly basis. We transform the yearly observations into monthly data by linear interpolation.

In the absence of a reliable estimate of a bank’s LGD, we use the value of 100% for all banks,2

which implies the maximum loss rate. Since the LGD is modelled as a deterministic variable,

the risk contributions are linear in LGD and, therefore, its specific number does not affect

our main results.

We define the systematic risk factors by the geographical regions in which the banks are

headquartered. Table 1 presents summary statistics of the size distribution of the banks in

the sample across 6 regions: Europe, North America, South America, Africa, Japan, Asia

and Pacific excluding Japan. The banks listed in the table accounted for about two-thirds of

worldwide banking industry assets in 2007/2008 as approximated by the assets of the largest

1,000 banks reported by IFSL (2010).

We set the asset return correlation within the geographical regions to the asset return

correlation average of 42%, estimated for large banks on the basis of Moody’s KMV GCorr

module, as reported by Tarashev et al. (2010, p 21). It implies homogenous factor loadings

ai ≡ a =
√

0.42. The heterogeneity in the dependence structure arises from the correlation

between the region-specific systematic risk factors. As a proxy for the correlation coefficients

of systematic risk factors, ie ρYreg(i),Yreg(j) , we use the Pearson’s correlation estimated from

the monthly returns of the Dow Jones Total Market (DJTM) total return indices for the

banking sector in the respective geographical regions, obtained from Datastream for the time

2Tarashev et al. (2010) set the LGD rate to 55% without giving any reasons.
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period from the beginning of 2005 to the end of 2009. In Table 2 we report the final asset

correlation matrix used in our study. The elements on the main diagonal equal the asset

correlation between two banks headquartered in the same geographic region, a2 = 0.42. The

off-diagonal elements specify the asset correlation between the banks headquartered in two

different regions, ρi,j = a2ρYregi ,Yregj .

Table 1: Liability (LBS) size distribution of all banks within the sample at the beginning of 2008, aggregated
by country.

Region Country Number of banks Aggregate LBS

USD billion % of total

EU Austria 1 265 0.49
Belgium 2 1,286 2.39
Denmark 1 606 1.12
France 3 5,571 10.33
Germany 4 4,155 7.71
Greece 1 111 0.21
Iceland 1 64 0.12
Italy 3 2,146 3.98
Netherlands 2 3,179 5.90
Norway 1 244 0.45
Russia 1 146 0.27
Spain 3 1,988 3.69
Sweden 3 1,122 2.08
Switzerland 2 3,079 5.71
United Kingdom 6 8,758 16.24

AMN Canada 5 2,093 3.88
USA 11 7,274 13.49

AMS Brazil 3 352 0.65
AFR South Africa 3 322 0.60
JP Japan 5 4,577 8.49
AS&P Australia 5 1,589 2.95

China 10 3,456 6.41
Hong Kong 2 212 0.39
India 2 305 0.57
Singapore 3 353 0.65
South Korea 3 654 1.21

Total 86 53,907 100

The estimates of the correlation between the banking sector indexes, ie ρ̂Yregi ,Yregj , can be

figured out from Table 2. They reveal substantial differences between geographical regions,

which supports our choice of a multi-factor instead of the single-factor model. For example,

the correlation between the bank indexes in Africa and Japan is as small as 32%, whereas
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the correlation between the bank indices in Europe and North America is as large as 80%.

Table 2: The asset correlation matrix used in the empirical example.

EU AMN AMS AFR JP AS

EU 0.42 0.33 0.27 0.26 0.18 0.36
AMN 0.42 0.18 0.19 0.16 0.31
AMS 0.42 0.21 0.19 0.28
AFR 0.42 0.14 0.26
JP 0.42 0.19
AS 0.42

We use the dataset described to calculate the portfolio ES as well as the individual ES

contributions for all banks that are in the sample at the end of each particular month and

discuss the results in the following.

4.2. Drivers of systemic risk of the banking system

In this subsection we investigate the impact of the main risk drivers – the average default

conditions in the system, the size and concentration of the system and the correlation among

the banks’ assets – on the evolution of systemic risk over time.

Figure 1 shows evolution of the ES over the sample period in comparison with the weighted

average of the underlying EDF figures. The ES ranges from 6% to 35% of the total liabilities

(LBS) of all banks that are in the sample at a given point in time. In monetary units, the ES

is lowest in April 2007, amounting to $845.8bn. It peaks in February 2009 amounting to as

much as $19,890bn. As can be seen from the graph, the ES very closely matches the pattern

of the average estimated probabilities of default, indicating that overall default risk is the

main driver of the tail risk in a banking sector. The Pearson’s correlation between the two

variables amounts to 92% and the estimated Spearman’s correlation equals 88%.3 For the

typically small EDFs (more than 95% of EDF figures in the sample are less than 1%), the ES

grows linearly with the average individual default risk. For larger EDF figures, however, the

ES becomes less sensitive to the average default risk, which can also be seen in Figure 2. We

will come back to that figure when discussing the impact of concentration and correlation on

systemic risk.

Further analysis shows that the ES is not very sensitive to the variation in the total

exposure at risk, ie total LBS, which increased more or less steadily over the sample period,

3Spearman’s correlation is a measure of concordance. It increases in magnitude as the two variables become
closer to being perfect monotone (possibly non-linear) functions of each other.
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Figure 1: Evolution of the portfolio expected shortfall (ES, black line, left axis) expressed as a percentage of
the total portfolio liabilities (LBS). Also plotted is the weighted average of EDFs (gray line, right axis), the
weights being the shares of individual banks in the total LBS.
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having started at $7,121bn and peaking at $57,950bn. The estimated Spearman’s correlation

between the ES (as a percentage of LBS) and LBS is not significantly different from zero (at

the 95% confidence level).

The fact that the ES is lowest at the onset of the financial crisis is due to the market-

price-based point-in-time estimates of the banks’ default probabilities obtained from Moody’s

KMV CreditEdge. Those estimates rely on the expectations of the market participants about

the future performance of a bank, which is incorporated in the bank’s stock returns. Because

the market participants were very optimistic about the risk-taking behavior of banks precisely

during the phase when risks had been accumulated in the banking sector, the EDF figures

are lowest in the run-up to the sub-prime crisis. This is why the systemic risk measure in our

example is also a point-in-time measure, ie a measure that captures all relevant information

available today about the forthcoming one-year period. It cannot be considered as a forecast

of systemic risk in later periods in the future. In order to obtain a forecast, some reliable

projections for the future individual probabilities of default (and for asset correlation) should

be used as model inputs. Moreover, by using stressed probabilities of default (and asset cor-

relations), stress tests can be easily accomplished within the modelling framework suggested

in this paper.4

In order to assess the sensitivity to the concentration of a financial system, we isolate

its impact for different levels of default probabilities using a simulation exercise based on a

4The results of a stress-test application, now work in progress, will be reported elsewhere.
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stylised portfolio. For this purpose we consider the special case of a single-factor model and

define a stylised banking system populated by 66 banks which all share the same probability

of default. The banks can be separated into two groups, each accounting for 50% of the

overall liabilities. We define the first group as a set of 62 equally-sized small banks and the

second group as a set of 4 equally-sized large banks. To keep the exposures to the single

systematic risk factor constant across the system, we set the pairwise asset correlation to

42%. The results for this financial system are presented in the left-hand panel of Figure 2.

Notwithstanding the fact that both groups are equally sized, the group of the big banks

accounts for more than 50% of the overall ES owing to its greater concentration. This effect

is even more pronounced for small probabilities of default (below 1%), which are typical for

the banking sector. For instance, for the common probability of default of 0.15% the share

of the four large banks in the overall ES is as high as 77%. It still amounts to 64% for

a default probability of 0.5%. Hence, among relatively sound institutions, the banks with

larger exposures at distress affect the overall tail risk more. Rising probabilities of default

ceteris paribus initially lead to considerably higher tail risk, but then the incremental tail risk

diminishes faster in PD for the concentrated banking sector than for the sector comprising

many small banks.

Figure 2: Drivers of systemic risk. In each case, two groups of banks are considered. Those two groups differ
from each other either in terms of the size of the banks included (left-hand plot) or the magnitude of the
intragroup correlation (right-hand plot). Each group accounts for half of the total portfolio exposure. The
expected shortfall is given as a percentage of the total liabilities in the system.
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To investigate the ES’s sensitivity with respect to the common risk factor, we isolate the

impact of asset correlation by dividing our highly stylised portfolio into two homogeneous

groups comprising 33 equally-sized banks each. The first group is only moderately exposed

to the systematic risk with a pairwise intragroup asset correlation of 20%. By contrast, the

banks assigned to the second group are highly correlated with a coefficient of 60%. The right-

hand panel of Figure 2 illustrates the intuitive result that a higher sensitivity to the systematic

risk factor, ie a higher asset correlation, is linked to a higher systemic risk contribution, since

the probability of joint failures increases. For the common probability of default of 0.15%, the

share of the 33 highly correlated banks in the overall ES is as high as 84%. It still amounts

to 80% for a default probability of 0.5%.

Using the same stylised portfolio we can additionally investigate the interaction between

different risk drivers and their joint influence on systemic risk. For this purpose we conduct

another simulation study for different values of PDs, asset correlations and concentration

levels. The results collected in Table 3 confirm the conclusions just described and deliver

additional insights. Thus, if the banks are equally sized and the sectors are equally concen-

trated (see the last and second last panels), the ES increases as the asset correlation and/or

average default risk rises. For a given correlation structure, however, a highly concentrated

sector containing only a few large banks makes a disproportionately large contribution to

the ES (compare the third panel with the fourth one). This effect is more pronounced for

smaller PDs, indicating that even well capitalised large banks may pose a high risk for a

concentrated banking system. If a banking sector is concentrated and the correlation among

the banks is exceptionally high, the sector’s ES contribution becomes very high especially for

larger default probabilities; thereby the contribution of the small-bank sector declines materi-

ally (compare the second panel with the third one). This indicates that a capital deterioration

for large, highly correlated banks very quickly becomes extremely dangerous. Thereby, many

small banks can become systemic as a herd when the correlation among them is high. But

they would still contribute less than comparably correlated big banks, at least as long as

the correlation is not perfect. Comparing the first lines of the first and third panels we see

that, for larger PDs, the strongly correlated small banks may produce enough joint default

events to match the tail risk of failures in a highly concentrated, but less correlated large-bank

sector. But when default and correlation conditions are the same for small and large banks,

hypothetical mergers of small banks do not increase the tail risk in the system considerably,

whereas a hypothetical splitting of large banks reduces systemic risk substantially (compare

the second panel with the fourth one).

Summarising, our findings point to the following interpretation of the risk drivers’ impact

on systemic risk:
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Table 3: ES’s sensitivity to default probability, correlation and concentration

p = 1% p = 0.5% p = 0.1%

ρ1, ρ2 Number of banks Expected shortfall

42%, 42% n1 = 62 18.23 12.46 4.84
n2 = 4 32.69 26.42 14.78
n = 66 50.92 38.89 19.61

20%, 60% n1 = 62 8.73 5.62 2.17
n2 = 4 42.04 33.13 17.80
n = 66 50.76 38.74 19.96

n1 = 4 18.93 14.26 10.77
n2 = 62 28.90 22.62 6.36
n = 66 47.83 36.88 17.13

n1 = 33 9.50 6.23 2.27
n2 = 33 32.91 25.37 11.77
n = 66 42.41 31.60 14.04

10%, 30% n1 = 33 5.31 3.66 1.44
n2 = 33 14.64 11.14 4.03
n = 66 19.95 14.73 5.47

Note: We consider the one-factor model and denote the intrasector correlation by ρj , j = 1, 2.

The intersector correlation equals
√
ρ1ρ2. The number of banks in sector j is given by nj with

n = n1 + n2. All banks have the same probability of default p. Expected shortfall (ES) and ES

contributions are expressed as a percentage of the total liabilities in the banking system.

• Our empirical analysis has identified changes in the overall default conditions in the

banking sector as the main driver of the evolution of systemic risk over time, whereas

changes in the total size of the banks’ liabilities are far less important in this context.

(The particular impact of the asset correlations was not investigated in our analysis

since they were kept constant over time.)

• Concentrated sectors containing a few large banks impose a considerable systemic risk

even if these banks are well capitalised. Their impact on systemic risk increases fast

when the equity capital buffer deteriorates.

• A high asset correlation makes small banks systemic as a herd although they would

not contribute to systemic risk as much as comparably correlated large banks with the

same aggregated amount of liabilities.

Having investigated the main drivers of systemic risk, we proceed with an analysis of the

drivers of individual risk contributions, and thus the drivers of systemic importance.
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4.3. Drivers of systemic importance of individual institutions

Now we turn back to the empirical dataset described in subsection 4.1 in order to analyse

the risk drivers of banks’ systemic importance. Thereby we first consider the evolution of

systemic risk contributions over time and then the cross-sectional risk distribution.

Figure 3 shows dynamics of the ES contributions of 15 selected banks as a percentage

of the overall liabilities compared with the banks’ relative size (their share in the overall

liabilities) and EDFs. Because in our empirical example the asset correlation is fixed over

time, we focus on the impact of the banks’ default risk and size and investigate these drivers

of individual banks’ systemic importance with regard to the time dimension. For most banks

in the sample, the relationship between the ES contribution and the probability of default is

slightly concave. The Spearman’s correlation is significantly positive for all but 2 banks (for

which it is not significantly different from zero) and ranges from 15% to 99% with the median

observation of 76%.

The empirical evidence for a link between the relative ES contribution and a bank’s share

in the total liabilities, which can be considered as a proxy for the relative size of a bank, is more

ambiguous in the time dimension. As Figure 4 exemplifies, banks may become more or less

systemically important even if their relative size does not change. Moreover, the Spearman’s

correlation in the sample is not significantly different from zero for 21% of the banks. Only

for some 5 banks can a linear relationship be assumed. For the other banks with significantly

positive Spearman’s correlation coefficients no definite functional relation can be identified.

Overall, the evolution of the systemic risk contribution of a bank is mostly driven by the

changes in the bank’s default probability, whereas the changes in relative size of the bank

are far less important. However, the co-movement of the bank’s share in the total liabilities

of the banking system with its own default risk can amplify changes in its ES contribution.

That is, when a bank grows faster than the competitors without bolstering its capital base

appropriately, which means ceteris paribus a rising leverage and higher probability of default,

then the bank’s contribution to the over-all risk of the system increases rapidly.

Turning to the distribution of systemic risk among the individual banks at a given point

in time, the impact of institutions’ size is more pronounced in the cross-sectional dimension.

The cross-sectional estimates for the Spearman’s correlation between the relative size and

the relative ES contribution range from 79% to 94% over the sample period, with a median

observation of 90%. By contrast, the cross-sectional Spearman’s correlation between the

individual probability of default and the ES contribution is insignificant for only 51 out of

157 months and no definite functional relation can be identified. In other words, for a given

level of systemic risk at a given point in time, the risk allocation among the contributors is

governed to a large extent by the banks’ relative size. Moreover, as can be seen in Figure 4,
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Figure 3: Dynamics of the banks’ individual contributions to the portfolio expected shortfall as a percentage
of the total portfolio liabilities (solid black lines) in comparison with the EDFs (solid gray lines) and individual
shares in the total liabilities in the system (dashed lines). The y-axes are given in percentages.
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Figure 4: Dynamics of the CITIGROUP’s individual share in the portfolio expected shortfall (solid line) in
comparison with its share in the total liabilities in the system (dashed line). The y-axis is given in percentages.
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large banks may make a disproportionately large contribution to the tail risk of the system

they belong to. This is the case when their share in the system-wide ES is greater than their

share in the total liabilities of the system. So, there are always some 4 to 10 biggest risk

contributors in our sample that account for more than 50% of the ES. Although those banks

are at the same time the largest in the sample, their share in the sector-wide liabilities is well

below 50% (it lies between 15% and 37%, to be precise).

Speaking about the banks’ contributions to systemic risk at a particular point in time,

it is important to stress that not only a bank’s individual characteristics affect its systemic

importance, but also the characteristics of the system which the bank is a part of. A bank’s

risk contribution depends on the size of other banks in the system and on the respective

default probabilities as well as on asset correlations with other banks. This can be, for

example, deduced from the analytical formulae for approximation of the ES contributions

derived in Düllmann and Puzanova (2011).

Turning to the issue of asset correlation, which was fixed over time in the empirical

exercise, we conduct a simulation study for a highly stylised bank system in order to isolate

the impact of systematic risk factor sensitivity on a bank’s ES contribution and, thus, on

its systemic importance. For the special case of the one-factor model, in a given system

comprising 66 equally sized banks we set the factor loadings of all but one bank to ai =
√

0.42,

for i ∈ {2, . . . , 66}. For a given level of the common default probability p, those banks

contribute equally to systemic risk. The first bank, however, may contribute more or less

than the others, depending on its factor loading a1. We try various values for a1 and report

the outcomes in Figure 5. The contribution of the first bank is the lowest for a1 = 0, ie zero

correlation with other banks. In this case the contribution to the ES at the confidence level

q = 0.999 amounts to the stand-alone contribution, ie 1/66×p×100 per cent of total liabilities

for p ≥ 1 − q. The contribution is the highest for a1 = 1, ie maximum asset correlation in

this example, given by
√

0.42 ≈ 0.65. Thereby, the maximum value of the ES contribution

does not exceed 1/66× 100 ≈ 1.515% per cent of total liabilities.
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Figure 5: The impact of the asset correlation on the systemic importance of a bank for five different values
of the common probability of default: p = 0.1, 0.05, 0.01, 0.005, 0.001 (from the top to the bottom). The
expected shortfall (ES) contribution of any other bank in the system is marked by a filled circle for each level
of p. The values on the y-axis are given as percentages of the total liabilities in the system.
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Summarising, our findings point to the following interpretation of the risk drivers’ impact

on the banks’ systemic importance as measured by their contribution to the ES of the system:

• Evolution of the individual systemic risk contributions over time is governed to a large

extent by changes in the probability of default and is less sensitive to changes in the

institutions’ relative size.

• The most dangerous development from the perspective of financial stability is if a bank

grows faster than its competitors without strengthening its capital base, which leads to

increasing leverage.

• Given a particular level of tail risk at a particular point in time, the distribution of the

relative risk contributions depends strongly on the size distribution of the banks. But

there are institutions whose share in the system’s ES is greater than their share in the

overall liabilities, indicating a disproportionately large impact on the system.

• If a bank’s assets are not perfectly correlated with the composite systematic risk factor,

its ES contribution is always less than the expected loss given the bank’s default (here:

liabilities). A bank’s contribution increases along with its sensitivity to the systematic

risk factors, whereby the increase is steeper for higher probabilities of default.

Overall, the findings discussed in this section confirm the need to study systemic risk in a

portfolio context instead of on a single entity basis. It shows that high concentration increases

the fragility of a banking sector substantially, all other things being equal. With regard to

policy implications, our results emphasise that tailoring macroprudential instruments sim-

ply to the size of a financial institution would not adequately address the issue of negative
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externalities: For the major systemic risk contributors, the share in the ES may be much

higher than the relative size would suggest. Our analysis of systemic risk drivers indicates

that the main focus of macroprudential banking supervision should be on a solid capital base

throughout the cycle and de-correlation of banks’ asset values.5

5. Policy tools – A capital charge for systemic risk and a mitigant of procyclical

effects

Macroprudential regulation should address both dimensions of systemic risk, as underlined

by Borio (2009) among others: The cross-sectional dimension, considered in subsection 5.1,

relates to the distribution of aggregate risk in a financial system at a given point in time. The

corresponding policy issue consists in the calibration of prudential instruments according to

the banks’ contributions to systemic risk. The time dimension, addressed in subsection 5.2,

covers the evolution of aggregate risk over time. The corresponding policy issue is to find

a way to reduce potentially procyclical effects of regulatory tools based on a measure of

system-wide financial risk.

5.1. Cross-sectional implementation and systemic capital charge

Our findings confirm that strengthening the capital base in the banking sector (which

entails smaller default probabilities and leverage) would, in fact, significantly reduce systemic

risk. This result is in line with the ongoing regulatory debate. In particular, the policy setters

– FSB, IMF and BIS – have been jointly working on macroprudential frameworks (FSB et al.,

2011) whose broad aim is to reduce the probability of failure of global systemically important

banks (G-SIBs) by increasing their going-concern loss absorbency and to reduce the extent

or impact of G-SIBs’ failure by improving global recovery and resolution frameworks.6 In

order to achieve the first goal, the Basel Committee on Banking Supervision issued a consul-

tative document BCBS (2011) in which it elaborates an assessment methodology for systemic

importance of G-SIBs using a set of balance-sheet and other indicators complemented with

supervisory judgement. The selected indicators reflect five categories of systemic importance

– the size of banks, their interconnectedness and global activity, their substitutability and

complexity –, each of these categories being equally weighted to form a score value. Based on

that score, the BCBS groups the G-SIBs identified into four buckets of increasing systemic

importance and proposes an additional loss absorbency requirement of 1 to 2.5 per cent of

5For example, the ring-fencing of retail banking and prohibition of activities which would lead to a market
risk exposure or an exposure against other financial institutions, as suggested in ICB (2011), aims in this
direction.

6In terms of our portfolio approach, the intended policy measures aim at reducing default probabilities
and LGDs of G-SIBs.
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risk-weighted assets. An extra bucket with a 3.5 per cent capital surcharge is envisaged to

penalise banks that keep becoming more systemically important.

Our model-based approach could also be used to identify, say, the top 30 systemically

important banks according to banks’ relative contributions to systemic risk:7 Table 4 shows

which banks were in the top 30 throughout their respective sample period. There is a strong

overlap between banks in the first column in Table 4, which were permanently observed among

the top 30 contributors to systemic risk in our empirical study, and the set of 29 G-SIBs who

have been identified and publicly announced by the FSB on 4th November 2011 (FSB, 2011).

ABN AMRO, which was in the top 30 during its sample period according to our model,

dropped out of the sample at mid-2008 due to acquisition. It is understandably not on the

list of G-SIBs based on data for end-2009 (BCBS, 2011, p 10). Thus, INDUSTRIAL AND

COMMERCIAL BANK OF CHINA (ICBC) is the only bank from the first column of the

Table not on the G-SIB-list of the FSB. Five more banks from the list of G-SIBs can be found

in the second column of the Table: RBS, which was not among top 30 only in 2002-2003,

DEXIA and UNICREDIT, which were among top 30 from 2003 on and BANK OF CHINA

and NORDEA, which were among top 30 from 2008 on. Another bank from the list, WELLS

FARGO, can be found in the third column. It was among the top 30 from 1999 to 2003 as

well as from 2009 on. As to the remaining five banks which are on the list of G-SIBs but not

in the Table: (i) BANK OF NEW YORK MELLON and STATE STREET (two rather small

but important US banks, each having about $20,000bn in assets under custody) could not be

identified as top-30 contributors to systemic risk by means of our model and (ii) BANQUE

POPULAIRE CdE (formed by the 2009 merger of CNCE and BFBP, (semi-) cooperative

banks) as well as GOLDMAN SACHS and MORGAN STANLEY (two security brokers and

dealers) are not contained in our sample focused on the world’s largest commercial banks.

Overall, our model-based approach matches very closely the results presented by FSB.8

However, to come up with the list of G-SIBs, not only data from many sources had to be

collated together. The information on some of the indicators even was directly collected from

banks, see BCBS (2011). By contrast, in our empirical analysis we only use balance-sheet and

market information available to the public. We are able to produce results for an extended

time span and to update them frequently without any additional effort on collecting the data.

Of course, the relative bank ranking based on marginal risk contributions can be used in

order to build discrete buckets of systemically important banks in the sense of the BCBS’

7In fact, the BCBS admits that a model-based approach for estimating of individual banks’ contributions
to systemic risk would be another option, but also points out that such models are still “at a very early stage
of development” to be implemented in regulatory practice (BCBS, 2011, p 3).

8The discrepancies might be attributable to the supervisory judgment option, see BCBS (2011, p 3).
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Table 4: Commercial banks ranking among top 30 contributors

Permanently Frequently Occasionally

ABN AMRO BANK OF CHINA BANK OF NOVA SCOTIA
BANK OF AMERICA BBVA DANSKE BANK
BARCLAYS BHV KBC GROUP
BNP PARIBAS CANADIAN IMPERIAL BANK SUMITOMO
CITIGROUP CHINA CONSTRUCTION BANK TORONTO DOMINION BANK
COMMERZBANK DEXIA WELLS FARGO

CRÉDIT AGRICOLE INTESA SANPAOLO WOORI
CREDIT SUISSE NORDEA
DEUTSCHE BANK RBC
HSBC RBS
ICBC RESONA HOLDINGS
ING UNICREDIT
JPMORGAN CHASE WACHOVIA
LLOYDS
MITSUBISHI UFJ
MIZUHO
SANTANDER

SOCIÉTÉ GÉNÉRALE
SUMITOMO MITSUI
UBS

Note: The banks in the first column were permanently observed among the top 30 contributors to

systemic risk throughout their respective sample periods. The banks in the second column were in

the top 30 in ≥ 50% of their respective observations. The banks in the third column were in the

top 30 in ≥ 30% of their respective observations.

approach outlined at the beginning of this subsection. Such a bucketing approach with a

penalty bucket may, to some extent, provide incentives for banks become less systemically

important by actions that reduce the value of the indicator variables. This approach does not

establish a direct link between the bank’s risk contribution and the capital charge. Therefore,

it is not designed to internalise the losses or costs associated with a systemic event. By

contrast, our model-based marginal ES approach would directly address the issue of banks’

systemic importance and their impact on the system by tailoring the capital requirements

to the system-dependent risk contributions. Therefore, from a conceptual point of view

and disregarding model risk, our approach may be better suited to internalise the negative

externalities and incentivise the banks to shrink their ES contributions by reducing (risk-

weighted) leverage and/or the correlation with other banks.9

9Like other approaches known to us, the model presented in this paper only relies on the correlation
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The basic idea is that there should be enough capital in the system to withstand the losses

which may materialise during a systemic event. This could be achieved by setting the banks’

total minimum capital requirements in accordance with their systemic risk contributions.

However, it may be the case that due, for instance, to low correlation with other banks in the

system, a bank’s ES contribution falls short of microprudential capital requirements (which

are stand-alone, not system-dependent and subject to a different assessment methodology).

Therefore, we suggest a continuous, bank-specific systemic capital charge (SCC) be deter-

mined on top of the minimum required capital (MRC). We consider the ith institution at

time t that is subject to MRC. The key idea is to charge the difference between the systemic

risk contribution and the original regulatory minimum capital requirement. If the MRC ex-

ceeds the systemic risk contribution of a bank, then no add-on for systemic risk is charged.

The following equation summarises this definition of an ES-based SCC:

SCCi(PL, t) = max

{
EADi(t)

∂

∂wi(t)
ESq(PL, t)−MRCi(t), 0

}
. (5.1)

According to the banks’ figures on their total regulatory capital holdings, in 2006/2007 54

out of 63 banks, for which the data could be obtained from Bankscope, were well capitalised

in the sense that their reported capital exceeded MRCi(t) +SCCi(PL, t) as defined in (5.1).

In 2008/2009 the same was true for only 11 out of 72 banks.

Further refinements could be contemplated when computing ES contributions, which are

inputs to equation (5.1). For example, where a credible recovery and resolution plan shows

that the losses associated with a bank’s failure can with certainty be reduced to a fraction of

the bank’s liabilities, we can incorporate this information into the model by adjusting LGDi.

It should be pointed out that computing macroprudential capital requirements may be

more complex than computing risk contributions themselves. The simple formula (5.1) sug-

gests setting the capital surcharges according to the currently observed risk and capital levels

and does not take into account subsequent changes in the overall systemic risk landscape.

But, once new capital requirements are implemented, the banks’ probabilities of default (and

potentially also the asset correlations) decline, resulting in lower tail risk and changing abso-

lute and relative risk contributions. For this reason Gauthier et al. (2010) suggest an iterative

procedure to solve for the fixed point at which the capital allocation in the system is consistent

with the banks’ risk contributions. Such reallocation of capital not only means that undercap-

italised banks raise capital or de-leverage, but also that overcapitalised banks increase their

between financial institutions. We are not aware of any approaches in this field of research that would allow
an investigation of the causality links between the behavior of a single bank and the response of the system,
or the other way around.
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leverage. A superior approach, that is not simply based on the reallocation of the given total

capital, would require knowledge of the optimal total level of capital in the banking system.

This optimal amount of capital is not necessarily to cover systemic risk completely, since the

tail risk in the system can be far too high to be fully backed with capital.10 Therefore, the

level of the total capital requirements could be on average lower than the amount of the ES.

The remaining systemic risk should be borne by uninsured debt holders (not by the public).

To sum up, a capital surcharge based on banks’ individual contributions to system-wide

risk would reduce the competitive advantages of being systemically important. This is a highly

relevant consequence especially until credible resolution regimes are in place. Moreover, the

SCC would strengthen the capital base of those institutions which contribute to the fragility

of the banking sector more than their stand-alone risk profile suggests.

5.2. A mitigant of procyclical effects

Within the presented framework the evolution of systemic risk over time is mainly driven

by the co-movement of the probabilities of default in the banking sector. In Figure 1 we

saw how the use of point-in-time estimates of the default probability based on market prices

can induce procyclicality in the tail risk measure. Market-based measures suggest that the

system is strongest in times when market volatility is below average and market participants

accumulate large amounts of risk. During a downturn or turbulent markets characterised by

rising volatility/uncertainty, probabilities of default increase and the tail risk measure soars.

Therefore, when the SCCs are introduced such as to incentivise the banks to reduce their risk

contributions, one question remains: how to mitigate a possible destabilising effect of cyclical

fluctuations in the over-all level of systemic risk especially during boom phases when risks

are estimated to be very low? A possible solution is described below.

Consider the situation during a boom, when the market volatility is exceptionally low

so that default probabilities based on market information may underestimate the actually

excessive risk taking in the system. This may lead to an adverse effect that the ES-based

SCCs are the lowest just in the run-up to a bust. To counteract such an effect we suggest

that the regulators adjust their tail-risk tolerance level over time using q(t) instead of a fixed

q. A possible way of doing so, would be to link q(t) to the cross-sectional exposure-weighted

10During the time period under consideration the system-wide exposure (ie
∑n

i=1 LBSi(t), with n rising
over time) increased from 23 to 100 per cent of the global GDP whereas the amount of the tail risk varied
between 6.8 and 29 per cent of the global GDP according to ESq=0.999. The IMF’s figures on the world GDP
were taken.
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average of estimated default probabilities in the banking sector:

q(t) = 1−
n∑
i=1

wi(t) · pi(t). (5.2)

This implies higher q(t) (or lower tail-risk tolerance 1 − q(t)) during the times, when the

market-information-based probabilities of default are very low. Since the ES is the higher the

further we go into the tail of the probability distribution of losses, q(t) > 99.9% would result

in ESq(t) > ESq=0.999 during a boom phase. Therefore, the difference between ESq(t) and

ESq enables us to identify the periods of an overoptimistic behavior in the financial sector,

when the risk of default is perceived to be exceptionally low.

As long as such overoptimistic market conditions last, it may be advisable to put a coun-

tercyclical capital buffer (CCB) on top of the SCC. The CCB for an individual bank can be

calculated as the amount of ESq(t) not covered by the sum of the bank’s MCR and SCC:

CCBi(PL, t) = max

{
EADi(t)

∂

∂wi(t)
ESq(t)(PL, t)−

(
MRCi(t) + SCCi(PL, t)

)
, 0

}
.

(5.3)

The CCB will be likely introduced only on an infrequent basis and released as soon as market

conditions worsen (ie when ESq(t) approaches ESq). As in the case of the SCC, however, a

deeper understanding of the possible reaction of the banking sector to the additional capital

requirements remains a topic for further research.11

The evolution of ESq(t) for the portfolio under consideration as compared to ESq=0.999 is

shown in Figure 6. Remarkably, the range of variation of the ES based on this time-varying

probability level is considerably smaller than for ES0.999 (8.09% to 17.81% versus 5.61% to

35.31% of total liabilities). The probability level q(t) ranges from 98.23% to 99.97% with the

median value of 99.85%. It is the highest from the second half of 2005 until the second half

of 2008 (a shaded area in the figure) – the period of a risk build-up before the outbreak of

the global financial crisis. In this period of low-volatility markets and excessive risk taking

CCBs should rightly have been introduced.

To sum up, the presented method for measuring systemic risk and individual risk contri-

butions based on an adoption of the credit portfolio approach to a banking system has an

appealing feature that not only it can be applied for the identification of the systemically im-

portant institutions. More than that, it can be used as an integrated approach for calculation

of both the systemic capital charges and countercyclical capital buffers, therefore addressing

11As well as the question, whether or not the CCBs based on ESq(t) as suggested in this paper are in line
with the Basel III provisions on CCBs, which are supposed to counteract an excessive credit growth.
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Figure 6: Evolution of the portfolio ES calculated according to the time-varying tolerance levels q(t) (black
line) versus ES at the constant tolerance level q = 99.9% (gray line).
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both cross-sectional and time-series dimensions of systemic risk.

6. Conclusions

Addressing the system-wide risk of a banking system through macroprudential regulation

requires an approach that internalises the potential costs of a systemic failure. We develop

such an approach by, first, assessing systemic risk and, second, attributing this risk to indi-

vidual banks, while the emphasis is on the attribution method. We employ for this purpose

the Euler allocation principle, which is widely used in the risk management of financial insti-

tutions.

In this paper a banking system is modeled as a portfolio consisting of those banks in the

global financial system which may be deemed systemically important. From a public purse

perspective, we model systemic risk in terms of the expected shortfall (ES) of this portfolio.

The expected losses conditional on exceeding a given level of regulatory tolerance reflect the

potential costs incurred by banks’ depositors and investors in a low-probability event such as

a systemic crisis.

The portfolio approach used has the additional advantage that the modelling requirements

are based on standard risk management techniques. The method provides a tool to assess the

systemic importance of major financial institutions based on publicly available information

including market prices. Moreover, the model can, in principle, be applied to smaller, not

publicly traded institutions as well, provided that their probabilities of default and their
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exposures to common risk factors can be estimated based on available information.

After the tail risk of the whole financial system has been quantified by means of the system-

wide ES, it is allocated to the individual banks based on their marginal risk contributions. An

important advantage of this method is the full allocation property, which means that the sum

of systemic risk contributions attributed to individual institutions equals the system-wide

risk in the aggregate. For the purpose of simulating the portfolio loss function, upon which

the calculation of the portfolio ES and the risk contributions is based, we adopt a two-stage

importance sampling method.

We also apply the approach proposed to a sample of the world’s major commercial banks

and calculate the ES and ES contributions on a monthly basis for a time period of 13 years.

Based on the results of the empirical study, we, firstly, were able to match very closely the list

of G-SIBs revealed by FSB. Thereby, advantage of our approach is that it can be utilised only

using publicly available information, whereas to come up with the list of G-SIBs information

on some of the indicators had to be directly collected from banks. Secondly, we could analyse

the impact of systemic risk drivers both in the time-series and cross-sectional dimension.

The main findings of the empirical study with regard to the risk drivers and corresponding

policy implications may be summarised as follows:

• On the one hand, the possibility of joint defaults in a banking sector (made up of

individual probabilities of default and correlations among the banks) governs to a large

extent the evolution of systemic risk over time, whereas changes in the total size of the

banks’ liabilities are far less important in this context. Therefore, a solid capital base

throughout the cycle and the de-correlation of banks’ asset values should be the main

focus of macroprudential banking supervision.

• On the other hand, given a particular level of systemic risk at a particular point in

time, the distribution of the relative risk contributions depends strongly on the size

distribution of the banks. But still there are institutions whose share in the system’s ES

is greater than their share in the overall liabilities, indicating a disproportionately large

impact on the system. Therefore, although the large banks should always be subject to

more intensive supervision, tying the bank-specific systemic capital surcharges solely to

the institution’s size would not address the issue of negative externality. The surcharges

should be directly linked to the banks’ systemic risk contributions, which are calculated

not on a stand-alone basis but in interaction with other banks.

• Finally, concentrated sectors containing a few big banks impose a considerable systemic

risk even if these banks are well capitalised. Thus, in a system comprised of only a few

large banks it may be sensible to split them up.
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Having computed banks’ individual contributions to overall systemic risk, we can depart

from the binary approach, whereby some firms would be considered of systemic importance

and others would not, which would leave room for regulatory arbitrage. Using individual

tail risk contributions, the binary concept can be refined to the desired degree either by

introducing several systemic rating categories or by utilising a direct functional link between

an institution’s marginal contribution to systemic risk and its degree of systemic importance.

Relying on the marginal ES contributions as a measure of the institutions’ systemic im-

portance, policy tools can be adjusted accordingly. One policy option would be to impose

a systemic capital charge as the amount of the systemic risk contribution not covered by

minimum capital requirements. Increasing overall risk-based capital requirements would re-

duce the probability of systemically important banks becoming distressed. Moreover, since

additional capital is costly, this would address the negative externality posed by a possible

failure of a systemically relevant bank. Regarding the time dimension of systemic risk, we

suggest a countercyclical capital add-on to be maintained when the markets are exception-

ally overoptimistic in their perception of the risk of default, such as to mitigate excessive risk

taking. This capital add-on may be calculated as the positive difference between the ES, as

measured using a time-varying level of the regulator’s tolerance toward the probability of a

systemic event, and the ES, as measured using a fixed tolerance level of, say, 0.1%.

Summarising, the portfolio approach, which we put forward for modelling a banking sys-

tem, can help us to understand the complex nature of systemic risk in terms of its cross-

sectional dimension as well as its evolution over time. The suggested integrated approach

not only delivers a continuous measure of banks’ systemic importance, which we use for cal-

culation of the bank-specific systemic capital surcharges. This approach can also be used

for calculation of countercyclical capital buffers to be maintained during the booms in or-

der to mitigate possible procyclical effects of regulatory tools based on a tail-risk measure.

Further theoretical and empirical research, however, is required to ensure that model-based

policy tools for the treatment of systemic risk are viable and robust before they are put into

practice.

AppendixA. Importance sampling algorithm for the portfolio loss distribution

In this appendix we briefly describe the two-stage IS algorithm adopted for simulation of

the portfolio loss distribution and refer to Glasserman and Li (2005) for further details.

Default events in a portfolio are typically positively correlated. They tend to occur si-

multaneously, driven by systematic risk factors. Thus, the first essential step in the variance

reduction of the IS estimates is to modify the joint Gaussian distribution of systematic risk

factors Y = (Y1 . . . Yn)′ in order to produce more “bad” realisations (negative values, in our
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case), so that joint defaults in the portfolio occur more frequently, leading to large portfolio

losses.

The transformation could be accomplished by shifting the mean of Y from 0 to µµµ, leaving

the initial correlation matrix (denoted by Σ) unchanged. Depending on xq, which is the

quantile of the portfolio loss distribution associated with the chosen confidence level q, the new

mean vector can be found according to the solution of the following maximisation problem:

µµµxq = arg max
y

{
−θxq + CPL|Y(θ)− 1

2
y′Σ−1y

}
, (A.1)

with CPL|Y(θ) =
∑n

i=1 ln
(
1− pi(yi) + ewi·LGDi·θpi(yi)

)
being the cumulant generating func-

tion of the conditional portfolio loss distribution. Here y = (y1, . . . , yn)′ denotes a realisation

of the random vector Y.

Now, when we have a realisation of the systematic risk factors, the second step in the

variance reduction is to modify the banks’ conditional probabilities of default so as to increase

the likelihood of individual banks’ failure. To do so, we shift the mean of the conditional loss

distribution into the region [xq, 1) by increasing conditional default probabilities.

To make the conditional expected loss equal the threshold xq, we set the conditional

default probabilities, initially given by

pi(Yi) = Φ

(
Φ−1(pi) + aiYi√

1− ai

)
, (A.2)

to their exponentially tilted values pi(Yi, θ), which depend on the tilting parameter θ:

pi(Yi; θ) =
eθ·wi·LGDipi(Yi)

1− pi(Yi) + ewi·LGDi·θpi(Yi)
. (A.3)

The optimal tilting parameter θxq(y) can be found by solving:

θxq(y) =
{
θ :

∑n

i=1
wi · LGDi · pi(yi; θ) = xq

}
. (A.4)

If xq > E[PL | y], then θxq(y) is positive and the tilted default probabilities pi(yi; θxq(y))

are greater than the original ones, leading to larger portfolio losses. Otherwise, θxq(y) is

negative and should be set to zero in order to estimate the tail risk, because there is no

advantage in reducing pi(yi). In other words, the appropriate choice of tilting parameter in

our setting is:

θ+xq(y) = max{0, θxq(y)}. (A.5)

It is important to accentuate the fact that there is no need for a repetitive computation of
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shifting and tilting parameters for different loss levels xq. Although the parameters µxq and

θ+xq(y) depend on a particular loss quantile, it is sufficient for a practical implementation to

choose only one value of xq. This loss level should be located in the tail, close to V aRq(PL)

and can be chosen on the basis of a brief preliminary MC simulation run. The exact position

of the loss threshold is not critical. For the chosen value of xq, equation (A.1) needs to

be solved numerically only once before starting the first simulation run. θ+xq(y) has to be

determined once for each realisation y.

Taking this information into account, we suggest the following IS simulation algorithm:

• Choose an appropriate loss level xq.

• Find µµµxq by solving (A.1).

• For each replication k = 1, . . . , s:

– sample a vector y from N(µµµxq ,Σ);

– calculate pi(yi) according to (A.2);

– set θ+xq(y) as in (A.5) by solving (A.4);

– calculate pi
(
yi; θ

+
xq(y)

)
according to (A.3);

– generate default indicators Di(yi) from Be
(
pi
(
yi; θ

+
xq(y)

))
;

– calculate portfolio loss PLk in each kth simulation run as in (3.4);

– calculate the corresponding likelihood ratio:

l
(
PLk

)
= exp

[
−θ+xq(y)PLk + CPL|Y

(
θ+xq(y)

)
+

1

2
µµµ′xqΣ

−1µµµxq − µµµ′xqΣ
−1y

]
.

• Calculate the empirical cumulative distribution function of the portfolio loss rate:

F̂PL(x) = 1− 1

s

∑s

k=1
11(x,1]

(
PLk

)
l
(
PLk

)
, x ∈ [0, 1].
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